
Improving multifrontal solvers by
means of Block Low-Rank
approximations

The MUMPS team
INP-IRIT, INRIA-LIP, Université de Bordeaux, CNRS-IRIT

Workshop on fast solvers, Toulouse, June 24-26, 2015

The Multifrontal method

MF (Duff’83) ND (George’73)

..

N

.

n

..

2D problem cost ∝
Flops:O(N6), mem:O(N4)

→ Flops:O(N6/8), mem:O(N4/2)

→ Flops:O(N3), mem:O(N2log(N))

3D problem cost ∝
→ Flops:O(N6), mem:O(N4)

3/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

MF (Duff’83) ND (George’73)

.

.

N

.

n

..

D1

.

D2

.

2D problem cost ∝
Flops:O(N6), mem:O(N4)

→ Flops:O(N6/8), mem:O(N4/2)

→ Flops:O(N3), mem:O(N2log(N))

3D problem cost ∝
→ Flops:O(N6), mem:O(N4)

3/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

MF (Duff’83) ND (George’73)

.

.

N

.

n

..

D1

.

D2

.

D1

.

D2

. S.

2D problem cost ∝
Flops:O(N6), mem:O(N4)

→ Flops:O(N6/8), mem:O(N4/2)

→ Flops:O(N3), mem:O(N2log(N))

3D problem cost ∝
→ Flops:O(N6), mem:O(N4)

3/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

MF (Duff’83) ND (George’73)

.

.

N

.

n

..

D1

.

D2

.

D1

.

D2

. S.

D1

.

2D problem cost ∝
Flops:O(N6), mem:O(N4)

→ Flops:O(N6/8), mem:O(N4/2)

→ Flops:O(N3), mem:O(N2log(N))

3D problem cost ∝
→ Flops:O(N6), mem:O(N4)

3/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

MF (Duff’83) ND (George’73)

.

.

N

.

n

..

D1

.

D2

.

D1

.

D2

. S..

2D problem cost ∝
Flops:O(N6), mem:O(N4)

→ Flops:O(N6/8), mem:O(N4/2)

→ Flops:O(N3), mem:O(N2log(N))

3D problem cost ∝
→ Flops:O(N6), mem:O(N4)

3/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

MF (Duff’83) ND (George’73)

.

.

N

.

n

..

D1

.

D2

.

D1

.

D2

. S...

2D problem cost ∝
Flops:O(N6), mem:O(N4)

→ Flops:O(N6/8), mem:O(N4/2)

→ Flops:O(N3), mem:O(N2log(N))

3D problem cost ∝
→ Flops:O(N6), mem:O(N4)

3/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

MF (Duff’83) ND (George’73)

.

.

N

.

n

..

D1

.

D2

.

D1

.

D2

. S....

2D problem cost ∝
Flops:O(N6), mem:O(N4)

→ Flops:O(N6/8), mem:O(N4/2)

→ Flops:O(N3), mem:O(N2log(N))

3D problem cost ∝
→ Flops:O(N6), mem:O(N4)

3/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

MF (Duff’83) ND (George’73)

.

.

N

.

n

..

D1

.

D2

.

D1

.

D2

. S....

2D problem cost ∝
Flops:O(N6), mem:O(N4)

→ Flops:O(N6/8), mem:O(N4/2)

→ Flops:O(N3), mem:O(N2log(N))

3D problem cost ∝
→ Flops:O(N6), mem:O(N4)

3/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

MF (Duff’83) ND (George’73)

.

.

N

.

n

...

D1

.

D2

.

D3

.

D4

.

D1

.

D2

.

D3

.

D4

. S..........

2D problem cost ∝
Flops:O(N6), mem:O(N4)

→ Flops:O(N6/8), mem:O(N4/2)

→ Flops:O(N3), mem:O(N2log(N))

3D problem cost ∝
→ Flops:O(N6), mem:O(N4)

3/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Low-Rank property

Low-rank matrices

Take a dense matrix B of size n×n and compute its SVD B = XSY:

5/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Low-rank matrices

Take a dense matrix B of size n×n and compute its SVD B = XSY:

B = X1S1Y1 + X2S2Y2 with S1(k, k) = σk > ε, S2(1, 1) = σk+1 ≤ ε

5/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Low-rank matrices

Take a dense matrix B of size n×n and compute its SVD B = XSY:

B = X1S1Y1 + X2S2Y2 with S1(k, k) = σk > ε, S2(1, 1) = σk+1 ≤ ε

If B̃ = X1S1Y1 then ∥B− B̃∥2 = ∥X2S2Y2∥2 = σk+1 ≤ ε

5/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Low-rank matrices

Take a dense matrix B of size n×n and compute its SVD B = XSY:

B = X1S1Y1 + X2S2Y2 with S1(k, k) = σk > ε, S2(1, 1) = σk+1 ≤ ε

If B̃ = X1S1Y1 then ∥B− B̃∥2 = ∥X2S2Y2∥2 = σk+1 ≤ ε

If the singular values of B decay very fast (e.g. exponentially) then
k≪ n even for very small ε (e.g. 10−14) ⇒ memory and CPU
consumption can be reduced considerably with a controlled loss
of accuracy (≤ ε) if B̃ is used instead of B

5/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Can we exploit low-rankness in frontal matrices?

Frontal matrices are usually not low-rank but in many applications
they exhibit low-rank blocks.
A block represents the interaction between two subdomains σ
and τ . If they have a small diameter and are far away the
interaction is weak ⇒ rank is low

.

1. compute a clustering of your domain (mesh)

2. permute the matrix accordingly

3. enjoy low-rankness

6/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Can we exploit low-rankness in frontal matrices?

Frontal matrices are usually not low-rank but in many applications
they exhibit low-rank blocks.
A block represents the interaction between two subdomains σ
and τ . If they have a small diameter and are far away the
interaction is weak ⇒ rank is low

...

τ

.

σ ra
nk

 o
f

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70 80 90 100

128

distance between and

1. compute a clustering of your domain (mesh)

2. permute the matrix accordingly

3. enjoy low-rankness

6/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Can we exploit low-rankness in frontal matrices?

Frontal matrices are usually not low-rank but in many applications
they exhibit low-rank blocks.
A block represents the interaction between two subdomains σ
and τ . If they have a small diameter and are far away the
interaction is weak ⇒ rank is low

...

τ

.

σ ra
nk

 o
f

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70 80 90 100

128

distance between and

1. compute a clustering of your domain (mesh)

2. permute the matrix accordingly

3. enjoy low-rankness

6/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Can we exploit low-rankness in frontal matrices?

Frontal matrices are usually not low-rank but in many applications
they exhibit low-rank blocks.
A block represents the interaction between two subdomains σ
and τ . If they have a small diameter and are far away the
interaction is weak ⇒ rank is low

...

τ

.

σ ra
nk

 o
f

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70 80 90 100

128

distance between and

1. compute a clustering of your domain (mesh)

2. permute the matrix accordingly

3. enjoy low-rankness

6/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Can we exploit low-rankness in frontal matrices?

Frontal matrices are usually not low-rank but in many applications
they exhibit low-rank blocks.
A block represents the interaction between two subdomains σ
and τ . If they have a small diameter and are far away the
interaction is weak ⇒ rank is low

...

τ

.

σ ra
nk

 o
f

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70 80 90 100

128

distance between and

1. compute a clustering of your domain (mesh)

2. permute the matrix accordingly

3. enjoy low-rankness

6/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Can we exploit low-rankness in frontal matrices?

Frontal matrices are usually not low-rank but in many applications
they exhibit low-rank blocks.
A block represents the interaction between two subdomains σ
and τ . If they have a small diameter and are far away the
interaction is weak ⇒ rank is low

...

τ

.

σ ra
nk

 o
f

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70 80 90 100

128

distance between and

1. compute a clustering of your domain (mesh)

2. permute the matrix accordingly

3. enjoy low-rankness

6/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Can we exploit low-rankness in frontal matrices?

Frontal matrices are usually not low-rank but in many applications
they exhibit low-rank blocks.
A block represents the interaction between two subdomains σ
and τ . If they have a small diameter and are far away the
interaction is weak ⇒ rank is low

...

τ

.

σ ra
nk

 o
f

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70 80 90 100

128

distance between and

1. compute a clustering of your domain (mesh)

2. permute the matrix accordingly

3. enjoy low-rankness

6/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Can we exploit low-rankness in frontal matrices?

Frontal matrices are usually not low-rank but in many applications
they exhibit low-rank blocks.
A block represents the interaction between two subdomains σ
and τ . If they have a small diameter and are far away the
interaction is weak ⇒ rank is low

...

τ

.

σ ra
nk

 o
f

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70 80 90 100

128

distance between and

1. compute a clustering of your domain (mesh)

2. permute the matrix accordingly

3. enjoy low-rankness
6/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Clustering

Clustering

We aim at a clustering which is such that each frontal matrix has a
maximum of low-rank blocks.
If the geometry of the domain, and of the separators is known, the
task would be relatively simple

.
large diameters
small distances

.
small diameters
large distances

• maximize the relative distance between clusters
• minimize their diameter…
• but not too much to achieve an acceptable BLAS efficiency

8/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Algebraic clustering/blocking

In a purely algebraic context, we don’t have the luxury of knowing
the geometry because we only know the matrix
→ use the adjacency graph instead of the domain geometry

For all the separators
- extract the adjacency graph
- extend it with halo
- pass it to a partitioning tool

End for

SCOTCH-partitioned SCOTCH
separator on a cubic domain of
size N = 128

→

9/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Low-rank formats

Low-rank approximations – representations

Once the blocking is defined, several low-rank formats are
possible.

We believe Block Low-Rank (BLR) aims at a good compromise
between complexity and performance/usability.

11/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Low-rank approximations – representations

Once the blocking is defined, several low-rank formats are
possible.
Some have a hierarchical format (H, H2, HSS, HODLR, …)

• Leads to very low complexity
(fact. is ∼ O(n), with a big
constant).

• Complex, hierarchical structure.
• Relatively inefficient and
expensive SVD/RRQR…(very T&S
blocks), unless randomization or
low-rank assembly is used.

• Parallelism is difficult to exploit.

We believe Block Low-Rank (BLR) aims at a good compromise
between complexity and performance/usability.

11/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Low-rank approximations – representations

Once the blocking is defined, several low-rank formats are
possible.
Another one (ours) is Block Low-Rank

• Very simple structure (very little
logic to handle).

• Cheap SVD/RRQR.
• Completely parallel.
• Complexity is a question under
investigation.

We believe Block Low-Rank (BLR) aims at a good compromise
between complexity and performance/usability.

11/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Low-rank approximations – representations

Once the blocking is defined, several low-rank formats are
possible.
Another one (ours) is Block Low-Rank

• Very simple structure (very little
logic to handle).

• Cheap SVD/RRQR.
• Completely parallel.
• Complexity is a question under
investigation.

We believe Block Low-Rank (BLR) aims at a good compromise
between complexity and performance/usability.

11/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Factorization

BLR LU factorization

task operation type full-rank low-rank

Factor (F) B = LUT (2/3)b3 (2/3)b3

Solve (S) B = X(YL−1) b3 rb2

Compress (C) B = XY --- rb2

Update (U) B = B− X1(Y1X2)Y2 2b3 rb2

(b=block size, r=rank)

▶

_GETRF

▶

_TRSM

▶

_GEQP3/_GESVD

▶

_GEMM

13/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

BLR LU factorization

task operation type full-rank low-rank

Factor (F) B = LUT (2/3)b3 (2/3)b3

Solve (S) B = X(YL−1) b3 rb2

Compress (C) B = XY --- rb2

Update (U) B = B− X1(Y1X2)Y2 2b3 rb2

(b=block size, r=rank)

L
U

L

L

L

▶_GETRF

▶

_TRSM

▶

_GEQP3/_GESVD

▶

_GEMM

13/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

BLR LU factorization

task operation type full-rank low-rank

Factor (F) B = LUT (2/3)b3 (2/3)b3

Solve (S) B = X(YL−1) b3 rb2

Compress (C) B = XY --- rb2

Update (U) B = B− X1(Y1X2)Y2 2b3 rb2

(b=block size, r=rank)

L
U

L

L

L

U U U

▶

_GETRF
▶_TRSM

▶

_GEQP3/_GESVD

▶

_GEMM

13/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

BLR LU factorization

task operation type full-rank low-rank

Factor (F) B = LUT (2/3)b3 (2/3)b3

Solve (S) B = X(YL−1) b3 rb2

Compress (C) B = XY --- rb2

Update (U) B = B− X1(Y1X2)Y2 2b3 rb2

(b=block size, r=rank)

L
U

L

L

L

U U U

▶

_GETRF

▶

_TRSM
▶_GEQP3/_GESVD

▶

_GEMM

13/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

BLR LU factorization

task operation type full-rank low-rank

Factor (F) B = LUT (2/3)b3 (2/3)b3

Solve (S) B = X(YL−1) b3 rb2

Compress (C) B = XY --- rb2

Update (U) B = B− X1(Y1X2)Y2 2b3 rb2

(b=block size, r=rank)

L
U

L

L

L

U U U

▶

_GETRF

▶

_TRSM

▶

_GEQP3/_GESVD
▶_GEMM

13/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

BLR LU factorization

task operation type full-rank low-rank

Factor (F) B = LUT (2/3)b3 (2/3)b3

Solve (S) B = X(YL−1) b3 rb2

Compress (C) B = XY --- rb2

Update (U) B = B− X1(Y1X2)Y2 2b3 rb2

(b=block size, r=rank)

L
U

L
U

L
U

L
U

L

L

L

U U U

U U

L

L

U

L

▶

_GETRF

▶

_TRSM

▶

_GEQP3/_GESVD

▶

_GEMM

13/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Threshold partial pivoting with BLR

CB

current BLR panel

non-eliminated variables

to be updated with
BLAS 3 BLR operations

eliminated variables

planned BLR panel

Pivots are delayed panelwise and eventually to the parent node

14/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Threshold partial pivoting with BLR

CB

non-eliminated variables

to be updated with
BLAS 3 BLR operations

eliminated variables

FR

FR

actual current BLR panel

actual next BLR panel
(size has increased)

Pivots are delayed panelwise and eventually to the parent node

14/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Complexity of the BLR
factorization

Low-rank Updates Accumulation (LUA)

..
b

.

r

.

+ . . .+︸ ︷︷ ︸
s times

.

+ . . .+

.

LR−→
.

FR−→

update without LUA

1: for k = 1, s do
2: compute_middle_block
3: multiply_middle_block
4: decompress
5: FR sum
6: end for

O(sbr2) +O(sb2r)

update with LUA

1: for k = 1, s do
2: compute_middle_block
3: multiply_middle_block
4: LR sum
5: end for
6: decompress

O(sbr2) +O(b2r)

16/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Low-rank Updates Accumulation (LUA)

.

.
b

.

r

.

+ . . .+︸ ︷︷ ︸
s times

.

+ . . .+

.

LR−→
.

FR−→

update without LUA

1: for k = 1, s do
2: compute_middle_block
3: multiply_middle_block
4: decompress
5: FR sum
6: end for

O(sbr2)

+O(sb2r)

update with LUA

1: for k = 1, s do
2: compute_middle_block
3: multiply_middle_block
4: LR sum
5: end for
6: decompress

O(sbr2) +O(b2r)

16/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Low-rank Updates Accumulation (LUA)

.

.
b

.

r

.

+ . . .+︸ ︷︷ ︸
s times

.

+ . . .+

.

+ . . .+

.

LR−→
.

FR−→

update without LUA

1: for k = 1, s do
2: compute_middle_block
3: multiply_middle_block
4: decompress
5: FR sum
6: end for

O(sbr2)

+O(sb2r)

update with LUA

1: for k = 1, s do
2: compute_middle_block
3: multiply_middle_block
4: LR sum
5: end for
6: decompress

O(sbr2) +O(b2r)

16/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Low-rank Updates Accumulation (LUA)

.

.
b

.

r

.

+ . . .+︸ ︷︷ ︸
s times

.

+ . . .+

.

+ . . .+

.

LR−→
.

FR−→

update without LUA

1: for k = 1, s do
2: compute_middle_block
3: multiply_middle_block
4: decompress
5: FR sum
6: end for

O(sbr2) +O(sb2r)

update with LUA

1: for k = 1, s do
2: compute_middle_block
3: multiply_middle_block
4: LR sum
5: end for
6: decompress

O(sbr2) +O(b2r)

16/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Low-rank Updates Accumulation (LUA)

.

.
b

.

r

.

+ . . .+︸ ︷︷ ︸
s times

.

+ . . .+

.

+ . . .+

.

FR−→

.

LR−→
.

FR−→

update without LUA

1: for k = 1, s do
2: compute_middle_block
3: multiply_middle_block
4: decompress
5: FR sum
6: end for

O(sbr2) +O(sb2r)

update with LUA

1: for k = 1, s do
2: compute_middle_block
3: multiply_middle_block
4: LR sum
5: end for
6: decompress

O(sbr2) +O(b2r)

16/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Low-rank Updates Accumulation (LUA)

..
b

.

r

.

+ . . .+︸ ︷︷ ︸
s times

.

+ . . .+

.

LR−→
.

FR−→

update without LUA

1: for k = 1, s do
2: compute_middle_block
3: multiply_middle_block
4: decompress
5: FR sum
6: end for

O(sbr2) +O(sb2r)

update with LUA

1: for k = 1, s do
2: compute_middle_block
3: multiply_middle_block
4: LR sum
5: end for
6: decompress

O(sbr2) +O(b2r)

16/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Low-rank Updates Accumulation (LUA)

.

.
b

.

r

.

+ . . .+︸ ︷︷ ︸
s times

.

+ . . .+

.

LR−→
.

FR−→

update without LUA

1: for k = 1, s do
2: compute_middle_block
3: multiply_middle_block
4: decompress
5: FR sum
6: end for

O(sbr2) +O(sb2r)

update with LUA

1: for k = 1, s do
2: compute_middle_block
3: multiply_middle_block
4: LR sum
5: end for
6: decompress

O(sbr2)

+O(b2r)

16/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Low-rank Updates Accumulation (LUA)

.

.
b

.

r

.

+ . . .+︸ ︷︷ ︸
s times

.

+ . . .+

.

+ . . .+

.

LR−→
.

FR−→

update without LUA

1: for k = 1, s do
2: compute_middle_block
3: multiply_middle_block
4: decompress
5: FR sum
6: end for

O(sbr2) +O(sb2r)

update with LUA

1: for k = 1, s do
2: compute_middle_block
3: multiply_middle_block
4: LR sum
5: end for
6: decompress

O(sbr2)

+O(b2r)

16/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Low-rank Updates Accumulation (LUA)

.

.
b

.

r

.

+ . . .+︸ ︷︷ ︸
s times

.

+ . . .+

.

+ . . .+

.

LR−→

.

FR−→

update without LUA

1: for k = 1, s do
2: compute_middle_block
3: multiply_middle_block
4: decompress
5: FR sum
6: end for

O(sbr2) +O(sb2r)

update with LUA

1: for k = 1, s do
2: compute_middle_block
3: multiply_middle_block
4: LR sum
5: end for
6: decompress

O(sbr2)

+O(b2r)

16/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Low-rank Updates Accumulation (LUA)

.

.
b

.

r

.

+ . . .+︸ ︷︷ ︸
s times

.

+ . . .+

.

+ . . .+

.

LR−→
.

FR−→

update without LUA

1: for k = 1, s do
2: compute_middle_block
3: multiply_middle_block
4: decompress
5: FR sum
6: end for

O(sbr2) +O(sb2r)

update with LUA

1: for k = 1, s do
2: compute_middle_block
3: multiply_middle_block
4: LR sum
5: end for
6: decompress

O(sbr2) +O(b2r)

16/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Low-rank Updates Accumulation (LUA)

.

.
b

.

r

.

+ . . .+︸ ︷︷ ︸
s times

.

+ . . .+

.

+ . . .+

.

LR−→
.

FR−→

update without LUA

1: for k = 1, s do
2: compute_middle_block
3: multiply_middle_block
4: decompress
5: FR sum
6: end for

O(sbr2) +O(sb2r)

update with LUA

1: for k = 1, s do
2: compute_middle_block
3: multiply_middle_block
4: LR sum
5: end for
6: decompress

O(sbr2) +O(b2r)

16/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Complexity of BLR LU factorization

Depending on when and how the compression is done, different
variants are possible with different theoretical complexity:

operations memory

r = O(1) r = O(N) r = O(1) r = O(N)

FR O(n2) O(n2) O(n
4
3) O(n

4
3)

BLR FSCU O(n
5
3) O(n

11
6) O(n log n) O(n

4
3)

BLR FCSU O(n
14
9) O(n

16
9) O(n log n) O(n

4
3)

BLR FSCU+LUA O(n
14
9) O(n

16
9) O(n log n) O(n

4
3)

BLR FCSU+LUA O(n
4
3) O(n

5
3 log n) O(n log n) O(n

4
3)

H O(n
4
3) O(n

5
3) O(n) O(n

7
6)

in the 3D case (similar analysis possible for 2D)

If updates are accumulated and applied at once (LUA), a further
reduction can be achieved which leads to the same theoretical
complexity as HSS.

17/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Experimental results

Experimental MF complexity

Setting:

1. Poisson: N3 grid with a 7-point stencil with u = 1 on the
boundary ∂Ω

∆u = f

2. Helmholtz: N3 grid with a 27-point stencil, ω is the angular
frequency, v(x) is the seismic velocity field, and u(x, ω) is the
time-harmonic wavefield solution to the forcing term s(x, ω).(

−∆− ω2

v(x)2

)
u(x, ω) = s(x, ω)

19/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Experimental MF complexity: entries in factor

108

109

1010

64 96 128 160 192 224

Problem size N

Poisson entries in factors

56n1.07log(n)

62n1.04log(n)

BLR 10-14

BLR 10-10

Full Rank: O(n1.3)

108

109

1010

1011

64 96 128 160 192 224

Problem size N

Helmholtz entries for factors

18n1.20log(n)

BLR 10-4

Full Rank: O(n1.3)

• ε only plays a role in the constant factor
• good agreement with theory
• for Poisson a factor ∼ 3 gain with almost no loss of accuracy

20/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Experimental MF complexity: operations

1011

1012

1013

1014

1015

64 96 128 160 192 224

Problem size N

Poisson Flop

1065n1.50

1674n1.52

BLR 10-14

BLR 10-10

Full Rank: O(n2)

1011

1012

1013

1014

1015

1016

64 96 128 160 192 224

Problem size N

Helmholtz Flop

37n1.85

BLR 10-4

Full Rank: O(n2)

• ε only plays a role in the constant factor
• good agreement with theory
• for Poisson a factor ∼ 9 gain with almost no loss of accuracy

21/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Application to frequency-domain seismic modeling

• Credits: SEISCOPE project
• 3D VTI visco-acoustic Valhall model
• VTI visco-acoustic Helmholtz equation

Freq. n nnz factors flops time cores

5Hz 3M 70M 2.5GB 6.5E+13 80s 240
7Hz 7M 177M 6.4GB 4.1E+14 323s 320

10Hz 17M 446M 10.5GB 2.6E+15 1117s 680
Full-rank statistics

Experiments are done on the LICALLO supercomputer at the
OCA mesocenter:
• Two Intel(r) 10-cores Ivy Bridge 2,5 GHz and 64 GB memory
• Peak per core is 20.0 GF/s
• Infiniband FDR interconnect

22/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Application to frequency-domain seismic modeling

3

4

5

6

7

8

9

10

11

3 5 7 9 11 13 15 17
Y (km)

3

4

5

6

7

8

9

10

11

3 5 7 9 11 13 15 17
Y (km)

3

4

5

6

7

8

9

10

11

3 5 7 9 11 13 15 17

1.7

1.8

1.9

2.0

km/s

3

4

5

6

7

8

9

10

11

3 5 7 9 11 13 15 17

1.7

1.8

1.9

2.0

2.1

2.2

km/s

0

1

2

3

4

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

1

2

3

4

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1.5

2.0

2.5

3.0

km/s

Full rank Block-low rank

3

4

5

6

7

8

9

10

11

X
 (

km
)

3 5 7 9 11 13 15 17
Y (km)

3

4

5

6

7

8

9

10

11

X
 (

km
)

3 5 7 9 11 13 15 17

0

1

2

3

4

D
ep

th
(k

m
)

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

a) b) c)

Initial model

Depth=175m

Depth=1km

X=6.5km

Depth=175m Depth=175m

Depth=1km Depth=1km

X=6.5km X=6.5km

7Hz problem with single-precision on 320 cores:
• each row is a different section of the domain
• first column: initial model obtained with traveltime tomography
• second column: FWI solution computed with FR-MUMPS
• third column: FWI solution computed with BLR-MUMPS
(ε = 10−5)

23/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Application to frequency-domain seismic modeling

0

20

40

60

80

100

5Hz 7Hz 10Hz

%

o
f

F
R

Freq. (Hz)

BLR (10-5) -- Gains over FR

Factors size
Flops
Time

0

20

40

60

80

100

5Hz 7Hz 10Hz

%

o
f

F
R

Freq. (Hz)

BLR (10-4) -- Gains over FR

Factors size
Flops
Time

Gains in execution time do not match those in Flops because of
the weaker efficiency of BLAS kernels due to the small granularity.

24/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Application to frequency-domain seismic modeling

50

150

250

350

450

550

16x10 32x10 64x10

T
i
m
e

(
s
e
c
.
)

Cores

BLR (10-4)-- Scalability

17.0%

16.9%

17.1%

Full Rank (BLAS //)
Low Rank (BLAS //)

Due to the small size of blocks, multithreaded BLAS is inefficient.

We have added OpenMP directives to exploit multicores on BLR
computations

25/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Application to frequency-domain seismic modeling

50

150

250

350

450

550

16x10 32x10 64x10

T
i
m
e

(
s
e
c
.
)

Cores

BLR (10-4)-- Scalability

17.0%

16.9%

17.1%

Full Rank (BLAS //)
Low Rank (BLAS //)
Low Rank (BLAS // + OpenMP)

Due to the small size of blocks, multithreaded BLAS is inefficient.
We have added OpenMP directives to exploit multicores on BLR
computations

25/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Application to Electromagnetism

Matrices from EMGS (Norway). All matrices are complex and
solved in double-precision

Mat. n nnz factors flops

EMGS_E2 0.9 M 12M 16GB 6.1e+12
EMGS_E3 2.9 M 37M 76GB 5.6e+13
EMGS_S3 3.3 M 43M 92GB 7.5e+13
EMGS_E4 17.4 M 226M 897GB 2.1e+15
EMGS_S4 20.6 M 266M 1122GB 3.0e+15

Experiments are done on the EOS supercomputer at the CALMIP
center of Toulouse (grant 2014-P0989):
• Two Intel(r) 10-cores Ivy Bridge 2,8 GHz and 64 GB memory
• Peak per core is 22.4 GF/s
• Infiniband FDR interconnect

26/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Application to Electromagnetism

0

20

40

60

80

100

EMGS_E2 EMGS_E3 EMGS_S3 EMGS_E4 EMGS_S4

%

o
f

F
R

f
l
o
p
s

BLR -- flops compression at 10e-7

0

20

40

60

80

100

EMGS_E2 EMGS_E3 EMGS_S3 EMGS_E4 EMGS_S4

%

o
f

F
R

s
i
z
e

BLR -- fact. size compression at 10e-7

• Gains increase with the size of the problem
• Global memory is reduced more than just factors
• Compression overhead is included

27/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Application to Electromagnetism

0.2

0.4

0.6

0.8

1

1E-10 1E-09 1E-08 1E-07 1E-06

1e-10

1e-08

1e-06

1e-04

%
F
l
o
p
s

w
r
t

F
R

C
o
m
p
.
w
i
s
e

S
c
a
l
e
d

R
e
s
i
d
u
a
l

BLR accuracy

BLR -- Flops vs accuracy

Full-Rank (CSR=2e-14)

EMGS_E3
EMGS_S3

EMGS_E3 bw
EMGS_S3 bw

• compression improves, accuracy deteriorates as ε increases
• good agreement between ε and solution accuracy

28/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Application to Electromagnetism

500

1000

1500

2000

2500

3000

900 1280 1920

of cores

BLR -- Scalability at 10e-7

EMGS_S4-FR
EMGS_S4-LR

EMGS_E4-FR
EMGS_E4-LR

• smaller BLAS granularity (lower seq. and m.threaded speed)
• a factor ∼ 2.5 out of ∼ 10

29/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Application to Electromagnetism

500

1000

1500

2000

2500

3000

900 1280 1920

of cores

BLR -- Scalability at 10e-7

EMGS_S4-FR
EMGS_S4-LR

EMGS_S4-LR OMP

EMGS_E4-FR
EMGS_E4-LR

EMGS_E4-LR OMP

• smaller BLAS granularity (lower seq. and m.threaded speed)
• a factor ∼ 4.2 out of ∼ 10 thanks to OpenMP

29/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Performance analysis

FR and BLR (ε = 10−6) factorization of Geo_1438 matrix

Matrix n nnz factors flops

Geo_1438 1.4 M 60M 41GB 3.8e+13

% of FR ops is 6.8%
Peak per core is 22.4 GF/s

1 thread 10 threads

FR Facto 1859.0s (19.2 GF/s) 207.6s (16.1 GF/s)
LR Facto 301.7s (6.8 GF/s) 60.3s (4.3 GF/s)
Assembly+Stack 105.9s 28.1s

• Weight of assembly and memory copies becomes considerable
in LR and in multithreaded context

• FR vs. BLR: speedup of 6.2 out of 14.7 in sequential
• 1 → 10 threads: speedup of 5 out of 10 (to compare to 9 in FR)

31/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

FR and BLR (ε = 10−6) factorization of Geo_1438 matrix

1 thread 10 threads
Operation time time% GF/s time time% GF/s

FR

Panel+TRSM 92.2s 5.0% 13.5 17.7s 8.5% 7.0
Compress 0.0s 0.0% - 0.0s 0.0% -
Update 1748.0s 94.0% 20.7 184.2s 88.8% 19.7
Bottom Fronts 18.5s 1.0% 16.1 5.6s 2.7% 5.3
FR Total 1859.0s 100.0% 19.2 207.6s 100.0% 16.1

LR

Panel+TRSM 92.2s 30.6% 13.5 17.7s 29.3% 7.0
Compress 67.2s 22.3% 3.2 12.0s 20.0% 1.8
Update 123.6s 41.0% 6.5 24.6s 40.9% 3.3
Bottom Fronts 18.5s 6.1% 16.1 5.6s 9.3% 5.4
LR Total 301.7s 100.0% 6.8 60.3s 100.0% 4.3

• Compress has poor efficiency
• Updates are much slower in LR because of smaller granularity
• Multithreading bottom fronts: factor 3.3 out of 10 → W. Sid-Lakhdar’s thesis
• Multithreading compress: factor 5.6 out of 10
• Multithreading LR update: factor 5 out of 10 (compare to 9.5 in FR)

32/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

FR and BLR (ε = 10−6) factorization of Geo_1438 matrix

1 thread 10 threads
Operation time time% GF/s time time% GF/s

FR

Panel+TRSM 92.2s 5.0% 13.5 17.7s 8.5% 7.0
Compress 0.0s 0.0% - 0.0s 0.0% -
Update 1748.0s 94.0% 20.7 184.2s 88.8% 19.7
Bottom Fronts 18.5s 1.0% 16.1 5.6s 2.7% 5.3
FR Total 1859.0s 100.0% 19.2 207.6s 100.0% 16.1

LR

Panel+TRSM 92.2s 30.6% 13.5 17.7s 29.3% 7.0
Compress 67.2s 22.3% 3.2 12.0s 20.0% 1.8
Update 123.6s 41.0% 6.5 24.6s 40.9% 3.3
Bottom Fronts 18.5s 6.1% 16.1 5.6s 9.3% 5.4
LR Total 301.7s 100.0% 6.8 60.3s 100.0% 4.3

• Compress has poor efficiency
• Updates are much slower in LR because of smaller granularity
• Multithreading bottom fronts: factor 3.3 out of 10 → W. Sid-Lakhdar’s thesis
• Multithreading compress: factor 5.6 out of 10
• Multithreading LR update: factor 5 out of 10 (compare to 9.5 in FR)

32/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

FR and BLR (ε = 10−6) factorization of Geo_1438 matrix

1 thread 10 threads
Operation time time% GF/s time time% GF/s

FR

Panel+TRSM 92.2s 5.0% 13.5 17.7s 8.5% 7.0
Compress 0.0s 0.0% - 0.0s 0.0% -
Update 1748.0s 94.0% 20.7 184.2s 88.8% 19.7
Bottom Fronts 18.5s 1.0% 16.1 5.6s 2.7% 5.3
FR Total 1859.0s 100.0% 19.2 207.6s 100.0% 16.1

LR

Panel+TRSM 92.2s 30.6% 13.5 17.7s 29.3% 7.0
Compress 67.2s 22.3% 3.2 12.0s 20.0% 1.8
Update 123.6s 41.0% 6.5 24.6s 40.9% 3.3
Bottom Fronts 18.5s 6.1% 16.1 5.6s 9.3% 5.4
LR Total 301.7s 100.0% 6.8 60.3s 100.0% 4.3

• Compress has poor efficiency
• Updates are much slower in LR because of smaller granularity
• Multithreading bottom fronts: factor 3.3 out of 10 → W. Sid-Lakhdar’s thesis
• Multithreading compress: factor 5.6 out of 10
• Multithreading LR update: factor 5 out of 10 (compare to 9.5 in FR)

32/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

FR and BLR (ε = 10−6) factorization of Geo_1438 matrix

1 thread 10 threads
Operation time time% GF/s time time% GF/s

FR

Panel+TRSM 92.2s 5.0% 13.5 17.7s 8.5% 7.0
Compress 0.0s 0.0% - 0.0s 0.0% -
Update 1748.0s 94.0% 20.7 184.2s 88.8% 19.7
Bottom Fronts 18.5s 1.0% 16.1 5.6s 2.7% 5.3
FR Total 1859.0s 100.0% 19.2 207.6s 100.0% 16.1

LR

Panel+TRSM 92.2s 30.6% 13.5 17.7s 29.3% 7.0
Compress 67.2s 22.3% 3.2 12.0s 20.0% 1.8
Update 123.6s 41.0% 6.5 24.6s 40.9% 3.3
Bottom Fronts 18.5s 6.1% 16.1 5.6s 9.3% 5.4
LR Total 301.7s 100.0% 6.8 60.3s 100.0% 4.3

• Compress has poor efficiency
• Updates are much slower in LR because of smaller granularity
• Multithreading bottom fronts: factor 3.3 out of 10 → W. Sid-Lakhdar’s thesis
• Multithreading compress: factor 5.6 out of 10
• Multithreading LR update: factor 5 out of 10 (compare to 9.5 in FR)

32/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

FR and BLR (ε = 10−6) factorization of Geo_1438 matrix

1 thread 10 threads
Operation time time% GF/s time time% GF/s

FR

Panel+TRSM 92.2s 5.0% 13.5 17.7s 8.5% 7.0
Compress 0.0s 0.0% - 0.0s 0.0% -
Update 1748.0s 94.0% 20.7 184.2s 88.8% 19.7
Bottom Fronts 18.5s 1.0% 16.1 5.6s 2.7% 5.3
FR Total 1859.0s 100.0% 19.2 207.6s 100.0% 16.1

LR

Panel+TRSM 92.2s 30.6% 13.5 17.7s 29.3% 7.0
Compress 67.2s 22.3% 3.2 12.0s 20.0% 1.8
Update 123.6s 41.0% 6.5 24.6s 40.9% 3.3
Bottom Fronts 18.5s 6.1% 16.1 5.6s 9.3% 5.4
LR Total 301.7s 100.0% 6.8 60.3s 100.0% 4.3

• Compress has poor efficiency

• Updates are much slower in LR because of smaller granularity
• Multithreading bottom fronts: factor 3.3 out of 10 → W. Sid-Lakhdar’s thesis
• Multithreading compress: factor 5.6 out of 10
• Multithreading LR update: factor 5 out of 10 (compare to 9.5 in FR)

32/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

FR and BLR (ε = 10−6) factorization of Geo_1438 matrix

1 thread 10 threads
Operation time time% GF/s time time% GF/s

FR

Panel+TRSM 92.2s 5.0% 13.5 17.7s 8.5% 7.0
Compress 0.0s 0.0% - 0.0s 0.0% -
Update 1748.0s 94.0% 20.7 184.2s 88.8% 19.7
Bottom Fronts 18.5s 1.0% 16.1 5.6s 2.7% 5.3
FR Total 1859.0s 100.0% 19.2 207.6s 100.0% 16.1

LR

Panel+TRSM 92.2s 30.6% 13.5 17.7s 29.3% 7.0
Compress 67.2s 22.3% 3.2 12.0s 20.0% 1.8
Update 123.6s 41.0% 6.5 24.6s 40.9% 3.3
Bottom Fronts 18.5s 6.1% 16.1 5.6s 9.3% 5.4
LR Total 301.7s 100.0% 6.8 60.3s 100.0% 4.3

• Compress has poor efficiency
• Updates are much slower in LR because of smaller granularity

• Multithreading bottom fronts: factor 3.3 out of 10 → W. Sid-Lakhdar’s thesis
• Multithreading compress: factor 5.6 out of 10
• Multithreading LR update: factor 5 out of 10 (compare to 9.5 in FR)

32/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

FR and BLR (ε = 10−6) factorization of Geo_1438 matrix

1 thread 10 threads
Operation time time% GF/s time time% GF/s

FR

Panel+TRSM 92.2s 5.0% 13.5 17.7s 8.5% 7.0
Compress 0.0s 0.0% - 0.0s 0.0% -
Update 1748.0s 94.0% 20.7 184.2s 88.8% 19.7
Bottom Fronts 18.5s 1.0% 16.1 5.6s 2.7% 5.3
FR Total 1859.0s 100.0% 19.2 207.6s 100.0% 16.1

LR

Panel+TRSM 92.2s 30.6% 13.5 17.7s 29.3% 7.0
Compress 67.2s 22.3% 3.2 12.0s 20.0% 1.8
Update 123.6s 41.0% 6.5 24.6s 40.9% 3.3
Bottom Fronts 18.5s 6.1% 16.1 5.6s 9.3% 5.4
LR Total 301.7s 100.0% 6.8 60.3s 100.0% 4.3

• Compress has poor efficiency
• Updates are much slower in LR because of smaller granularity

• Multithreading bottom fronts: factor 3.3 out of 10 → W. Sid-Lakhdar’s thesis
• Multithreading compress: factor 5.6 out of 10
• Multithreading LR update: factor 5 out of 10 (compare to 9.5 in FR)

32/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

FR and BLR (ε = 10−6) factorization of Geo_1438 matrix

1 thread 10 threads
Operation time time% GF/s time time% GF/s

FR

Panel+TRSM 92.2s 5.0% 13.5 17.7s 8.5% 7.0
Compress 0.0s 0.0% - 0.0s 0.0% -
Update 1748.0s 94.0% 20.7 184.2s 88.8% 19.7
Bottom Fronts 18.5s 1.0% 16.1 5.6s 2.7% 5.3
FR Total 1859.0s 100.0% 19.2 207.6s 100.0% 16.1

LR

Panel+TRSM 92.2s 30.6% 13.5 17.7s 29.3% 7.0
Compress 67.2s 22.3% 3.2 12.0s 20.0% 1.8
Update 123.6s 41.0% 6.5 24.6s 40.9% 3.3
Bottom Fronts 18.5s 6.1% 16.1 5.6s 9.3% 5.4
LR Total 301.7s 100.0% 6.8 60.3s 100.0% 4.3

• Compress has poor efficiency
• Updates are much slower in LR because of smaller granularity
• Multithreading bottom fronts: factor 3.3 out of 10 → W. Sid-Lakhdar’s thesis

• Multithreading compress: factor 5.6 out of 10
• Multithreading LR update: factor 5 out of 10 (compare to 9.5 in FR)

32/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

FR and BLR (ε = 10−6) factorization of Geo_1438 matrix

1 thread 10 threads
Operation time time% GF/s time time% GF/s

FR

Panel+TRSM 92.2s 5.0% 13.5 17.7s 8.5% 7.0
Compress 0.0s 0.0% - 0.0s 0.0% -
Update 1748.0s 94.0% 20.7 184.2s 88.8% 19.7
Bottom Fronts 18.5s 1.0% 16.1 5.6s 2.7% 5.3
FR Total 1859.0s 100.0% 19.2 207.6s 100.0% 16.1

LR

Panel+TRSM 92.2s 30.6% 13.5 17.7s 29.3% 7.0
Compress 67.2s 22.3% 3.2 12.0s 20.0% 1.8
Update 123.6s 41.0% 6.5 24.6s 40.9% 3.3
Bottom Fronts 18.5s 6.1% 16.1 5.6s 9.3% 5.4
LR Total 301.7s 100.0% 6.8 60.3s 100.0% 4.3

• Compress has poor efficiency
• Updates are much slower in LR because of smaller granularity
• Multithreading bottom fronts: factor 3.3 out of 10 → W. Sid-Lakhdar’s thesis
• Multithreading compress: factor 5.6 out of 10

• Multithreading LR update: factor 5 out of 10 (compare to 9.5 in FR)

32/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

FR and BLR (ε = 10−6) factorization of Geo_1438 matrix

1 thread 10 threads
Operation time time% GF/s time time% GF/s

FR

Panel+TRSM 92.2s 5.0% 13.5 17.7s 8.5% 7.0
Compress 0.0s 0.0% - 0.0s 0.0% -
Update 1748.0s 94.0% 20.7 184.2s 88.8% 19.7
Bottom Fronts 18.5s 1.0% 16.1 5.6s 2.7% 5.3
FR Total 1859.0s 100.0% 19.2 207.6s 100.0% 16.1

LR

Panel+TRSM 92.2s 30.6% 13.5 17.7s 29.3% 7.0
Compress 67.2s 22.3% 3.2 12.0s 20.0% 1.8
Update 123.6s 41.0% 6.5 24.6s 40.9% 3.3
Bottom Fronts 18.5s 6.1% 16.1 5.6s 9.3% 5.4
LR Total 301.7s 100.0% 6.8 60.3s 100.0% 4.3

• Compress has poor efficiency
• Updates are much slower in LR because of smaller granularity
• Multithreading bottom fronts: factor 3.3 out of 10 → W. Sid-Lakhdar’s thesis
• Multithreading compress: factor 5.6 out of 10
• Multithreading LR update: factor 5 out of 10 (compare to 9.5 in FR)

32/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

FR and BLR (ε = 10−6) factorization of Geo_1438 matrix

1 thread 10 threads
Operation time time% GF/s time time% GF/s

FR

Panel+TRSM 92.2s 5.0% 13.5 17.7s 8.5% 7.0
Compress 0.0s 0.0% - 0.0s 0.0% -
Update 1748.0s 94.0% 20.7 184.2s 88.8% 19.7
Bottom Fronts 18.5s 1.0% 16.1 5.6s 2.7% 5.3
FR Total 1859.0s 100.0% 19.2 207.6s 100.0% 16.1

LR

Panel+TRSM 92.2s 30.6% 13.5 17.7s 29.3% 7.0
Compress 67.2s 22.3% 3.2 12.0s 20.0% 1.8
Update 123.6s 41.0% 6.5 24.6s 40.9% 3.3
Bottom Fronts 18.5s 6.1% 16.1 5.6s 9.3% 5.4
LR Total 301.7s 100.0% 6.8 60.3s 100.0% 4.3

• Compress has poor efficiency
• Updates are much slower in LR because of smaller granularity
• Multithreading bottom fronts: factor 3.3 out of 10 → W. Sid-Lakhdar’s thesis
• Multithreading compress: factor 5.6 out of 10
• Multithreading LR update: factor 5 out of 10 (compare to 9.5 in FR)

32/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

? Thanks!
Questions?

	The Multifrontal method
	Low-Rank property
	Clustering
	Low-rank formats
	Factorization
	Complexity of the BLR factorization

