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The Multifrontal method
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Low-Rank property



Low-rank matrices

Take a dense matrix B of size n×n and compute its SVD B = XSY:
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Low-rank matrices

Take a dense matrix B of size n×n and compute its SVD B = XSY:

B = X1S1Y1 + X2S2Y2 with S1(k, k) = σk > ε, S2(1, 1) = σk+1 ≤ ε

If B̃ = X1S1Y1 then ∥B− B̃∥2 = ∥X2S2Y2∥2 = σk+1 ≤ ε

If the singular values of B decay very fast (e.g. exponentially) then
k≪ n even for very small ε (e.g. 10−14) ⇒ memory and CPU
consumption can be reduced considerably with a controlled loss
of accuracy (≤ ε) if B̃ is used instead of B

5/33 Workshop on fast solvers, Toulouse, June 24-26, 2015



Can we exploit low-rankness in frontal matrices?

Frontal matrices are usually not low-rank but in many applications
they exhibit low-rank blocks.
A block represents the interaction between two subdomains σ
and τ . If they have a small diameter and are far away the
interaction is weak ⇒ rank is low

.

1. compute a clustering of your domain (mesh)

2. permute the matrix accordingly

3. enjoy low-rankness
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Clustering



Clustering

We aim at a clustering which is such that each frontal matrix has a
maximum of low-rank blocks.
If the geometry of the domain, and of the separators is known, the
task would be relatively simple

.
large diameters
small distances

.
small diameters
large distances

• maximize the relative distance between clusters
• minimize their diameter…
• but not too much to achieve an acceptable BLAS efficiency
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Algebraic clustering/blocking

In a purely algebraic context, we don’t have the luxury of knowing
the geometry because we only know the matrix
→ use the adjacency graph instead of the domain geometry

For all the separators
- extract the adjacency graph
- extend it with halo
- pass it to a partitioning tool

End for

SCOTCH-partitioned SCOTCH
separator on a cubic domain of
size N = 128

→
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Low-rank formats



Low-rank approximations – representations

Once the blocking is defined, several low-rank formats are
possible.

We believe Block Low-Rank (BLR) aims at a good compromise
between complexity and performance/usability.
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Low-rank approximations – representations

Once the blocking is defined, several low-rank formats are
possible.
Some have a hierarchical format (H, H2, HSS, HODLR, …)

• Leads to very low complexity
(fact. is ∼ O(n), with a big
constant).

• Complex, hierarchical structure.
• Relatively inefficient and
expensive SVD/RRQR…(very T&S
blocks), unless randomization or
low-rank assembly is used.

• Parallelism is difficult to exploit.

We believe Block Low-Rank (BLR) aims at a good compromise
between complexity and performance/usability.

11/33 Workshop on fast solvers, Toulouse, June 24-26, 2015



Low-rank approximations – representations

Once the blocking is defined, several low-rank formats are
possible.
Another one (ours) is Block Low-Rank

• Very simple structure (very little
logic to handle).
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• Completely parallel.
• Complexity is a question under
investigation.
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Factorization



BLR LU factorization

task operation type full-rank low-rank

Factor (F) B = LUT (2/3)b3 (2/3)b3

Solve (S) B = X(YL−1) b3 rb2

Compress (C) B = XY --- rb2

Update (U) B = B− X1(Y1X2)Y2 2b3 rb2

(b=block size, r=rank)

▶

_GETRF

▶

_TRSM

▶

_GEQP3/_GESVD

▶

_GEMM
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Threshold partial pivoting with BLR

CB

current BLR panel

non-eliminated variables

to be updated with
BLAS 3 BLR operations

eliminated variables

planned BLR panel

Pivots are delayed panelwise and eventually to the parent node
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Threshold partial pivoting with BLR

CB

non-eliminated variables

to be updated with
BLAS 3 BLR operations

eliminated variables

FR

FR

actual current BLR panel

actual next BLR panel
(size has increased)

Pivots are delayed panelwise and eventually to the parent node
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Complexity of the BLR
factorization



Low-rank Updates Accumulation (LUA)
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s times

.

+ . . .+

.

LR−→
.

FR−→

update without LUA

1: for k = 1, s do
2: compute_middle_block
3: multiply_middle_block
4: decompress
5: FR sum
6: end for

O(sbr2) +O(sb2r)

update with LUA

1: for k = 1, s do
2: compute_middle_block
3: multiply_middle_block
4: LR sum
5: end for
6: decompress

O(sbr2) +O(b2r)
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Low-rank Updates Accumulation (LUA)
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Complexity of BLR LU factorization

Depending on when and how the compression is done, different
variants are possible with different theoretical complexity:

operations memory

r = O(1) r = O(N) r = O(1) r = O(N)

FR O(n2) O(n2) O(n
4
3 ) O(n

4
3 )
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5
3 ) O(n

11
6 ) O(n log n) O(n

4
3 )

BLR FCSU O(n
14
9 ) O(n

16
9 ) O(n log n) O(n

4
3 )
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14
9 ) O(n
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9 ) O(n log n) O(n

4
3 )
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4
3 ) O(n

5
3 log n) O(n log n) O(n

4
3 )

H O(n
4
3 ) O(n

5
3 ) O(n) O(n

7
6 )

in the 3D case (similar analysis possible for 2D)

If updates are accumulated and applied at once (LUA), a further
reduction can be achieved which leads to the same theoretical
complexity as HSS.
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Experimental results



Experimental MF complexity

Setting:

1. Poisson: N3 grid with a 7-point stencil with u = 1 on the
boundary ∂Ω

∆u = f

2. Helmholtz: N3 grid with a 27-point stencil, ω is the angular
frequency, v(x) is the seismic velocity field, and u(x, ω) is the
time-harmonic wavefield solution to the forcing term s(x, ω).(

−∆− ω2

v(x)2

)
u(x, ω) = s(x, ω)
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Experimental MF complexity: entries in factor
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Problem size N
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Full Rank: O(n1.3)
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Helmholtz entries for factors

18n1.20log(n)

BLR 10-4

Full Rank: O(n1.3)

• ε only plays a role in the constant factor
• good agreement with theory
• for Poisson a factor ∼ 3 gain with almost no loss of accuracy
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Experimental MF complexity: operations
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37n1.85
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Full Rank: O(n2)

• ε only plays a role in the constant factor
• good agreement with theory
• for Poisson a factor ∼ 9 gain with almost no loss of accuracy
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Application to frequency-domain seismic modeling

• Credits: SEISCOPE project
• 3D VTI visco-acoustic Valhall model
• VTI visco-acoustic Helmholtz equation

Freq. n nnz factors flops time cores

5Hz 3M 70M 2.5GB 6.5E+13 80s 240
7Hz 7M 177M 6.4GB 4.1E+14 323s 320

10Hz 17M 446M 10.5GB 2.6E+15 1117s 680
Full-rank statistics

Experiments are done on the LICALLO supercomputer at the
OCA mesocenter:
• Two Intel(r) 10-cores Ivy Bridge 2,5 GHz and 64 GB memory
• Peak per core is 20.0 GF/s
• Infiniband FDR interconnect
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Application to frequency-domain seismic modeling
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7Hz problem with single-precision on 320 cores:
• each row is a different section of the domain
• first column: initial model obtained with traveltime tomography
• second column: FWI solution computed with FR-MUMPS
• third column: FWI solution computed with BLR-MUMPS
(ε = 10−5)
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Application to frequency-domain seismic modeling
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Gains in execution time do not match those in Flops because of
the weaker efficiency of BLAS kernels due to the small granularity.
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Application to frequency-domain seismic modeling
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Due to the small size of blocks, multithreaded BLAS is inefficient.

We have added OpenMP directives to exploit multicores on BLR
computations
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Application to frequency-domain seismic modeling
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Due to the small size of blocks, multithreaded BLAS is inefficient.
We have added OpenMP directives to exploit multicores on BLR
computations
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Application to Electromagnetism

Matrices from EMGS (Norway). All matrices are complex and
solved in double-precision

Mat. n nnz factors flops

EMGS_E2 0.9 M 12M 16GB 6.1e+12
EMGS_E3 2.9 M 37M 76GB 5.6e+13
EMGS_S3 3.3 M 43M 92GB 7.5e+13
EMGS_E4 17.4 M 226M 897GB 2.1e+15
EMGS_S4 20.6 M 266M 1122GB 3.0e+15

Experiments are done on the EOS supercomputer at the CALMIP
center of Toulouse (grant 2014-P0989):
• Two Intel(r) 10-cores Ivy Bridge 2,8 GHz and 64 GB memory
• Peak per core is 22.4 GF/s
• Infiniband FDR interconnect
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Application to Electromagnetism

0

20

40

60

80

100

EMGS_E2 EMGS_E3 EMGS_S3 EMGS_E4 EMGS_S4

%
 
o
f
 
F
R
 
f
l
o
p
s

BLR -- flops compression at 10e-7

0

20

40

60

80

100

EMGS_E2 EMGS_E3 EMGS_S3 EMGS_E4 EMGS_S4

%
 
o
f
 
F
R
 
s
i
z
e

BLR -- fact. size compression at 10e-7

• Gains increase with the size of the problem
• Global memory is reduced more than just factors
• Compression overhead is included
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Application to Electromagnetism
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• compression improves, accuracy deteriorates as ε increases
• good agreement between ε and solution accuracy
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Application to Electromagnetism
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• smaller BLAS granularity (lower seq. and m.threaded speed)
• a factor ∼ 2.5 out of ∼ 10
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Application to Electromagnetism
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EMGS_E4-LR OMP

• smaller BLAS granularity (lower seq. and m.threaded speed)
• a factor ∼ 4.2 out of ∼ 10 thanks to OpenMP
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Performance analysis



FR and BLR (ε = 10−6) factorization of Geo_1438 matrix

Matrix n nnz factors flops

Geo_1438 1.4 M 60M 41GB 3.8e+13

% of FR ops is 6.8%
Peak per core is 22.4 GF/s

1 thread 10 threads

FR Facto 1859.0s (19.2 GF/s) 207.6s (16.1 GF/s)
LR Facto 301.7s ( 6.8 GF/s) 60.3s ( 4.3 GF/s)
Assembly+Stack 105.9s 28.1s

• Weight of assembly and memory copies becomes considerable
in LR and in multithreaded context

• FR vs. BLR: speedup of 6.2 out of 14.7 in sequential
• 1 → 10 threads: speedup of 5 out of 10 (to compare to 9 in FR)
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FR and BLR (ε = 10−6) factorization of Geo_1438 matrix

1 thread 10 threads
Operation time time% GF/s time time% GF/s

FR

Panel+TRSM 92.2s 5.0% 13.5 17.7s 8.5% 7.0
Compress 0.0s 0.0% - 0.0s 0.0% -
Update 1748.0s 94.0% 20.7 184.2s 88.8% 19.7
Bottom Fronts 18.5s 1.0% 16.1 5.6s 2.7% 5.3
FR Total 1859.0s 100.0% 19.2 207.6s 100.0% 16.1

LR

Panel+TRSM 92.2s 30.6% 13.5 17.7s 29.3% 7.0
Compress 67.2s 22.3% 3.2 12.0s 20.0% 1.8
Update 123.6s 41.0% 6.5 24.6s 40.9% 3.3
Bottom Fronts 18.5s 6.1% 16.1 5.6s 9.3% 5.4
LR Total 301.7s 100.0% 6.8 60.3s 100.0% 4.3

• Compress has poor efficiency
• Updates are much slower in LR because of smaller granularity
• Multithreading bottom fronts: factor 3.3 out of 10 → W. Sid-Lakhdar’s thesis
• Multithreading compress: factor 5.6 out of 10
• Multithreading LR update: factor 5 out of 10 (compare to 9.5 in FR)
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1 thread 10 threads
Operation time time% GF/s time time% GF/s

FR

Panel+TRSM 92.2s 5.0% 13.5 17.7s 8.5% 7.0
Compress 0.0s 0.0% - 0.0s 0.0% -
Update 1748.0s 94.0% 20.7 184.2s 88.8% 19.7
Bottom Fronts 18.5s 1.0% 16.1 5.6s 2.7% 5.3
FR Total 1859.0s 100.0% 19.2 207.6s 100.0% 16.1

LR

Panel+TRSM 92.2s 30.6% 13.5 17.7s 29.3% 7.0
Compress 67.2s 22.3% 3.2 12.0s 20.0% 1.8
Update 123.6s 41.0% 6.5 24.6s 40.9% 3.3
Bottom Fronts 18.5s 6.1% 16.1 5.6s 9.3% 5.4
LR Total 301.7s 100.0% 6.8 60.3s 100.0% 4.3

• Compress has poor efficiency
• Updates are much slower in LR because of smaller granularity
• Multithreading bottom fronts: factor 3.3 out of 10 → W. Sid-Lakhdar’s thesis
• Multithreading compress: factor 5.6 out of 10
• Multithreading LR update: factor 5 out of 10 (compare to 9.5 in FR)
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? Thanks!
Questions?
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