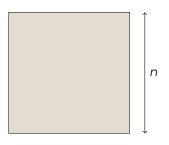
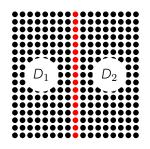
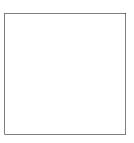
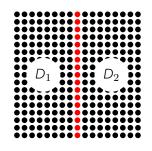
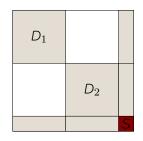

Improving multifrontal solvers by means of Block Low-Rank approximations

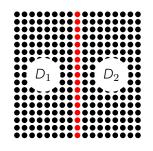

The MUMPS team

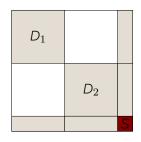

INP-IRIT, INRIA-LIP, Université de Bordeaux, CNRS-IRIT

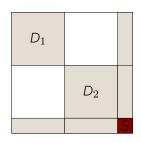

Workshop on fast solvers, Toulouse, June 24-26, 2015

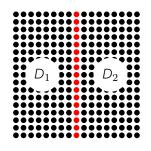

The Multifrontal method

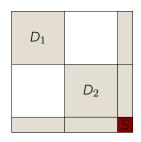


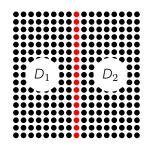


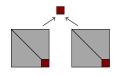


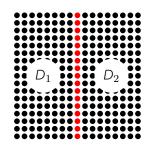


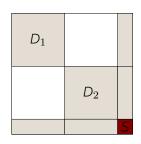




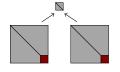


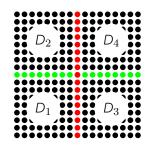


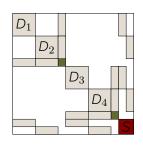




 D_1 D_2

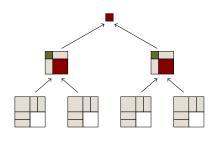





2D problem cost \propto

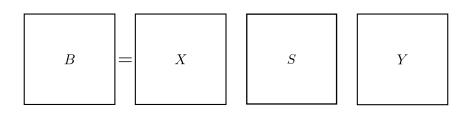
Flops: $\mathcal{O}(N^6)$, mem: $\mathcal{O}(N^4)$

ightarrow Flops: $\mathcal{O}(\mathit{N}^6/8)$, mem: $\mathcal{O}(\mathit{N}^4/2)$

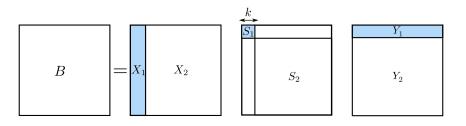

2D problem cost \propto

Flops: $\mathcal{O}(N^6)$, mem: $\mathcal{O}(N^4)$

- ightarrow Flops: $\mathcal{O}(N^6/8)$, mem: $\mathcal{O}(N^4/2)$
- ightarrow Flops: $\mathcal{O}(\mathit{N}^3)$, mem: $\mathcal{O}(\mathit{N}^2log(\mathit{N}))$

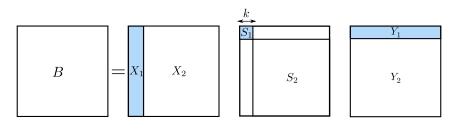

3D problem cost \propto

 \rightarrow Flops: $\mathcal{O}(N^6)$, mem: $\mathcal{O}(N^4)$



Low-Rank property

Take a dense matrix B of size $n \times n$ and compute its SVD B = XSY:



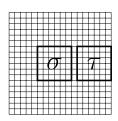
Take a dense matrix B of size $n \times n$ and compute its SVD B = XSY:

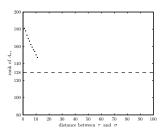
$$B = X_1 S_1 Y_1 + X_2 S_2 Y_2$$
 with $S_1(k, k) = \sigma_k > \varepsilon$, $S_2(1, 1) = \sigma_{k+1} \le \varepsilon$

Take a dense matrix B of size $n \times n$ and compute its SVD B = XSY:

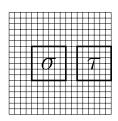
$$\begin{split} B &= X_1S_1Y_1 + X_2S_2Y_2 \quad \text{with} \quad S_1(k,k) = \sigma_k > \varepsilon, \ S_2(1,1) = \sigma_{k+1} \leq \varepsilon \\ \text{If } \tilde{B} &= X_1S_1Y_1 \quad \text{then} \quad \|B - \tilde{B}\|_2 = \|X_2S_2Y_2\|_2 = \sigma_{k+1} \leq \varepsilon \end{split}$$

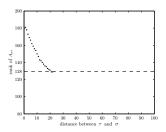
Take a dense matrix B of size $n \times n$ and compute its SVD B = XSY:

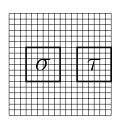

$$\begin{split} B &= X_1S_1Y_1 + X_2S_2Y_2 \quad \text{with} \quad S_1(k,k) = \sigma_k > \varepsilon, \ S_2(1,1) = \sigma_{k+1} \leq \varepsilon \\ \text{If } \tilde{B} &= X_1S_1Y_1 \quad \text{then} \quad \|B - \tilde{B}\|_2 = \|X_2S_2Y_2\|_2 = \sigma_{k+1} \leq \varepsilon \end{split}$$

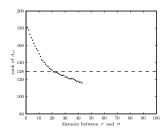

If the singular values of B decay very fast (e.g. exponentially) then $k \ll n$ even for very small ε (e.g. 10^{-14}) \Rightarrow memory and CPU consumption can be reduced considerably with a controlled loss of accuracy ($\leq \varepsilon$) if \tilde{B} is used instead of B Workshop on fast solvers, Toulouse, June 24-26, 2015

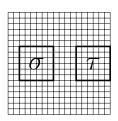
5/33

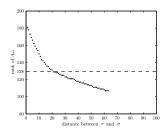

Frontal matrices are usually not low-rank but in many applications they exhibit low-rank blocks.

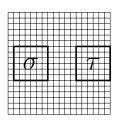

Frontal matrices are usually not low-rank but in many applications they exhibit low-rank blocks.

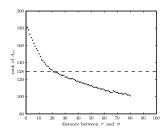


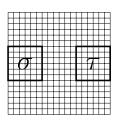

Frontal matrices are usually not low-rank but in many applications they exhibit low-rank blocks.

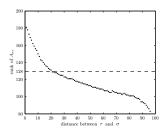


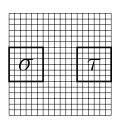

Frontal matrices are usually not low-rank but in many applications they exhibit low-rank blocks.

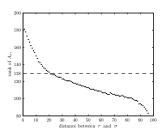



Frontal matrices are usually not low-rank but in many applications they exhibit low-rank blocks.

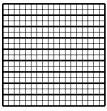



Frontal matrices are usually not low-rank but in many applications they exhibit low-rank blocks.

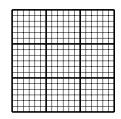



Frontal matrices are usually not low-rank but in many applications they exhibit low-rank blocks.

Frontal matrices are usually not low-rank but in many applications they exhibit low-rank blocks.


- 1. compute a clustering of your domain (mesh)
- 2. permute the matrix accordingly
- 3. enjoy low-rankness

Clustering


Clustering

We aim at a clustering which is such that each frontal matrix has a maximum of low-rank blocks.

If the geometry of the domain, and of the separators is known, the task would be relatively simple

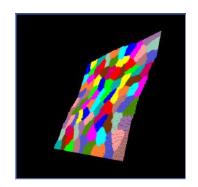
large diameters small distances

small diameters large distances

- maximize the relative distance between clusters
- minimize their diameter...
- but not too much to achieve an acceptable BLAS efficiency Workshop on rast solvers, Joulouse, June 24-26, 2015

Algebraic clustering/blocking

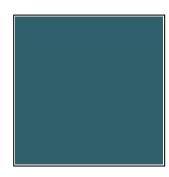
In a purely algebraic context, we don't have the luxury of knowing the geometry because we only know the matrix


ightarrow use the adjacency graph instead of the domain geometry

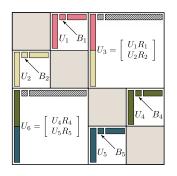
For all the separators

- extract the adjacency graph
- extend it with halo
- pass it to a partitioning tool

End for


SCOTCH-partitioned SCOTCH separator on a cubic domain of size ${\cal N}=128$

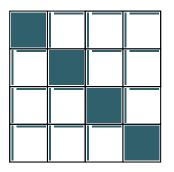
Low-rank approximations – representations


Once the blocking is defined, several low-rank formats are possible.

Low-rank approximations – representations

Once the blocking is defined, several low-rank formats are possible.

Some have a hierarchical format (\mathcal{H} , \mathcal{H}^2 , HSS, HODLR, ...)

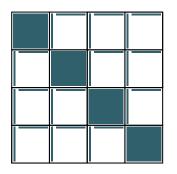


- Leads to very low complexity (fact. is $\sim O(n)$, with a big constant).
- Complex, hierarchical structure.
- Relatively inefficient and expensive SVD/RRQR...(very T&S blocks), unless randomization or low-rank assembly is used.
- Parallelism is difficult to exploit.

Low-rank approximations – representations

Once the blocking is defined, several low-rank formats are possible.

Another one (ours) is Block Low-Rank



- Very simple structure (very little logic to handle).
- Cheap SVD/RRQR.
- Completely parallel.
- Complexity is a question under investigation.

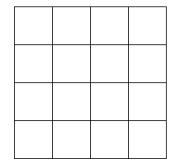
<u>Low-rank approximations</u> – representations

Once the blocking is defined, several low-rank formats are possible.

Another one (ours) is Block Low-Rank

- Very simple structure (very little logic to handle).
- Cheap SVD/RRQR.
- Completely parallel.
- Complexity is a question under investigation.

We believe Block Low-Rank (BLR) aims at a good compromise between complexity and performance/usability.



Factorization

BLR LU factorization

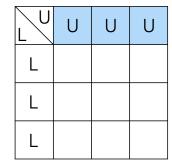
task	operation type	full-rank	low-rank	
Factor (F)	$B = LU^T$	$(2/3)b^3$	$(2/3)b^3$	
Solve (S)	$B = X(YL^{-1})$	b^3	rb^2	
Compress (C)	B = XY		rb^2	
Update (U)	$B = B - X_1(Y_1X_2)Y_2$	$2b^3$	rb^2	
(h-block size r-rapk)				

(b=block size, r=rank)

_GETRF
_TRSM
_GEQP3/_GESVD
_GEMM

BLR LU factorization

task	operation type	full-rank	low-rank	
Factor (F)	$B = LU^T$	$(2/3)b^3$	$(2/3)b^3$	
Solve (S)	$B = X(YL^{-1})$	b^3	rb^2	
Compress (C)	B = XY		rb^2	
Update (U)	$B = B - X_1(Y_1X_2)Y_2$	$2b^3$	rb^2	
(b=block size, r=rank)				

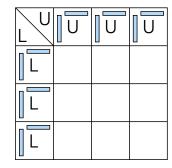

L L

►_GETRF
_TRSM
_GEQP3/_GESVD
_GEMM

BLR LU factorization

task	operation type	full-rank	low-rank	
Factor (F)	$B = LU^T$	$(2/3)b^3$	$(2/3)b^{3}$	
Solve (S)	$B = X(YL^{-1})$	b^3	rb^2	
Compress (C)	B = XY		rb^2	
Update (U)	$B = B - X_1(Y_1X_2)Y_2$	$2b^3$	rb^2	
(h=block size r=rank)				

(b=block size, r=rank)

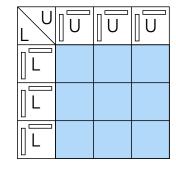


_GETRF
►_TRSM
_GEQP3/_GESVD
_GEMM

BLR LU factorization

operation type	full-rank	low-rank
$B = LU^T$	$(2/3)b^3$	$(2/3)b^3$
$B = X(YL^{-1})$	b^3	rb^2
B = XY		rb^2
$B = B - X_1(Y_1X_2)Y_2$	$2b^3$	rb^2
	$B = LU^{T}$ $B = X(YL^{-1})$ $B = XY$	$B = LU^{T} $ $B = X(YL^{-1}) $ $B = XY $ $(2/3)b^{3}$ b^{3} $$

(b=block size, r=rank)

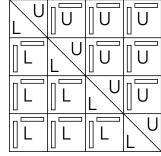


_GETRF
_TRSM
▶_GEQP3/_GESVD
_GEMM

BLR LU factorization

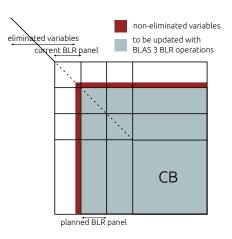
		low-rank
$B = LU^T$	$(2/3)b^3$	$(2/3)b^3$
$B = X(YL^{-1})$	b^3	rb^2
B = XY		rb^2
$B = B - X_1(Y_1X_2)Y_2$	$2b^3$	rb ²
E	$B = X(YL^{-1})$ B = XY $B = B - X_1(Y_1X_2)Y_2$	$B = X(YL^{-1}) \qquad b^3$ $B = XY \qquad$

(b=block size, r=rank)

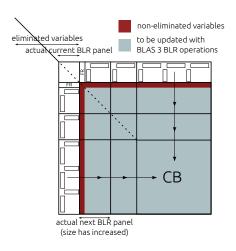

_GETRF
_TRSM
_GEQP3/_GESVD

▶_GEMM

BLR LU factorization

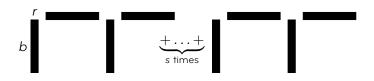

task	operation type	full-rank	low-rank
Factor (F)	$B = LU^T$	$(2/3)b^3$	$(2/3)b^{3}$
Solve (S)	$B = X(YL^{-1})$	b^3	rb^2
Compress (C)	B = XY		rb^2
Update (U)	$B = B - X_1(Y_1X_2)Y_2$	$2b^3$	rb^2
	(h-block size r-ran	ماد/	

(b=block size, r=rank)


_GETRF
_TRSM
_GEQP3/_GESVD
_GEMM

Threshold partial pivoting with BLR

Pivots are delayed panelwise and eventually to the parent node


Threshold partial pivoting with BLR

Pivots are delayed panelwise and eventually to the parent node

Complexity of the BLR

factorization

update without LUA

- 1: **for** k = 1, s **do**
- 2: compute_middle_block
- 3: multiply_middle_block
- 4: decompress
- 5: FR sum
- 6: end for

- 1: **for** k = 1, s **do**
- 2: compute_middle_block
- 3: multiply_middle_block
- 4: LR sum
- 5: end for
- 6: decompress

update without LUA

- 1: **for** k = 1, s **do**
- 2: compute_middle_block
- 3: multiply_middle_block
- 4: decompress
- 5: FR sum
- 6: end for

$$O(sbr^2)$$

- 1: **for** k = 1, s **do**
 - compute_middle_block
- 3: multiply_middle_block
- 4: LR sum
- 5: end for
- 6: decompress

update without LUA

- 1: **for** k = 1, s **do**
- 2: compute_middle_block
- 3: multiply_middle_block
- 4: decompress
- 5: FR sum
- 6: end for

 $O(sbr^2)$

- 1: **for** k = 1, s **do**
 - compute_middle_block
- 3: multiply_middle_block
- 4: LR sum
- 5: end for
- 6: decompress

update without LUA

- 1: **for** k = 1, s **do**
- 2: compute_middle_block
- 3: multiply_middle_block
- 4: decompress
- 5: FR sum
- 6: end for

$$O(sbr^2) + O(sb^2r)$$

update with LUA

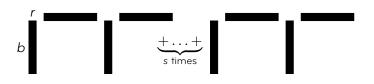
1: **for** k = 1, s **do**

I.R. sum

- compute_middle_block
- 3: multiply_middle_block
- 5: end for

4.

- 5: end for
- 6: decompress


$$+\dots+$$
 \xrightarrow{FR}

update without LUA

- 1: **for** k = 1, s **do**
- 2: compute_middle_block
- 3: multiply_middle_block
- 4: decompress
- 5: FR sum
- 6: end for

$$O(sbr^2) + O(sb^2r)$$

- 1: **for** k = 1, s **do**
 - compute_middle_block
- 3: multiply_middle_block
- 4: LR sum
- 5: end for
- 6: decompress

update without LUA

- 1: **for** k = 1, s **do**
- 2: compute_middle_block
- 3: multiply_middle_block
- 4: decompress
- 5: FR sum
- 6: end for

$$O(sbr^2) + O(sb^2r)$$

- 1: **for** k = 1, s **do**
- compute_middle_block
- multiply middle block 3.
- 4. I.R. sum 5: end for
- 6: decompress

update without LUA

- 1: **for** k = 1, s **do**
- 2: compute_middle_block
- 3: multiply_middle_block
- 4: decompress
- 5: FR sum
- 6: end for

$$O(sbr^2) + O(sb^2r)$$

- 1: **for** k = 1, s **do**
 - compute_middle_block
- 3: multiply_middle_block
- 4: LR sum
- 5: end for
- 6: decompress

$$O(sbr^2)$$

update without LUA

- 1: **for** k = 1, s **do**
- 2: compute_middle_block
- 3: multiply_middle_block
- 4: decompress
- 5: FR sum
- 6: end for

$$O(sbr^2) + O(sb^2r)$$

- 1: **for** k = 1, s **do**
 - compute_middle_block
- 3: multiply_middle_block
- 4: LR sum 5: end for
- 6: decompress

$$O(sbr^2)$$

$$+\ldots+$$
 \xrightarrow{LR}

update without LUA

- 1: **for** k = 1, s **do**
- 2: compute_middle_block
- 3: multiply_middle_block
- 4: decompress
- 5: FR sum
- 6: end for

$$O(sbr^2) + O(sb^2r)$$

- 1: for k=1, s do
 - compute_middle_block
- 3: multiply_middle_block
- 4: LR sum
 5: end for
- 5: ena tor
- 6: decompress

$$O(sbr^2)$$

$$+\ldots+$$
 \xrightarrow{LR} \xrightarrow{FR}

update without LUA

- 1: **for** k = 1, s **do**
- 2: compute_middle_block
- 3: multiply_middle_block
- 4: decompress
- 5: **FR sum**
- 6: end for

$$O(sbr^2) + O(sb^2r)$$

- 1: for k=1, s do
 - compute_middle_block
- 3: multiply_middle_block
- 4: LR sum
- 5: end for
- 6: decompress

$$O(sbr^2) + O(b^2r)$$

$$+\dots+$$
 \xrightarrow{LR} \xrightarrow{FR}

update without LUA

- 1: for k=1, s do
- 2: compute_middle_block
- 3: multiply_middle_block
- 4: decompress
- 5: FR sum
- 6: end for

$$O(sbr^2) + O(sb^2r)$$

- 1: for k=1, s do
 - compute_middle_block
- 3: multiply_middle_block
- 4: LR sum
- 5: end for
- 6: decompress

$$O(sbr^2) + O(b^2r)$$

Complexity of BLR LU factorization

Depending on when and how the compression is done, different variants are possible with different theoretical complexity:

	оре	rations	memory		
	r = O(1) $r = O(N)$		r = O(1)	r = O(N)	
FR	$O(n^2)$	$O(n^2)$	$O(n^{\frac{4}{3}})$	$O(n^{\frac{4}{3}})$	
BLR FSCU	$O(n^{\frac{5}{3}})$	$O(n^{\frac{11}{6}})$	$O(n \log n)$	$O(n^{\frac{4}{3}})$	
BLR FCSU	$O(n^{\frac{14}{9}})$	$O(n^{\frac{16}{9}})$	$O(n \log n)$	$O(n^{\frac{4}{3}})$	
BLR FSCU+LUA	$O(n^{\frac{14}{9}})$	$O(n^{\frac{16}{9}})$	$O(n \log n)$	$O(n^{\frac{4}{3}})$	
BLR FCSU+LUA	$O(n^{\frac{4}{3}})$	$O(n^{\frac{5}{3}}\log n)$	$O(n \log n)$	$O(n^{\frac{4}{3}})$	
\mathcal{H}	$O(n^{\frac{4}{3}})$	$O(n^{\frac{5}{3}})$	O(n)	$O(n^{\frac{7}{6}})$	

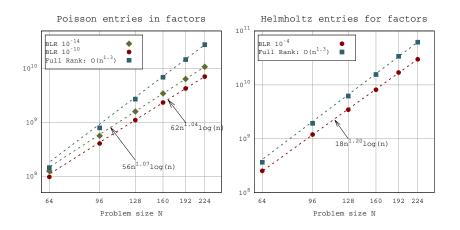
in the 3D case (similar analysis possible for 2D)

If updates are accumulated and applied at once (LUA), a further reduction can be achieved which leads to the same theoretical complexity as HSS.

Experimental results

Experimental MF complexity

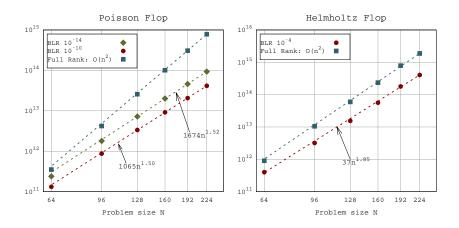
Setting:


1. Poisson: N^3 grid with a 7-point stencil with u=1 on the boundary $\partial\Omega$

$$\Delta u = f$$

2. Helmholtz: N^3 grid with a 27-point stencil, ω is the angular frequency, v(x) is the seismic velocity field, and $u(x,\omega)$ is the time-harmonic wavefield solution to the forcing term $s(x,\omega)$.

$$\left(-\Delta - \frac{\omega^2}{v(x)^2}\right) \ u(x,\omega) = s(x,\omega)$$

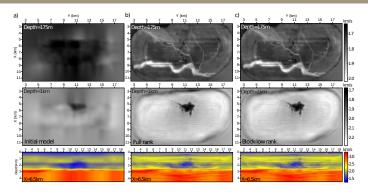

Experimental MF complexity: entries in factor

- \bullet ε only plays a role in the constant factor
- good agreement with theory
- ullet for Poisson a factor ~ 3 gain with almost no loss of accuracy

0/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

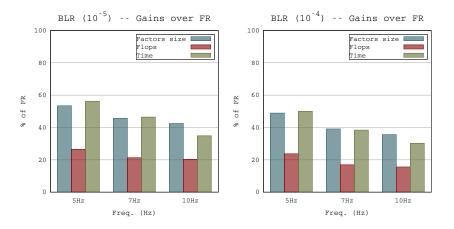
Experimental MF complexity: operations

- ullet constant factor
- good agreement with theory
- \bullet for Poisson a factor ~ 9 gain with almost no loss of accuracy

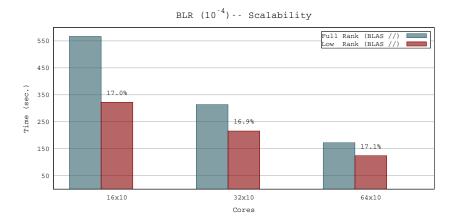

- Credits: SEISCOPE project
- 3D VTI visco-acoustic Valhall model
- VTI visco-acoustic Helmholtz equation

Freq.	n	nnz	factors	flops	time	cores
5Hz	3M	70M	2.5GB	6.5E+13 4.1E+14 2.6E+15	80s	240
7Hz	7M	177M	6.4GB	4.1E+14	323s	320
10Hz	17M	446M	10.5GB	2.6E+15	1117s	680

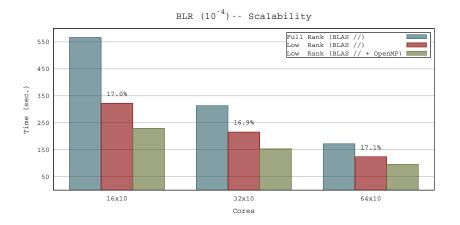
Full-rank statistics


Experiments are done on the LICALLO supercomputer at the OCA mesocenter:

- Two Intel(r) 10-cores Ivy Bridge 2,5 GHz and 64 GB memory
- Peak per core is 20.0 GF/s
- Infiniband FDR interconnect

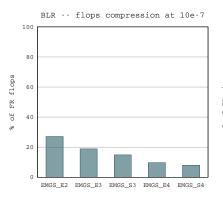


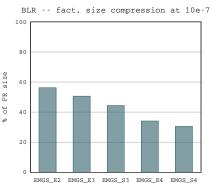
7Hz problem with single-precision on 320 cores:


- each row is a different section of the domain
- first column: initial model obtained with traveltime tomography
- second column: FWI solution computed with FR-MUMPS
- third column: FWI solution computed with BLR-MUMPS $(\varepsilon=10^{-5})$

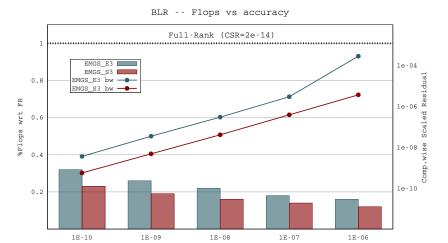
Gains in execution time do not match those in Flops because of the weaker efficiency of BLAS kernels due to the small granularity.

Due to the small size of blocks, multithreaded BLAS is inefficient.

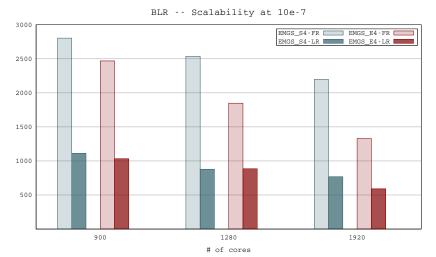

Due to the small size of blocks, multithreaded BLAS is inefficient. We have added OpenMP directives to exploit multicores on BLR computations

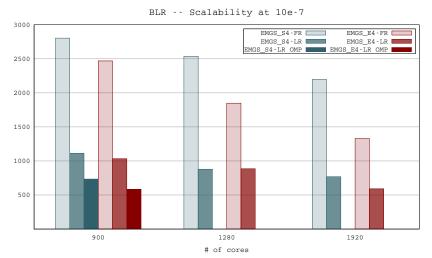

Matrices from EMGS (Norway). All matrices are complex and solved in double-precision

Mat.	n	nnz	factors	flops
EMGS_E2	0.9 M	12M	16GB	6.1e+12
EMGS_E3	2.9 M	37M	76GB	5.6e+13
EMGS_S3	3.3 M	43M	92GB	7.5e+13
EMGS_E4	17.4 M	226M	897GB	2.1e+15
EMGS_S4	20.6 M	266M	1122GB	3.0e+15


Experiments are done on the EOS supercomputer at the CALMIP center of Toulouse (grant 2014-P0989):

- Two Intel(r) 10-cores Ivy Bridge 2,8 GHz and 64 GB memory
- Peak per core is 22.4 GF/s
- Infiniband FDR interconnect




- Gains increase with the size of the problem
- Global memory is reduced more than just factors
- Compression overhead is included

- compression improves, accuracy deteriorates as arepsilon increases
- ullet good agreement between arepsilon and solution accuracy

- smaller BLAS granularity (lower seq. and m.threaded speed)
- ullet a factor ~ 2.5 out of ~ 10

- smaller BLAS granularity (lower seq. and m.threaded speed)
- a factor ~ 4.2 out of ~ 10 thanks to OpenMP

Performance analysis

FR and BLR ($\varepsilon=10^{-6}$) factorization of Geo_1438 matrix

Matrix	n	nnz	factors	flops
Geo_1438	1.4 M	60M	41GB	3.8e+13

% of FR ops is 6.8% Peak per core is 22.4 GF/s

	1 t	hread	10	threads
FR Facto		(19.2 GF/s)		(16.1 GF/s)
LR Facto	301.7s	(6.8 GF/s)	60.3s	(4.3 GF/s)
Assembly+Stack	105.9s		28.1s	

- in LR and in multithreaded context
- FR vs. BLR: speedup of 6.2 out of 14.7 in sequential
- ullet 1 ightarrow 10 threads: speedup of 5 out of 10 (to compare to 9 in FR)

Weight of assembly and memory copies becomes considerable

FR and BLR ($\varepsilon=10^{-6}$) factorization of Geo_1438 matrix

			1 thread			O threads	
	Operation	time	time%	GF/s	time	time%	GF/s
	Panel+TRSM	92.2s	5.0%	13.5	17.7s	8.5%	7.0
	Compress	0.0s	0.0%	-	0.0s	0.0%	-
FR	Update	1748.0s	94.0%	20.7	184.2s	88.8%	19.7
	Bottom Fronts	18.5s	1.0%	16.1	5.6s	2.7%	5.3
	FR Total	1859.0s	100.0%	19.2	207.6s	100.0%	16.1
	Panel+TRSM	92.2s	30.6%	13.5	17.7s	29.3%	7.0
	Compress	67.2s	22.3%	3.2	12.0s	20.0%	1.8
LR	Update	123.6s	41.0%	6.5	24.6s	40.9%	3.3
	Bottom Fronts	18.5s	6.1%	16.1	5.6s	9.3%	5.4
	LR Total	301.7s	100.0%	6.8	60.3s	100.0%	4.3

FR and BLR ($arepsilon=10^{-6}$) factorization of Geo_1438 matrix

			1 thread			.0 threads	
	Operation	time	time%	GF/s	time	time%	GF/s
	Panel+TRSM	92.2s	5.0%	13.5	17.7s	8.5%	7.0
	Compress	0.0s	0.0%	-	0.0s	0.0%	-
FR	Update	1748.0s	94.0%	20.7	184.2s	88.8%	19.7
	Bottom Fronts	18.5s	1.0%	16.1	5.6s	2.7%	5.3
	FR Total	1859.0s	100.0%	19.2	207.6s	100.0%	16.1
	Panel+TRSM	92.2s	30.6%	13.5	17.7s	29.3%	7.0
	Compress	67.2s	22.3%	3.2	12.0s	20.0%	1.8
LR	Update	123.6s	41.0%	6.5	24.6s	40.9%	3.3
	Bottom Fronts	18.5s	6.1%	16.1	5.6s	9.3%	5.4
	LR Total	301.7s	100.0%	6.8	60.3s	100.0%	4.3

FR and BLR ($arepsilon=10^{-6}$) factorization of Geo_1438 matrix

			1 thread			.0 threads	
	Operation	time	time%	GF/s	time	time%	GF/s
	Panel+TRSM	92.2s	5.0%	13.5	17.7s	8.5%	7.0
	Compress	0.0s	0.0%	-	0.0s	0.0%	-
FR	Update	1748.0s	94.0%	20.7	184.2s	88.8%	19.7
	Bottom Fronts	18.5s	1.0%	16.1	5.6s	2.7%	5.3
	FR Total	1859.0s	100.0%	19.2	207.6s	100.0%	16.1
	Panel+TRSM	92.2s	30.6%	13.5	17.7s	29.3%	7.0
	Compress	67.2s	22.3%	3.2	12.0s	20.0%	1.8
LR	Update	123.6s	41.0%	6.5	24.6s	40.9%	3.3
	Bottom Fronts	18.5s	6.1%	16.1	5.6s	9.3%	5.4
	LR Total	301.7s	100.0%	6.8	60.3s	100.0%	4.3

FR and BLR ($\varepsilon=10^{-6}$) factorization of Geo_1438 matrix

			1 thread			.0 threads	
	Operation	time	time%	GF/s	time	time%	GF/s
	Panel+TRSM	92.2s	5.0%	13.5	17.7s	8.5%	7.0
	Compress	0.0s	0.0%	-	0.0s	0.0%	-
FR	Update	1748.0s	94.0%	20.7	184.2s	88.8%	19.7
	Bottom Fronts	18.5s	1.0%	16.1	5.6s	2.7%	5.3
	FR Total	1859.0s	100.0%	19.2	207.6s	100.0%	16.1
	Panel+TRSM	92.2s	30.6%	13.5	17.7s	29.3%	7.0
	Compress	67.2s	22.3%	3.2	12.0s	20.0%	1.8
LR	Update	123.6s	41.0%	6.5	24.6s	40.9%	3.3
	Bottom Fronts	18.5s	6.1%	16.1	5.6s	9.3%	5.4
	LR Total	301.7s	100.0%	6.8	60.3s	100.0%	4.3

FR and BLR ($\varepsilon=10^{-6}$) factorization of Geo_1438 matrix

		1 thread			10 threads			
	Operation	time	time%	GF/s	time	time%	GF/s	
	Panel+TRSM	92.2s	5.0%	13.5	17.7s	8.5%	7.0	
	Compress	0.0s	0.0%	-	0.0s	0.0%	-	
FR	Update	1748.0s	94.0%	20.7	184.2s	88.8%	19.7	
	Bottom Fronts	18.5s	1.0%	16.1	5.6s	2.7%	5.3	
	FR Total	1859.0s	100.0%	19.2	207.6s	100.0%	16.1	
	Panel+TRSM	92.2s	30.6%	13.5	17.7s	29.3%	7.0	
	Compress	67.2s	22.3%	3.2	12.0s	20.0%	1.8	
LR	Update	123.6s	41.0%	6.5	24.6s	40.9%	3.3	
	Bottom Fronts	18.5s	6.1%	16.1	5.6s	9.3%	5.4	
	LR Total	301.7s	100.0%	6.8	60.3s	100.0%	4.3	

Compress has poor efficiency

FR and BLR ($\varepsilon=10^{-6}$) factorization of Geo_1438 matrix

		1 thread			10 threads			
	Operation	time	time%	GF/s	time	time%	GF/s	
	Panel+TRSM	92.2s	5.0%	13.5	17.7s	8.5%	7.0	
	Compress	0.0s	0.0%	-	0.0s	0.0%	-	
FR	Update	1748.0s	94.0%	20.7	184.2s	88.8%	19.7	
	Bottom Fronts	18.5s	1.0%	16.1	5.6s	2.7%	5.3	
	FR Total	1859.0s	100.0%	19.2	207.6s	100.0%	16.1	
	Panel+TRSM	92.2s	30.6%	13.5	17.7s	29.3%	7.0	
	Compress	67.2s	22.3%	3.2	12.0s	20.0%	1.8	
LR	Update	123.6s	41.0%	6.5	24.6s	40.9%	3.3	
	Bottom Fronts	18.5s	6.1%	16.1	5.6s	9.3%	5.4	
	LR Total	301.7s	100.0%	6.8	60.3s	100.0%	4.3	

- Compress has poor efficiency
- Updates are much slower in LR because of smaller granularity

FR and BLR ($\varepsilon=10^{-6}$) factorization of Geo_1438 matrix

		1 thread			10 threads			
	Operation	time	time%	GF/s	time	time%	GF/s	
	Panel+TRSM	92.2s	5.0%	13.5	17.7s	8.5%	7.0	
	Compress	0.0s	0.0%	-	0.0s	0.0%	-	
FR	Update	1748.0s	94.0%	20.7	184.2s	88.8%	19.7	
	Bottom Fronts	18.5s	1.0%	16.1	5.6s	2.7%	5.3	
	FR Total	1859.0s	100.0%	19.2	207.6s	100.0%	16.1	
	Panel+TRSM	92.2s	30.6%	13.5	17.7s	29.3%	7.0	
	Compress	67.2s	22.3%	3.2	12.0s	20.0%	1.8	
LR	Update	123.6s	41.0%	6.5	24.6s	40.9%	3.3	
	Bottom Fronts	18.5s	6.1%	16.1	5.6s	9.3%	5.4	
	LR Total	301.7s	100.0%	6.8	60.3s	100.0%	4.3	

- Compress has poor efficiency
- Updates are much slower in LR because of smaller granularity

FR and BLR ($\varepsilon=10^{-6}$) factorization of Geo_1438 matrix

		1 thread			10 threads			
	Operation	time	time%	GF/s	time	time%	GF/s	
	Panel+TRSM	92.2s	5.0%	13.5	17.7s	8.5%	7.0	
	Compress	0.0s	0.0%	-	0.0s	0.0%	-	
FR	Update	1748.0s	94.0%	20.7	184.2s	88.8%	19.7	
	Bottom Fronts	18.5s	1.0%	16.1	5.6s	2.7%	5.3	
	FR Total	1859.0s	100.0%	19.2	207.6s	100.0%	16.1	
	Panel+TRSM	92.2s	30.6%	13.5	17.7s	29.3%	7.0	
	Compress	67.2s	22.3%	3.2	12.0s	20.0%	1.8	
LR	Update	123.6s	41.0%	6.5	24.6s	40.9%	3.3	
	Bottom Fronts	18.5s	6.1%	16.1	5.6s	9.3%	5.4	
	LR Total	301.7s	100.0%	6.8	60.3s	100.0%	4.3	

- Compress has poor efficiency
- Updates are much slower in LR because of smaller granularity
- \bullet Multithreading bottom fronts: factor 3.3 out of 10 \rightarrow W. Sid-Lakhdar's thesis

FR and BLR ($\varepsilon=10^{-6}$) factorization of Geo_1438 matrix

		1 thread			10 threads			
	Operation	time	time%	GF/s	time	time%	GF/s	
	Panel+TRSM	92.2s	5.0%	13.5	17.7s	8.5%	7.0	
	Compress	0.0s	0.0%	-	0.0s	0.0%	-	
FR	Update	1748.0s	94.0%	20.7	184.2s	88.8%	19.7	
	Bottom Fronts	18.5s	1.0%	16.1	5.6s	2.7%	5.3	
	FR Total	1859.0s	100.0%	19.2	207.6s	100.0%	16.1	
	Panel+TRSM	92.2s	30.6%	13.5	17.7s	29.3%	7.0	
	Compress	67.2s	22.3%	3.2	12.0s	20.0%	1.8	
LR	Update	123.6s	41.0%	6.5	24.6s	40.9%	3.3	
	Bottom Fronts	18.5s	6.1%	16.1	5.6s	9.3%	5.4	
	LR Total	301.7s	100.0%	6.8	60.3s	100.0%	4.3	

- Compress has poor efficiency
- Updates are much slower in LR because of smaller granularity
- ullet Multithreading bottom fronts: factor 3.3 out of 10 \to W. Sid-Lakhdar's thesis
- Multithreading compress: factor 5.6 out of 10

FR and BLR ($\varepsilon=10^{-6}$) factorization of Geo_1438 matrix

			1 thread			10 threads			
	Operation	time	time%	GF/s	time	time%	GF/s		
	Panel+TRSM	92.2s	5.0%	13.5	17.7s	8.5%	7.0		
	Compress	0.0s	0.0%	-	0.0s	0.0%	-		
FR	Update	1748.0s	94.0%	20.7	184.2s	88.8%	19.7		
	Bottom Fronts	18.5s	1.0%	16.1	5.6s	2.7%	5.3		
	FR Total	1859.0s	100.0%	19.2	207.6s	100.0%	16.1		
	Panel+TRSM	92.2s	30.6%	13.5	17.7s	29.3%	7.0		
	Compress	67.2s	22.3%	3.2	12.0s	20.0%	1.8		
LR	Update	123.6s	41.0%	6.5	24.6s	40.9%	3.3		
	Bottom Fronts	18.5s	6.1%	16.1	5.6s	9.3%	5.4		
	LR Total	301.7s	100.0%	6.8	60.3s	100.0%	4.3		

- Compress has poor efficiency
- Updates are much slower in LR because of smaller granularity
- Multithreading bottom fronts: factor 3.3 out of $10 \rightarrow W$. Sid-Lakhdar's thesis
- Multithreading compress: factor 5.6 out of 10

• Multithreading LR update: factor 5 out of 10 (compare to 9.5 in FR)
32/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

FR and BLR ($\varepsilon=10^{-6}$) factorization of Geo_1438 matrix

			1 thread			10 threads			
	Operation	time	time%	GF/s	time	time%	GF/s		
	Panel+TRSM	92.2s	5.0%	13.5	17.7s	8.5%	7.0		
	Compress	0.0s	0.0%	-	0.0s	0.0%	-		
FR	Update	1748.0s	94.0%	20.7	184.2s	88.8%	19.7		
	Bottom Fronts	18.5s	1.0%	16.1	5.6s	2.7%	5.3		
	FR Total	1859.0s	100.0%	19.2	207.6s	100.0%	16.1		
	Panel+TRSM	92.2s	30.6%	13.5	17.7s	29.3%	7.0		
	Compress	67.2s	22.3%	3.2	12.0s	20.0%	1.8		
LR	Update	123.6s	41.0%	6.5	24.6s	40.9%	3.3		
	Bottom Fronts	18.5s	6.1%	16.1	5.6s	9.3%	5.4		
	LR Total	301.7s	100.0%	6.8	60.3s	100.0%	4.3		

- Compress has poor efficiency
- Updates are much slower in LR because of smaller granularity
- Multithreading bottom fronts: factor 3.3 out of $10 \rightarrow W$. Sid-Lakhdar's thesis
- Multithreading compress: factor 5.6 out of 10

• Multithreading LR update: factor 5 out of 10 (compare to 9.5 in FR)
32/33 Workshop on fast solvers, Toulouse, June 24-26, 2015

Thanks! Questions?