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Mixed precision “memory accessor” approaches decouple storage and compute precisions (data is stored and accessed in low precision,
but computations are kept in higher precision) to reduce data accesses, improve accuracy, and simplify programming. In this work, we
develop such a memory accessor aimed at accelerating sparse direct solvers and propose several new improvements. In particular,
we propose a BLAS-based, block approach that can directly rely on BLAS libraries for efficiency and portability. When considering
BLAS-2 memory-bound operations like triangular solves, we observe that the performance adequately matches the storage cost, in
multiple parallel settings, provided that the conversion from storage to compute precision is efficient, and that the block size is suitably
chosen. For the storage precision, we leverage custom floating-point types unsupported by hardware, and we take advantage of the
recent AVX512-VBMI instruction set to reach an improved efficiency. We also consider rank-structured matrix representations such
as the block low-rank (BLR) format, and explain how to optimize the memory accessor for such matrices. We present preliminary
performance experiments using the sparse direct solver MUMPS with adaptive precision BLR approximations. Our results confirm the
potential of these memory accessor approaches to achieve efficiency while optimizing storage.
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1 Introduction

The goal of this work is to accelerate the solution of sparse linear systems via mixed precision direct methods. In
particular, we are specifically interested in strategies that decouple the precisions that are used to store the data and to
perform the computations. Such strategies are beneficial in various contexts: for example, we may want to store the
LU factors of the matrix in low precision but apply their inverse (that is, perform triangular solves) in high precision
in the context of iterative refinement or preconditioned Krylov solvers [2, 4, 14]. This is also useful when the storage

Authors’ Contact Information: Patrick Amestoy, patrick.amestoy@mumps-tech.com, Mumps Technologies, Lyon, France; Antoine Jego, antoine.jego@
lip6.fr, Sorbonne Université, CNRS, LIP6, Paris, France; Jean-Yves L’Excellent, jean-yves.l.excellent@mumps-tech.com, Mumps Technologies, Lyon,
France; Theo Mary, theo.mary@lip6.fr, Sorbonne Université, CNRS, LIP6, Paris, France; Grégoire Pichon, gregoire.pichon@ens-lyon.fr, LIP (Université de
Lyon, ENS de Lyon, UCBL, CNRS, Inria), Lyon, France.

YYYY. Manuscript submitted to ACM

Manuscript submitted to ACM 1

HTTPS://ORCID.ORG/0000-0002-8559-9600
HTTPS://ORCID.ORG/0000-0001-8682-3179
HTTPS://ORCID.ORG/0000-0001-5804-993X
HTTPS://ORCID.ORG/0000-0001-9949-4634
HTTPS://ORCID.ORG/0000-0001-6298-703X
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://orcid.org/0000-0002-8559-9600
https://orcid.org/0000-0001-8682-3179
https://orcid.org/0000-0001-5804-993X
https://orcid.org/0000-0001-9949-4634
https://orcid.org/0000-0001-6298-703X


2 Amestoy et al.

precision corresponds to a custom floating-point type with no hardware support, in which case we must use a higher
compute precision corresponding to a standard type with native support.

In order to achieve efficiency, strategies that decouple the storage and compute precisions are based on so-called
memory accessors [10]: the idea is to access the data in low precision and convert it on the fly to high precision before
performing arithmetic operations on it. This allows for reducing the cost of data transfers and should therefore improve
the performance of memory-bound computations, such as the triangular solves in the context of direct methods. This
concept of memory accessor was first proposed in [10] and implemented in the Ginkgo library [25] to accelerate
various memory-bound BLAS computations such as matrix–vector products and triangular solves. Memory accessors
have also been developed for accelerating sparse matrix–vector products in [37] and later extended to their adaptive
precision variant [23] in [24]. Finally, memory accessors for hierarchical matrix–vector products have also been proposed
in [33, 34].

One limitation of most existing memory accessor approaches is that the data is accessed at the scalar (elementwise)
level: the matrix coefficients are converted from the storage to the compute precision one at a time. This requires
entirely handcoding the target kernel, which makes achieving efficiency and portability difficult, and goes against
the traditional separation of concerns whereby high level linear algebra operations rely on low level BLAS kernels
optimized for a particular architecture.

In this work, we take a different approach: we investigate a block memory accessor that loads into memory and
converts entire blocks of scalars at a time, and relies on BLAS libraries to perform computations on these blocks. This
approach avoids the heavy programming duty of rewriting and extending the BLAS, and allows for exploiting optimized
uniform precision BLAS kernels. This block approach has been much less investigated than the scalar approach. It has
been used in [33], where it is called “semi-on-the-fly”, although it was not investigated in depth.

The main contribution of this article is therefore to perform a thorough investigation of this BLAS-based block
memory accessor approach and its potential to accelerate mixed precision sparse direct solvers. This study is organized
as follows. First, we describe in more detail the motivations for developing memory accessors in section 2. Then, in
section 3, we describe our block memory accessor approach and its implementation for the triangular solve kernel. The
rest of the study is then organized in an incremental fashion. We start in section 4 by evaluating the performance of our
memory accessor in the simplest scenario, using only the natively supported floating-point types fp64 and fp32, and
with a sequential implementation of the accessor that each thread uses to solve its own independent triangular system.
Then, in each section, we extend and generalize the approach as follows. In section 5, we investigate the use of custom
floating-point types and describe an efficient conversion operation. In section 6, we adapt the accessor for matrices
compressed with block low-rank approximations [6]. In section 7, we discuss the parallelization of the memory accessor.
Finally, in section 8, we describe the integration of the memory accessor within the sparse direct solver MUMPS [6, 7],
and we report preliminary performance results.

2 Motivations for memory accessors in sparse direct solvers

We are interested in efficiently solving large sparse linear systems 𝐴𝑥 = 𝑏, with a focus on direct methods. Direct
methods rely on a factorization of 𝐴, such as 𝐴 = 𝐿𝑈 , to directly solve for 𝑥 . They are numerically robust and reliable,
but also very computationally intensive. This has motivated the use of a variety of approximated computing methods to
reduce their cost, such as low-rank approximations [6] or mixed precision arithmetic [30]. In the following, we explain
why the use of these approximations creates various contexts where being able to decouple the storage and compute
precisions becomes beneficial.
Manuscript submitted to ACM



BLAS-based Block Memory Accessor 3

2.1 Mixed precision iterative refinement

One of the most common and successful methods for accelerating the solution of linear systems is by using mixed
precision arithmetic. In the context of direct, LU factorization–based methods, the natural strategy is to compute the
LU factorization in low precision, use the approximate LU factors to obtain a first approximation of the solution, and
then refine it to high accuracy using high precision. This is outlined in Algorithm 1, which presents mixed precision
iterative refinement where the correction system 𝐴𝑑 = 𝑟 is solved with an unspecified solver. The simplest approach to
solve this system is to directly use the approximate LU factors to solve 𝐿𝑈𝑑 = 𝑟 by substitution. However, this LU-based
iterative refinement approach can only converge for sufficiently well-conditioned matrices: specifically, it requires
𝜅 (𝐴)𝑢𝑓 ≪ 1, where 𝑢𝑓 is the (low) factorization precision [14, 35].

Algorithm 1Mixed precision iterative refinement for solving 𝐴𝑥 = 𝑏.
Compute 𝐴 ≈ 𝐿𝑈 in low precision.
Initialize solution by solving 𝐿𝑈𝑥0 = 𝑏 by substitution.
for 𝑗 ∈ 0, 1, . . . do
Compute 𝑟 = 𝑏 −𝐴𝑥𝑖 in high precision.
Solve 𝐴𝑑 ≈ 𝑟 .
Update 𝑥𝑖+1 = 𝑥𝑖 + 𝑑 in high precision.

end for

More robust approaches that can handle ill-conditioned matrices have been proposed: in particular, GMRES-based
iterative refinement [4, 13, 14] solves 𝐴𝑑 = 𝑟 by the Krylov method GMRES [38] preconditioned by the approximate LU
factors. However, GMRES-IR requires the preconditioned matrix–vector product to be applied in a higher precision
than the LU factorization precision; a typical setting in practice is to apply it in the working precision. In absence of a
memory accessor approach, the baseline strategy to meet this requirement is to cast the entire LU factors from low
to high precision after they have been computed. Amestoy et al. [2] carry out an experimental study on large sparse
matrices that confirms the ability of this strategy to solve ill-conditioned problems in mixed precision; however, the
cast of the LU factors and their application in high precision represent a significant cost, both in terms of runtime and
storage. GMRES-IR thus constitutes a first setting in which a memory accessor would be beneficial, by allowing the low
precision LU factors to be applied in high precision.

2.2 Custom floating-point types

While the number of floating-point formats supported in hardware has considerably grown in the last decade (with,
in particular, the emergence of 16-bit and 8-bit formats), there still remains large gaps between the unit roundoffs of
commonly supported formats. For example, there is no hardware support for intermediate formats between 64-bit and
32-bit. Yet, many applications may require these intermediate levels of accuracy; this is in particular common when
other types of errors are introduced, such as when using low-rank approximations [6] (with a truncation threshold 𝜀) or
iterative solvers (with a stopping tolerance 𝜀), where 𝜀 is an accuracy parameter that does not need to correspond to the
unit roundoff of any floating-point format. In such cases, it is natural to optimize the size of the floating-point types by
using custom formats whose unit roundoff is approximately 𝜀.

One simple approach to define such custom types is to take a standard high precision format, such as fp64, and
truncate the mantissa by the necessary number of bits. The efficient handling of the resulting datatype has been
for example studied in [36] and [8], the latter proposing vectorization techniques based on SSE instruction sets for
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4 Amestoy et al.

improved efficiency. Other datatypes have been explored where both the mantissa and exponent are truncated such
as in [39] and [24]. Moreover, some packages such as chop [31], FloatX [21], or cpfloat [19] allow for processing
custom-defined floating-point types, although their focus is on simulation and not performance. Finally, posit numbers
can also be viewed as custom datatypes given their marginal adoption on widely available hardware; see [26] for a
detailed discussion and comparison with floating-point types.

While these custom formats may be useful to optimize the storage of floating-point types, since they are not supported
in hardware, computing with them requires conversions to supported higher precision types; thus, an efficient memory
accessor is also of interest in this context.

2.3 Adaptive precision methods

Memory accessors may be particularly beneficial when combining the two previous settings: adaptive precision
methods [30, sect. 14] are a subclass of mixed precision methods that adapt the precisions used to the computation
at hand. Such adaptive precision methods have in particular been developed for computing sparse matrix–vector
products [23, 24], low-rank approximations [3], and block Jacobi preconditioners [9, 20]. Inexact (or relaxed) Krylov
methods can also be seen as adaptive precision [22]. Adaptive precision methods can target any arbitrary level of
accuracy 𝜀 (they have been called variable accuracy methods, as opposed to variable precision, for this reason [1]). They
leverage small quantities (matrix coefficient, rank-one component, residual vector. . . ) appearing in the computation by
switching them to a precision inversely proportional to their magnitude: a quantity of magnitude smaller than 𝜀/𝑢𝑘 can
be switched to a precision with unit roundoff 𝑢𝑘 . Therefore, the more floating-point formats are available, the more we
can gradually adapt the precisions to the data at hand; this makes custom types particularly attractive for adaptive
precision methods, and memory accessors become even more critical to achieve high performance.

3 Mixed precision BLAS-based block memory accessors

The goal of this work is to develop an efficient mixed precision memory accessor for accelerating sparse direct solvers
and, more specifically, the triangular solve phase, which is memory bound.

In section 3.1, we present our approach, which operates at the block level, and describe its implementation for
triangular solves. Then, in section 3.2, we present the experimental setting that will be used throughout the rest of this
article for evaluating the performance of this approach.

3.1 Mixed precision triangular solve with a block memory accessor

As mentioned in the introduction, we propose a block memory accessor approach that loads and converts the data by
blocks, and exploits the BLAS to perform the computations.

Throughout this article, we focus on the BLAS kernel trsv, which solves the triangular system 𝑇𝑥 = 𝑦, where 𝑇
is an𝑚 ×𝑚 triangular matrix, 𝑦 is the right-hand side, and 𝑥 is the solution vector to be computed. Without loss of
generality, we assume that 𝑇 = 𝑈 is upper triangular; the lower triangular case can be handled analogously.

We consider a mixed precision implementation of this kernel with two precisions:𝑢low, the low storage precision, and
𝑢high, the high compute precision (note that, throughout this article, we use the metonymy “precision 𝑢” for “precision
with unit roundoff 𝑢”). Algorithm 2 describes our implementation based on a block memory accessor, parameterized by
the block size 𝑏. The triangular matrix𝑈 is partitioned into 𝑏 × 𝑏 blocks𝑈𝑖 𝑗 and the system𝑈𝑥 = 𝑦 is solved by blocks.
Whenever a given block𝑈𝑖 𝑗 needs to be used, it is loaded from the main memory, where it is stored in precision 𝑢low,
Manuscript submitted to ACM
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and it is converted (upcasted) to precision 𝑢high into a temporary workspace 𝐵. The computation is then performed
with 𝐵 in precision 𝑢high.

Algorithm 2Mixed precision triangular solve with a block memory accessor.
Input: 𝑈 , an𝑚 ×𝑚 upper triangular matrix stored in precision 𝑢low and partitioned into 𝑏 ×𝑏 blocks𝑈𝑖 𝑗 , with𝑚 = 𝑝𝑏;
𝑦, an𝑚-vector stored in precision 𝑢high; 𝐵, a 𝑏 × 𝑏 workspace stored in precision 𝑢high.

Output: 𝑥 , an𝑚-vector stored in precision 𝑢high, solution to𝑈𝑥 = 𝑦.
Initialize 𝑥 = 𝑦.
for 𝑗 = 𝑝, . . . , 1 do

Read𝑈 𝑗 𝑗 , upcast it to precision 𝑢high, and store it in 𝐵.
Solve 𝐵𝑥 𝑗 = 𝑥 𝑗 in precision 𝑢high using trsv.
for 𝑖 = 𝑗 − 1, . . . , 1 do
Read𝑈𝑖 𝑗 , upcast it to precision 𝑢high, and store it in 𝐵.
Compute 𝑥𝑖 = 𝑥𝑖 − 𝐵𝑥 𝑗 in precision 𝑢high using gemv.

end for
end for

This block approach presents several advantages. The workspace 𝐵 is reused for all blocks𝑈𝑖 𝑗 and therefore we only
require an extra storage of controlled size 𝑏 ×𝑏. All BLAS calls are executed with standard-complying uniform precision
routines; because such routines are often hand-optimized we expect them to be very efficient. Assuming that efficient
conversion operations from precision 𝑢low to precision 𝑢high are also available, the performance of the algorithm should
therefore be mainly driven by the data transfers, which are reduced thanks to the low storage precision.

With its block size parameter 𝑏, Algorithm 2 offers a flexible tradeoff between the efficiency of the BLAS calls and
the efficiency of the data transfers – which happen from the slow memory holding the entire linear system to the fast
memory close to the compute registers. In order for the data transfers to be efficient, it is important that the workspace
𝐵 remains in fast memory before the BLAS call; if it spills into the slow memory then this mixed precision approach is
essentially pointless as the high precision 𝐵 will need to be reloaded into the fast memory. Therefore, the ideal is to set
𝑏 sufficiently large for the BLAS calls to be efficient, but sufficiently small for 𝐵 to fit into the fast memory. Note that
what constitutes the “fast” and the “slow” memory is architecture dependent; we may expect the registers and highest
levels of cache to be fast, and the main memory to be slow. We will analyze how to choose 𝑏 in section 4.2.

Note that Algorithm 2 is written in a right-looking form; a left-looking form is also possible, as will be described in
section 4.1.

3.2 Experimental setting of this study

Our end goal is to use the block memory accessor approach to accelerate the solve phase of sparse direct solvers. The
computations for this solve phase follow the so-called elimination tree [17], whose nodes are associated with smaller
dense matrices with which we must compute dense triangular solves, implemented as described in Algorithm 2.

Therefore, we will experiment with two types of configurations. The first is a tree parallelism configuration, where
we perform in parallel many independent dense solves with relatively small matrices, each solve being sequential; this
corresponds to the typical workload towards the bottom of the elimination tree. The second is a node+tree parallelism
configuration, where we perform in parallel a few dense solves with bigger matrices, and each solve is also parallel;
this corresponds to the typical workload towards the top of the tree. In our experiments, we first consider the tree
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Table 3.1. Compute platform used in this work.

chirop

CPU 2× Intel Xeon Platinum
Ice Lake 8358

core / CPU 32
Memory channels / CPU 8

Memory / Node 512 GiB DDR4
L3 cache (MB) 48
L2 cache (KB) 1280

L1 cache (data, KB) 48

parallelism configuration in sections 4 through 6; we turn to the node+tree parallelism configuration in section 7, which
requires parallelizing Algorithm 2.

Our experimental setup is an Intel Xeon Gold (Ice Lake 8358) dual-CPU compute node hosted on the chirop partition
within the Grid5000 network1. Hardware details are reported in Table 3.1. We have used intel compilers 2023.0.0, MKL
2023.0.0 and intel mpi 2021.8.0.

For all experiments, we report the median performance across ten runs.

4 Performance evaluation with fp64 and fp32

We begin by evaluating the performance of our block memory accessor in the simplest scenario: we use fp64 as the
compute precision 𝑢high and fp32 as the storage precision 𝑢low; both floating-point types have native hardware support
and the conversion operations between them are highly efficient.

Moreover, we focus on the tree parallelism configuration: one thread is spawned per core and each thread solves an
independent triangular system of order𝑚 = 4096, using a sequential implementation of Algorithm 2.

We use this simplest scenario to validate the potential of the approach and to analyze the effect of various design
choices and parameters, notably the matrix layout and the block size.

4.1 Choice of matrix layout

In Figure 4.1, we compare the performance of eight variants depending on the following choices:

• contiguous vs tiled: in the contiguous case the entire matrix𝑈 is contiguous in memory, whereas in the tiled
case each block𝑈𝑖 𝑗 is contiguous;

• row-major vs column-major layout: this distinction applies to either the entire matrix 𝑈 (in the contiguous case)
or to each individual tile (in the tiled case);

• right-looking vs left-looking: Algorithm 2 is written in a right-looking (eager) form: the updates 𝑥𝑖 = 𝑥𝑖 −𝑈𝑖 𝑗𝑥 𝑗

for 𝑖 = 1, . . . , 𝑗 − 1 are all performed at step 𝑗 , as soon as possible, by traversing the 𝑗th block-column of matrix
𝑈 . Alternatively, the triangular solve can also be written in a left-looking (lazy) form, where all the updates
𝑥𝑖 = 𝑥𝑖 −𝑈𝑖 𝑗𝑥 𝑗 for 𝑗 = 𝑖 + 1, . . . , 𝑝 are all performed at step 𝑖 , as late as possible, by traversing the 𝑖th block-row
of matrix𝑈 .

1https://www.grid5000.fr/w/Lille:Hardware
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Fig. 4.1. Performance of triangular solve with fp64 and fp32 native types and tree parallelism, depending on the matrix layout and on
the block size. Each core on the compute node is solving a system of order 4096.

For each of these eight variants, we measure their performance for three precision configurations: two uniform
precision ones (either fp64 or fp32 as both storage and compute precisions, black and green solid lines in Figure 4.1) and
a mixed precision one (fp32 as storage precision and fp64 as compute precision, yellow line). In the uniform precision
cases, naturally, no conversion is required. Finally, we also report the performance obtained by the MKL implementation
in uniform precision, both in fp64 and fp32 (black and green dashed lines). This provides a state-of-the-art reference
performance for the uniform precision runs.

We can draw many interesting conclusions from the results shown in Figure 4.1.

• As a general rule, the performance of the uniform precision variants (black and green lines) tends to increase
as the block size increases, thanks to more efficient BLAS calls, until it reaches a plateau. The mixed precision
variant (yellow line) behaves very differently: while it also increases until it reaches a plateau, this plateau ends
in an abrupt performance drop when the block size becomes too large. This is expected, since, as explained
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8 Amestoy et al.

previously, we require the workspace 𝐵 to remain into the fast memory; we will analyze the precise value of the
block size for which this performance drop happens in the next section.

• The results confirm the relevance of our BLAS-based block approach: the performance is much lower for very
small block sizes, of which the scalar memory accessor is the special case𝑏 = 1. We emphasize that the comparison
is not entirely fair: our code is not optimized for small 𝑏 (or indeed 𝑏 = 1); the point is that our block approach
does not require such handcoded, architecture-specific optimizations and rather relies on BLAS for performance.

• In the case where the entire matrix is contiguous, the order of operations has a significant impact on performance:
the right-looking variant with column-major layout and the left-looking variant with row-major layout perform
noticeably better than the other two combinations. This effect is notably visible for the mixed precision variant,
regardless of the choice of block size. This is explained by the fact that in left-looking we traverse the matrix
by block-rows, whereas in right-looking we traverse it by block-columns. Using a matching layout presumably
benefits from prefetching.

• On the contrary, if the matrix is stored with a tiled layout, all combinations of left/right-looking and row/column-
major perform comparably and much better than the contiguous variants. Moreover, the performance of the
tiled variants matches that of MKL (dashed lines) when the block size is sufficiently large, which validates our
baseline uniform-precision triangular solve.

Overall, with the tiled layout and a suitable choice of block size, the mixed precision variant (yellow line) significantly
outperforms the fp64 variant (black line) and almost matches the performance of the fp32 variant (green line), which is
expectedly about twice higher. This suggests that the performance of the solve is mainly driven by the data transfers, and
confirms the relevance of memory accessor approaches for accelerating such operations while preserving computations
in high precision.

4.2 Choice of block size

The experiments reported in Figure 4.1 show that the performance of the block memory accessor drops abruptly when
the block size 𝑏 exceeds a certain value. In this section we attempt at correlating this value with the properties of the
machine, which would allows us to assess what ranges of block sizes are suitable for a given hardware.

To do so, we use the following performance model:

time = 𝛽𝜔low · 𝑚
2

2
+ 𝛽 · 𝑚

2

2𝑏2
·max

(
(𝜔low + 𝜔high)𝑏2 −𝑀, 0

)
+ 𝛾𝑚2 + 𝑜 (𝑚2), (1)

where𝑚 is the matrix size, 𝑏 is the block size, 𝜔low and 𝜔high are the size in bytes of floating-point numbers in precision
𝑢low and 𝑢low, 𝛽 is the inverse bandwidth to load data from the slow memory to the fast memory,𝑀 is the size in bytes
of the fast memory, and 𝛾 is the inverse flops/s rate. Note that this is a simplified model: we only consider two levels of
memory (fast and slow), and we neglect 𝑂 (𝑚) = 𝑜 (𝑚2) terms in the flop count and number of entries transferred.

Since we are dealing with a memory-bound computation, we expect the 𝛾𝑚2 term to be negligible. The term
𝛽𝜔low𝑚

2/2 simply reflects the fact that we must load 𝑈 , that is,𝑚2/2 entries stored in precision 𝑢low (we load 𝑈 by
blocks 𝑈𝑖 𝑗 of size 𝑏2 at a time, but this does not change the total volume of transfers in precision 𝑢low). Finally, the
middle term in (1) can be derived as follows. For each block (there are𝑚2/2𝑏2 of them), we load 𝑏2 entries in precision
𝑢low, convert them to precision 𝑢high storing the result in 𝐵, and perform a computation on 𝐵. Therefore, we need to
store in the fast memory 𝑠 = (𝜔low + 𝜔high)𝑏2 entries at the same time; if the fast memory is large enough (𝑠 ≤ 𝑀),
then we do not need to load anything more and this term is zero. However, if 𝑠 is too large to fit into the fast memory
Manuscript submitted to ACM



BLAS-based Block Memory Accessor 9

(𝑠 > 𝑀), then the 𝑠 − 𝑀 bytes that have overspilled are back into the slow memory, and we must load them again.
Therefore, we can conclude that the optimal performance is obtained when 𝑠 ≤ 𝑀 , that is, when

𝑏 ≤
√︄

𝑀

𝜔low + 𝜔high
. (2)

Let us now assess the relevance of this analysis by applying (2) to the setting used for the experiments of Figure 4.1.
We have 𝜔low = 4 (fp32), 𝜔high = 8 (fp64), and, according to Table 3.1,𝑀 = 1328 × 1024, assuming the “fast memory” to
be composed of the L1 and L2 caches. Condition (2) then becomes 𝑏 ≲ 337, which roughly matches the values at which
we observe the performance of the mixed precision dropping. In practice, the performance drop occurs for slightly
smaller values than what the model predicts, which may simply be because it is too simplistic, or perhaps because we
should not assume the entire cache size to be available; indeed, other elements are likely stored in cache, such as some
frequently-accessed variables within the data structures that we use (such as block sizes) or other elements that we do
not control.

5 Custom floating-point types

As explained in section 2.2, programs that require an accuracy that does not match the standard IEEE fp64 or fp32
formats may benefit from using custom types, in order to target specific user-defined accuracies. In this section, we
explain how to extend our BLAS-based memory accessor approach to such custom types.

First, we define in section 5.1 the custom types that we will consider. Then, we describe in section 5.2 how to
efficiently perform conversions from these custom types to higher precision standard types; in particular, we describe
a method that can take advantage of the latest AVX512 instruction sets. Finally, we evaluate the performance of our
accessor with these custom types in section 5.3.

5.1 Definition of custom types

The IEEE-754 standard defines binary floating-point numbers through three values: their sign 𝑠 , their (biased) exponent
𝑒 , and their mantissa𝑚. While 𝑠 is simply encoded on 1 bit, 𝑒 and𝑚 can be encoded on various number of bits depending
on the format; the number of bits for 𝑒 affects the range of representable numbers and the number of bits for𝑚 affects
the relative precision of representable numbers. To avoid any ambiguity when dealing with custom floating-point
numbers, we will refer to them as e𝜈m𝜇 where 𝜈 is the number of bits for 𝑒 and 𝜇 the number of bits for𝑚 (we do not
include the implicit leading bit in 𝜇). Thus, for example, the standard fp32 and fp64 formats correspond to e11m52 and
e8m23, respectively.

Custom floating-point types can be defined by taking standard types and reducing 𝜈 and/or 𝜇. In this work, we will
not explore reducing 𝜈 , the number of bits for the exponent, below 8—the value used by fp32. This is an interesting
perspective to further optimize storage, which we leave for future work. We will thus only focus on reducing 𝜇, the
number of bits for the mantissa. Such reduced precision types can be easily defined by simply truncating some of the
least significant bits of a standard type. For alignment and commodity reasons, we will only consider custom types
whose total number of bits is a multiple of 8 (that is, is an integer number of bytes).

By removing some of the least significant bytes from the fp64 type, we can obtain a total of six different custom types:
e11m𝜇, with 𝜇 ∈ {44, 36, 28, 20, 12, 4} bits for the mantissa. Alternatively, we can remove some of the least significant
bytes from the fp32 type to obtain two more custom types: e8m15 and e8m7. Note that e8m15 and e11m12 both have the
same size (24 bits): the difference is that the former is obtained by truncating the mantissa of an fp32 number, and the
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Table 5.1. List of custom floating-point types obtained by truncating the mantissa of the standard fp64 and fp32 types (we also
include these two standard types for completeness).

Unambiguous name Ambiguous abbreviation

e11m4 —
e8m7 fp16
e11m12 —
e8m15 fp24
e11m20 —
e8m23 fp32
e11m28 fp40
e11m36 fp48
e11m44 fp56
e11m52 fp64

latter by truncating that of an fp64 number; these two types thus offer different tradeoffs between precision and range.
The same comment applies to e8m7 and e11m4, which are both 16-bit types, and to e8m23 (the standard, untruncated
fp32 type) and e11m20.

Table 5.1 summarizes the list of custom types that we will consider. We anticipate that, in section 5.3, we will compare
the performance of types truncated from fp32 with that of types of the same size but truncated from fp64, and show
that the former matches the latter, so that we will subsequently discard the types e11m4, e11m12, and e11m20. We will
thus be left with five custom types of different sizes, which we will ambiguously abbreviate to fp16, fp24, fp40, fp48,
and fp56.

5.2 Conversion between custom and standard types

We now discuss how to implement efficient conversion operations between a custom floating-point number and a
standard type of higher precision.

5.2.1 Scalar conversion. Since the size of the custom types that we consider is always a whole number of bytes, we
can represent custom numbers as arrays of uint8_t, whose size corresponds to the number of bytes of the custom
type. For example, the 48-bit e11m36 type is represented as uint8_t[6]. We can then write the conversion in a relative
lightweight fashion by only using bit shifts and additions on the standard integer types2 uint64_t, uint32_t, uint16_t,
and uint8_t.

As an example, Figure 5.1 describes how to perform conversions between the standard fp64 (e11m52) type and the
e11m36 custom type, represented as uint8_t[6]. Note that, for efficiency, we do not process each of these 6 bytes
individually (as uint8_t). Rather, we decompose this 6-byte array as the concatenation of a 4-byte array and a 2-byte
one, which we can process as uint32_t and uint16_t, respectively. We thus only need to manipulate two integers,
which reduces the number of required bitshits and additions. Note that the number of integers that are needed depends
on the target custom format: for example, for the 56-bit (7-byte) e11m44 format, three integers (uint32_t, uint16_t,
and uint8_t) are needed. Note that, in our actual implementation, we use the union3 construct to simplify the code by
getting rid of the standard reinterpret_cast4.
2C fixed-width integer types. https://en.cppreference.com/w/cpp/header/cstdint
3Union declaration. https://en.cppreference.com/w/cpp/language/union
4Underlying bit pattern conversion. https://en.cppreference.com/w/cpp/language/reinterpret_cast
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When converting between the standard fp64 type and the custom types e8m7 and e8m15, we also need to handle the
different number of bits used for the exponent. In order to do that efficiently, we use the standard fp32 (e8m23) type as
intermediary. Thus, for converting from fp64 to e8m7 (say), we first convert from fp64 to fp32 with a standard conversion
and then convert from fp32 to e8m7 in a similar fashion as described above. Analogously, converting from e8m7 back to
fp64 relies on a fp32 to fp64 standard conversion. Therefore, if the compute precision is fp64, using custom types with
8-bit exponent as storage precision requires an extra conversion between fp32 and fp64. As we will experimentally
confirm in the next section, the cost of this extra conversion is however small and usually worth gaining 3 bits of
precision.

double* A =

uint32_t *i32 = (uint32_t*) (B+i+0); uint16_t *i16 = (uint16_t*) (B+i+4);
*i32 = reinterpret_cast<uint64_t>(A[i]) >> 32;
*i16 = reinterpret_cast<uint64_t>(A[i]) >> 16;

uint8_t* B =

uint32_t *i32 = (uint32_t*) (B+i+0); uint16_t *i16 = (uint16_t*) (B+i+4);
C[i] = reinterpret_cast<double>(0ULL + (((uint64_t) *i32) << 32)

+ (((uint64_t) *i16) << 16));

double* C =

Fig. 5.1. Conversion of an array of numbers from fp64 to e11m36 and back to fp64. The figure focuses on the conversion of the 5th
element. Dark blue rectangle corresponds to the 32 bits that are casted to uint32_t. Light blue rectangle corresponds to the 16 bits
that are casted to uint16_t. Gray rectangle corresponds to the 16 bits that are truncated.

5.2.2 Vectorized conversion. So far, we have discussed how to convert a single scalar number, but our goal is to convert
an entire array (block) of such numbers. Naturally, we could simply loop on each element an apply the conversion
described above. However, a more efficient conversion can be obtained by exploiting vectorized instructions. Specifically,
we will use the permutexvar instruction, which is available on recent hardware that possess the AVX512-VBMI feature
flag5. While the scalar conversion presented above remains the most portable method, this vectorized instruction
enables to convert multiple elements in a single instruction, which we expect to be potentially much more efficient than
using multiple instructions. The gain in efficiency of the vectorization will ensure that the conversion cost is negligible
compared to the cost of loading elements from the slow memory. An extreme example is the 56-bit e11m44 type that,
as already mentioned, can only be represented as the concatenation of a uint32_t, a uint16_t and a uint8_t and
therefore requires three conversions, two bit shifts, and three additions to convert a single element. As we explain in
the following, the permutexvar instruction allows for performing the conversion in a single instruction, regardless of
the target custom type.

The permutexvar instruction requires a permutation array [32, volume 2C, page 471-472]. This array contains
as many elements as there are elements in the register: for example, to permute a 512-bit register byte-wise, the
permutation array holds 64 integers. The permutation array specifies which parts of each element to extract and is thus
different for each custom type. In Figure 5.2, we illustrate the principle behind this conversion by taking the e11m36
format as an example. Note that, if we must convert a number of elements that does not exactly fit in the 512-, 256-, or
5AVX512-VBMI Wikichip entry. https://en.wikichip.org/wiki/x86/avx512_vbmi
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128-bit registers, that is, that is not divisible by 8, 4, or 2, the last elements may not be processed via the permutexvar
instruction. For such elements, our implementation falls back on the scalar conversion described previously.

_m512d

_mm512_permutex_var_epi8({2,3,4,5,6,7,10,11,...});

_m512i

_mm512_permutex_var_epi8({-1,-1,0,1,2,3,4,5,-1,-1,6,...});

_m512d

Fig. 5.2. Vectorized conversion of numbers from fp64 to e11m36 and back to fp64, using the AVX512-VBMI instruction set. Blue
rectangles correspond to the 48 bits that are kept. Gray rectangles correspond to the remaining 16 bits that are truncated. Casting
from/to register of different types is omitted.

The e8m7 and e8m15 types with an 8-bit exponent once again require special handling, as illustrated in Figure 5.3 in
the case of e8m15. Since the AVX512-VBMI instruction set provides AVX256 interfaces, our implementation once again
uses the standard fp32 type as intermediary: the conversion between fp32 and the e8m7 or e8m15 type is performed
on 256-bit registers instead of 512-bit ones. Moreover, the conversions between fp64 and fp32 can also be vectorized
through the AVX512F instruction set using cvtps_pd and cvtpd_ps [32, volume 2A, page 281]. Once again, we do not
expect a significant overhead from this additional conversion: the processor should be able to hide the cost of this extra
conversion by pipelining the 512-bit array conversions across the whole array of elements of much larger size.

_m512d

_mm256_cvtpd_ps(...);

_m256

_mm256_permutex_var_epi8({...});

_m256i

_mm256_permutex_var_epi8({...});

_m256

_mm512_cvtps_pd({...});

_m512d

Fig. 5.3. Vectorized conversion of numbers from fp64 to e8m15 and back to fp64, using the AVX512-VBMI and AVX512F instruction
sets. Light blue rectangles correspond to the sign bit and the 8 exponent bits that are kept. Dark blue rectangles correspond to the 15
bits of mantissa that are kept. Light gray rectangles correspond to the 3 exponent bits and 29 mantissa bits that are truncated in
the fp64 to fp32 conversion. Dark gray rectangles correspond to the 8 mantissa bits that are further truncated in the fp32 to e8m15
conversion.

As a final word of warning, we note that the presented conversion scheme from high to low precision essentially uses
round-to-zero (RTZ), because it removes the least significant bits. While, in principle, the worst-case rounding error
bounds only differ by a factor of two when using directed rounding modes such as RTZ instead of round-to-nearest
(RTN), the use of RTZ introduces a bias that can destroy the statistical distribution of rounding errors usually obtained
with RTN, which typically benefits from significantly improved (probabilistic) bounds [15, 27, 28]; see [18] for a detailed
discussion on this issue. Therefore, in practice, we avoid this pitfall by introducing a correction to the truncation error
by setting the most significant bit of the truncature to 1.
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5.3 Performance evaluation with custom types
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Fig. 5.4. Performance of the triangular solve with custom types and tree parallelism, depending on whether AVX512-VBMI is enabled
or not. Each core on the compute node is solving a system of order 4096.

Figure 5.4 evaluates the performance of the memory accessor with each of the custom types previously defined as
storage precision and with fp64 as compute precision. As in the experiments of the previous section, we still consider
a tree parallelism configuration, that is, each core performs a triangular solve on an independent system of order
𝑚 = 4096, using a sequential implementation of Algorithm 2. We report the median performance obtained on the range
of block sizes [112 : 16 : 196]. The figure also showcases the impact of the AVX512-VBMI instruction by comparing the
performance with the instruction enabled (Figure 5.4, right) or disabled (left); the instruction is disabled by compiling
with the -mno-avxvbmi option. Each bar corresponds to a different storage floating-point type; types of the same size
are grouped. We also report the performance of the uniform precision fp32 (green bar) and fp64 (black bar) solves to
provide a reference performance: these two cases do not require conversion.

Comparing the left and right plots of Figure 5.4 shows that using the AVX512-VBMI instruction set can significantly
improve the performance. This effect is less strong for types of size 2 and 4 bytes, which obtain relatively good
performance even without AVX512-VBMI. This is most likely due to the fact that the decompression is done through a
unique primitive type uint16_t or uint32_t. For the remaining types, while they may achieve better performance than
fp64, a smaller type size does not always lead to higher performance without AVX512-VBMI. Indeed, the types of size 3
bytes (composed of a uint16_t and a uint8_t) achieve a lower performance than the types of size 4 bytes. Similarly,
the e11m44 type of size 7 bytes (composed of a uint32_t, a uint16_t and a uint8_t) achieves a lower performance
than the fp64 type of size 8 bytes. As discussed in section 5.2, these complex compositions deter efficiency. Therefore,
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without AVX512-VBMI, these types of size 3 and 7 bytes achieve both lower precision and lower performance than the
types of size 4 and 8 bytes, and should not be used.

However, when the AVX512-VBMI instruction set is enabled, the picture changes: the performance of all types now
follows their respective size—albeit not in a strictly proportional fashion. Indeed, the e11m44 type (of size 7 bytes)
outperforms fp64, and the e8m15 and e11m12 types (of size 3 bytes) also outperform fp32. In the case of the e8m7 and
e11m4 types (of size 2 bytes), while the maximum performance (for an optimal choice of block size) of about 200 Gflops/s
is almost unchanged when compared with the case where the instruction set is disabled, the average performance
across the range of block sizes is much more consistent, as indicated by narrower intervals.

We now compare the performance of types of the same size (bars from the same group in Figure 5.4), depending on
whether they are obtained by truncating an fp64 or fp32 type. Note that since the compute precision is fp64 in all cases,
decompressing the fp32-truncated types requires to first decompress the custom type into an fp32 type and then an
extra conversion from fp32 to fp64, as described in section 5.2. Thus, the goal of the following comparison is to check
whether this extra conversion has a significant impact on the performance. The following comments apply both when
the AVX512-VBMI instruction set is enabled or disabled. For the 2-byte types, there is somewhat of a tradeoff since
e8m7 is slightly slower than e11m4; however, the difference in performance does not seem to be worth losing 3 bits of
precision. For the 3-byte types, the conclusion is clearer, since e8m15 matches the performance of e11m12. The same
applies to the 4-byte types, for which the fp32 type matches or even outperforms the e11m20 type. Therefore, based on
these results, we can discard the e11m20, e11m12, and e11m4 types, in favor of the e8m23 (fp32), e8m15, and e8m7 types,
respectively. We are thus left with five custom types of different sizes; in the rest of this manuscript, we abbreviate
these types to fp16, fp24, fp40, fp48, and fp56, as indicated in Table 5.1.

So far with Figure 5.4, we have evaluated the performance of the custom types averaged over a range of suitable block
sizes. We now perform a more detailed experiment to assess how we should choose the block size depending on the
size of the custom type. The results are shown in Figure 5.5. As in the previous experiment of section 4, black and green
dashed lines correspond to the MKL in fp64 and fp32, black and green solid lines correspond to our own implementation
of uniform fp64 and fp32 variants with varying block size 𝑏; for a large enough block size, the performance of our
blocked implementation matches that of the MKL. The rest of the lines correspond to the memory accessor approach
with fp64 as compute precision and a lower precision as storage precision. The yellow line, which is the same as in the
previous section, uses the standard fp32 type as storage precision; all the other lines are new and use custom types as
storage precision.

Figure 5.5 shows that the continuum of sizes of the custom types translates well into a continuum of performance,
as long as the block size is suitably chosen. Block sizes in the interval [100, 200] perform relatively well across all
variants; performance drops abruptly for block sizes larger than about 250. This behavior is consistent with the model
that we used in section 4.2: interestingly, according to (2), the maximum suitable block size should slightly increase as
the size of the storage precision type 𝜔low decreases, since reducing the size of the low precision blocks loaded in the
fast memory creates more room for larger blocks. This is quantified in Table 5.2, which indicates that the maximum
block size satisfying condition (2) increases from 302 for fp56 to 369 for fp16. Although, once again, in practice the
performance drops for smaller block sizes than what the model indicates, the experiments do confirm that smaller
storage types tend to continue to perfom well for larger block sizes than larger types.

We conclude this section with an experiment measuring separately the time spent in the conversion and in the BLAS
calls; we focus on the gemv calls whose cost dominates that of the trsv calls. Figure 5.6 shows this time breakdown
corresponding to the runs with 𝑏 = 128 in Figure 5.5; times are sampled across four runs and we report the results as
Manuscript submitted to ACM
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Fig. 5.5. Performance of the triangular solve with custom types and tree parallelism, depending on the block size. Each core on the
compute node is solving a system of order 4096.

Table 5.2. Maximal values of 𝑏 for which condition (2) is satisfied, with fp64 as compute precision (𝜔high = 8) and depending on the
custom type used as storage precision. We have taken 𝑀 = 1328 × 1024, which corresponds to the size in bytes of the L1 and L2
caches of the machine (see Table 3.1).

custom type 𝜔low maximum value of 𝑏

fp16 2 369
fp24 3 352
fp32 4 337
fp40 5 323
fp48 6 312
fp56 7 302

boxplots. The figure shows that the time spent in the BLAS dgemv call is not impacted by the storage precision, and is
always aout 5µs. This is entirely expected as it is the conversion operation that performs the expensive transfer of the
blocks from the central memory to the fast memory. The transfer plus conversion times (computed as the total time
minus the time spent in the BLAS) is close to being linear with respect to the size of the storage type, which confirms
that its cost is mainly related to the volume of data loaded. Note that while the 5µs spent in dgemv is negligible when
the storage precision is high, its relative incompressible cost grows as the size of the storage type decreases. For the
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fp16 storage precision, about half the time is spent in the dgemv. This explains why the fp16+fp64 variant is “only”
about 2.5× faster than fp64, rather than 4× as one may naively have expected.
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Fig. 5.6. Breakdown of the time spent computing mixed-precision matrix-vector multiply where the time of the uniform-precision
BLAS call is extracted. The reminder of the time corresponds to the transfer and conversion of the low-precision matrix. Times have
been extracted for the case 𝑏 = 128 of Figure 5.5.

6 Block low-rank triangular solve

The objective of this section is to adapt the memory accessor for dense full-rank triangular solves presented in section 3
to matrices with a block-low rank (BLR) structure. We first review the basic properties of BLR matrices in section 6.1.
Then we present an extension of Algorithm 2 to BLR matrices in section 6.2. Finally we evaluate its performance in
section 6.3.

6.1 Basic reminders on BLR matrices

A block low-rank (BLR) approximation of a matrix 𝐴 ∈ R𝑚×𝑚 has the block 𝑝 × 𝑝 form

𝐴 =



𝐴11 𝐴12 · · · 𝐴1𝑝

𝐴21 · · · · · ·
.
.
.

.

.

. · · · · · ·
.
.
.

𝐴𝑝1 · · · · · · 𝐴𝑝𝑝


, (3)

where 𝐴𝑖 𝑗 ∈ R𝑡𝑖×𝑡 𝑗 and most of the off-diagonal blocks 𝐴𝑖 𝑗 are approximated by low-rank products 𝐴𝑖 𝑗 = 𝑋𝑖 𝑗𝑌
𝑇
𝑖 𝑗

with
𝑋𝑖 𝑗 ∈ R𝑡𝑖×𝑟𝑖 𝑗 and 𝑌𝑖 𝑗 ∈ R𝑡 𝑗×𝑟𝑖 𝑗 . In practice the ranks 𝑟𝑖 𝑗 are computed such that ∥𝐴𝑖 𝑗 −𝐴𝑖 𝑗 ∥ ≤ 𝜀∥𝐴∥, which yields a
BLR approximation satisfying a relative accuracy of order 𝜀, ∥𝐴 −𝐴∥ ≤ 𝑐𝜀∥𝐴∥, where 𝑐 is a constant that depends on
the choice of norm (for example, for the Frobenius norm, 𝑐 = 𝑝). If the rank 𝑟𝑖 𝑗 is small enough so that 𝑟𝑖 𝑗 (𝑡𝑖 + 𝑡 𝑗 ) < 𝑡𝑖𝑡 𝑗 ,
storing the low-rank factors 𝑋𝑖 𝑗 and 𝑌𝑖 𝑗 requires less entries than storing the full block 𝐴𝑖 𝑗 , and 𝐴𝑖 𝑗 is referred to as a
low-rank block. Otherwise, it is more efficient to keep 𝐴𝑖 𝑗 as is and it is referred to as a full-rank block.
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Hereinafter, for the simplicity of the discussion and without loss of generality, we assume that all blocks have the
same size 𝑡𝑖 = 𝑡 𝑗 = 𝑡 (and thus𝑚 = 𝑝𝑡 ) and all low-rank blocks have the same rank 𝑟𝑖 𝑗 = 𝑟 . Assume that there are
at most 𝑞 full-rank blocks on any block-row or block-column (note that 𝑞 ≥ 1 since the diagonal blocks are always
full-rank). Then the entire BLR matrix requires storing

𝑝𝑞𝑡2 + 2𝑝2𝑡𝑟 = 𝑞𝑡𝑚 + 2𝑚2𝑟/𝑡 (4)

entries. By taking the block size 𝑡 =
√︁
2𝑚𝑟/𝑞, (4) attains its minimal value

√︁
2𝑞𝑟𝑚3. This shows two things: the block

size 𝑡 should increase with both𝑚 and 𝑟 , and the optimal BLR storage is proportional to𝑚3/2 instead of𝑚2 for the full
uncompressed matrix. Importantly, in several applications such as the solution of certain classes of discretized partial
differential equations, both 𝑞 and 𝑟 can be shown to be small constants independent of𝑚 [5, 11, 12]. Therefore, BLR
compression allows for an asymptotic complexity reduction, which means that the larger the matrix, the larger the
storage gain.

BLR matrices have been particularly successful to accelerate sparse direct solvers: the LU factorization can be
computed with reduced storage and flops complexities [5], and thus improved performance [6], with a backward error
controlled by 𝜀 [29]. The cost of the triangular solve phase is proportional to the size of the LU factors and is thus also
reduced with BLR approximations. In our mixed precision memory accessor context, we are especially interested in
accelerating this BLR triangular solve operation, which can be the bottleneck in some applications requiring many
solves, such as when BLR is used as a preconditioner.

6.2 Memory accessor for BLR triangular solve

This section introduces a memory accessor approach for the BLR triangular solve, that is, a triangular solve with a
blocked matrix where the off-diagonal blocks are low-rank.

At first sight, extending Algorithm 2 to BLR matrices may seem straightforward: a naive implementation would be
to set 𝑏 = 𝑡 (that is, use the same block size for the BLR approximation and the accessor) and, whenever a low-rank
block must be accessed, load its low-rank factors into the fast memory and convert them. However, the BLR block size 𝑡 ,
while under our control, must be set to a sufficiently large value to achieve high compression rates. As explained in the
previous section, this is because 𝑡 should increase with the matrix size𝑚; in practice, even for medium-sized matrices,
BLR block sizes of order 500 are typically necessary to obtain good performance [5, 6]. Based on the experiments
with the dense triangular solve of the previous sections, this naive approach would therefore not be efficient since the
memory accessor requires much smaller block sizes that fit into the fast memory.

Thus, the challenge is to ensure that the loaded blocks fit into the fast memory of size𝑀 . Importantly, the difficulty
to satisfy this condition comes mainly from the full-rank blocks. Indeed, a low-rank block only consists of 2𝑟𝑡 entries
and, moreover, we can easily load its 𝑋 and 𝑌𝑇 factors separately, which yields the condition 𝑟𝑡 ≤ 𝑀 . In contrast,
loading a full-rank block would require the condition 𝑡2 ≤ 𝑀 (or 𝑡2/2 ≤ 𝑀 in the case of the diagonal blocks, which are
triangular). Table 6.1 reports the maximum value of 𝑡 that satisfies these conditions, depending on the storage type and
the block type (low-rank with various compression ratios 𝑡/𝑟 , diagonal, or full-rank off-diagonal). For the low-rank
blocks, the table shows that if the compression ratio 𝑡/𝑟 is large enough, the condition 𝑟𝑡 ≤ 𝑀 is met even for large
BLR block sizes 𝑡 . In contrast, the conditions 𝑡2/2 ≤ 𝑀 for diagonal blocks and especially 𝑡2 ≤ 𝑀 for off-diagonal
full-rank blocks are much more restrictive and limit the maximum BLR block size that the memory accessor can handle
efficiently. Note that blocks with 𝑟 = 𝑡/2 are not really low-rank: storing them in low-rank form costs 2𝑡𝑟 = 𝑡2 entries,
the same as storing them in full-rank form.
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Table 6.1. Maximal values of 𝑡 for which a given 𝑡 × 𝑡 block can be loaded and converted to fp64 precision while fitting in a fast
memory of size𝑀 , depending on its storage precision and its type: low-rank of rank 𝑟 , diagonal, or off-diagonal full-rank. We have
taken𝑀 = 1328 × 1024, which corresponds to the size in bytes of the L1 and L2 caches of the machine (see Table 3.1).

storage precision maximum value of 𝑡
Low-rank blocks Full-rank blocks

𝑟 = 𝑡/2 𝑟 = 𝑡/4 𝑟 = 𝑡/8 Diagonal Off-diagonal

fp16 522 738 1043 522 369
fp24 497 703 994 497 352
fp32 476 673 952 476 337
fp40 457 647 915 457 323
fp48 441 623 882 441 312
fp56 426 602 852 426 302

block
size

further
tiling

Fig. 6.1. Full-rank 𝑡 × 𝑡 blocks are further partitioned into 𝑏 × 𝑏 subblocks.

To overcome this issue, one solution is to further partition the full-rank blocks into smaller subblocks of size 𝑏 × 𝑏.
This allows for loading the 𝑡 × 𝑡 full-rank blocks 𝑏 ×𝑏 subblocks at a time, where 𝑏 can be chosen to satisfy 𝑏2 ≤ 𝑀 . For
the diagonal blocks, with which we must perform a trsv, we can then rely on the dense memory accessor approach
presented previously, that is, we can use Algorithm 2. For the off-diagonal full-rank blocks, with which we must perform
a gemv, we can implement a block memory accessor–based gemv in the same spirit as the trsv one. For the sake of
conciseness, we omit the description of this algorithm since it is very similar to Algorithm 2. The subblocking approach
of full-rank blocks is illustrated in Figure 6.1. We expect an overall performance improvement through this mechanism
but it should be noted that it will lead to BLAS calls that process smaller number of elements, which could reduce their
efficiency. The potential efficiency loss should not, however, outweigh the overall performance improvement.

We summarize our approach in Algorithm 3, which is an adaptation of Algorithm 2 to handle BLR matrices. The
algorithm requires a workspace 𝐵 in precision 𝑢high, which is used to store the upcasted 𝑋 and 𝑌𝑇 factors (of size 𝑡𝑟 ) of
the off-diagonal blocks, as well as the 𝑏 × 𝑏 subblocks of the full-rank blocks. Hence 𝐵 must be of size max(𝑡𝑟, 𝑏2). We
also require an 𝑟 -vector 𝑧 in precision 𝑢high to store the intermediate result 𝑌𝑇

𝑗𝑖
𝑥𝑖 . Note that, for the sake of simplicity,

Algorithm 3 assumes that every off-diagonal block is low-rank.
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Algorithm 3Mixed precision BLR triangular solve with a block memory accessor.
Input: 𝑈 , an𝑚 ×𝑚 upper triangular matrix stored in precision 𝑢low and partitioned into 𝑡 × 𝑡 blocks𝑈𝑖 𝑗 , with𝑚 = 𝑝𝑡 ;
if 𝑖 ≠ 𝑗 ,𝑈𝑖 𝑗 = 𝑋𝑖 𝑗𝑌

𝑇
𝑖 𝑗

is a low-rank block of rank 𝑟 ; the diagonal blocks𝑈 𝑗 𝑗 are full-rank and partitioned into 𝑏 × 𝑏

subblocks; 𝑦, an𝑚-vector stored in precision 𝑢high; 𝐵, a workspace of size max(𝑡𝑟, 𝑏2) stored in precision 𝑢high; 𝑧, an
𝑟 -vector stored in precision 𝑢high.

Output: 𝑥 , an𝑚-vector stored in precision 𝑢high, solution to𝑈𝑥 = 𝑦.
Initialize 𝑥 = 𝑦.
for 𝑗 = 𝑝, . . . , 1 do
Solve𝑈 𝑗 𝑗𝑥 𝑗 = 𝑥 𝑗 using Algorithm 2 with block size 𝑏.
for 𝑖 = 𝑗 − 1, . . . , 1 do

Read 𝑌𝑇
𝑖 𝑗
, upcast it to precision 𝑢high, and store it in 𝐵.

Compute 𝑧 = 𝐵𝑥 𝑗 in precision 𝑢high using gemv.
Read 𝑋𝑖 𝑗 , upcast it to precision 𝑢high, and store it in 𝐵.
Compute 𝑥𝑖 = 𝑥𝑖 − 𝐵𝑧 in precision 𝑢high using gemv.

end for
end for

6.3 Performance evaluation with BLR matrices

Figure 6.2 evaluates the performance of Algorithm 3 depending on various parameters. In all cases, we use a triangular
BLR matrix with block size 𝑡 and where all off-diagonal blocks are low-rank of rank 𝑟 . For each plot, the BLR block size
𝑡 varies on the x-axis, and lines of different colors correspond to a different storage precision types. The top, middle,
and bottom plots consider different BLR compression ratios: 𝑟 = 𝑡/2, 𝑡/4, and 𝑡/8, respectively; these correspond to the
ratios considered in Table 6.1. Finally, we also assess the impact of further partitioning the full-rank blocks (which, in
this experiment, only consist of the diagonal blocks): in the left plots we do not use any subblocking, whereas in the
right plots the diagonal blocks are partitioned into 𝑡/4 × 𝑡/4 subblocks. As in the experiments of the previous sections,
we are still using a tree parallelism configuration with each core solving an independent system of order𝑚 = 4096 with
a sequential implementation of Algorithm 3.

We can draw several interesting conclusions from Figure 6.2. First of all, we recover the conclusion of the previous
experiments regarding the effect of the storage type: types of smaller size lead to higher performance, provided the
block size belongs to a suitable interval. Second, comparing the left and right plots confirms that subblocking the
diagonal full-rank blocks significantly extends the range of block sizes for which performance is satisfactory. This is
a key result since, as previously mentioned, we cannot afford to choose the block size 𝑡 only based on the memory
accessor performance; in practice it is necessary to use large BLR block sizes to attain optimal compression rates.
Moreover, comparing the top, middle, and bottom plots, we can see that the impact of subblocking the diagonal block
becomes much stronger when the BLR compression ratio increases. Indeed, in the case 𝑟 = 𝑡/2 (top plots), which
corresponds to no BLR compression (since low-rank blocks require the same storage as if they were stored as full-rank),
the subblocking of the diagonal blocks has almost no impact. This is expected since in this case the size of the 𝑋 and
𝑌𝑇 factors, 𝑡𝑟 = 𝑡2/2, is the same as the size of a diagonal block (since it is triangular). In contrast, in the middle and
especially in the bottom plots, subblocking the diagonal blocks has a much stronger impact. For example, with fp16 as
storage precision, subblocking extends the maximal block size 𝑡 that maintains good performance from about 250 to
750. This experiment therefore confirms that subblocking is crucial to handle large BLR block sizes, and qualitatively
supports the performance model used in Table 6.1. As in all previous experiments, the actual values are smaller in
practice, but our model correctly captures the effect of the BLR compression on the performance.
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Fig. 6.2. Performance of the BLR triangular solve with custom types and tree parallelism, depending on the BLR compression ratio
and on whether the full-rank blocks are further partitioned into subblocks or not.
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7 Parallel triangular solve

All previous experiments have focused on tree parallelism configurations, where each thread solves an independent
system of medium size using a sequential implementation of the memory accessor; as explained in section 3.2, this
corresponds to the typical workload towards the bottom of the elimination tree in sparse direct solvers. In this section,
we now turn to a node+tree parallelism configuration, corresponding to the top of the elimination tree: we consider a few
independent systems of large size, each using a parallel implementation of the memory accessor. We first discuss how
to parallelize Algorithm 2 in section 7.1; we consider an OpenMP parallelization, comparing fork-join and task-based
approaches. Then, we evaluate the performance of this parallel memory accessor in section 7.2.

7.1 Parallelization of Algorithm 2

The goal of this section is to parallelize Algorithm 2 from section 3.1. Parallelizing this algorithm is essentially a matter
of respecting the dependencies of the computation. For example, the updates 𝑥𝑖 = 𝑥𝑖 − 𝐵𝑥 𝑗 are all independent and so a
very simple parallelization strategy is to use an omp for directive on the inner for loop (on 𝑖). This strategy is usually
referred to as a fork–join approach, because at each step 𝑗 of the outer loop, the threads are forked over the inner
loop, before joining again for the triangular solve with the diagonal block𝑈 𝑗 𝑗 . This fork–join approach is therefore
not optimal, because it requires synchronization between all threads at each outer step 𝑗 (and so load unbalance will
lead to idle threads), and because the diagonal triangular solve is sequential (all threads except one are idle during
it). Importantly, we can expect idle time to have a stronger impact on the memory accessor performance than on the
standard uniform precision solve. This is because idle threads do not saturate the memory bandwidth and thus the
computation is less likely to be memory bound.

An alternative parallelization strategy is to follow more closely the dependencies of the computation by using the
omp task directive. Such a task-based approach allows for a more dynamic parallel execution and reduces the idle
time. Indeed, with this approach the tasks processing the diagonal triangular solves (trsv) and the tasks processing the
off-diagonal updates (gemv) can be intertwined. This is illustrated in Figure 7.1 (left), which depicts the dependencies of
a tiled dense triangular solve. Reducing idle time allows for better saturating the memory bandwidth and so we expect
this task-based approach to better take advantage of the memory accessor.

However, one issue that one must pay attention to when using task-based approaches is the task generation and
scheduling overhead. If the granularity of the tasks (that is, the amount of work performed by each task) is too small,
this overhead can become the limiting factor on the performance. This risk is considerable in our context since we
are dealing with BLAS-2 operations that perform relatively little work. One simple solution would be to increase the
task granularity by increasing the block size. Importantly, in our context, this solution is not satisfactory because, as
discussed in the previous sections, the memory accessor requires small block sizes to be efficient. Therefore, we adopt a
different solution to increase task granularity: we batch tasks together so that a single thread executes multiple tasks
together. This can be implemented by duplicating the inner loop so that the first 𝛽fine iterations process individual tiles
and the subsequent iterations process batches of 𝛽coarse tiles as depicted in Figure 7.1 (right).

7.2 Performance evaluation of the parallel memory accessor

We now evaluate the performance of memory accessor in a node+tree parallelism configuration: we spawn 4 MPI
ranks and each of them solves its own independent system of order𝑚 = 32768, using a parallel implementation of
Algorithm 2 that exploits 16 threads. In total, we are thus using the full 4 × 16 = 64 cores of the machine. Figure 7.2
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𝛽fine

𝛽coarse

Fig. 7.1. Dependencies in a tiled dense triangular solve, and possible task-based parallelization approaches. On the left, each tile
is associated to an individual task, leading to small task granularity. Rather than increasing the tile size, task granularity can be
increased by batching tasks together, as illustrated on the right.
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Fig. 7.2. Performance of the triangular solve with custom types and node+tree parallelism, depending on the parallelization strategy
and on the block size (𝑏 = 128 or 256). A single compute node is used by four MPI processes. Each MPI process is solving a system of
order 32, 768 against a single vector.

compares the performance for various storage precision types, two block size values 𝑏 = 128 or 𝑏 = 256, and for three
different parallelization strategies of Algorithm 2 described in the previous of section: the fork–join approach and the
task-based approach with or without batching (for the batched version we have used 𝛽fine = 𝛽coarse = 3). In addition,
we also provide as reference the performance of the multithreaded MKL trsv in fp64 or fp32 uniform precision.
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First of all, the figure shows that the parallelization of trsv byMKL (leftmost black and green bars) is not very efficient.
Our own tiled implementation of the uniform precision variants (black and green bars) significantly outperforms MKL,
which certainly validates our implementation.

Let us first focus on the fork–join approach (first group of 8 bars after the MKL ones). As in previous experiments,
we recover the good property that reducing the storage precision improves performance. Moreover, the absolute
performance of the memory accessor variants is significantly better for a block size 𝑏 = 128 (center plot) than for
𝑏 = 256 (right plot), which is expected and consistent with the conclusions of previous experiments.

Next, let us turn to the task-based approach with no batching (second group of 8 bars). With 𝑏 = 256 (right plot),
this task-based approach achieves better performance than the fork–join one. Moreover, and quite interestingly, the
performance improvement is noticeably better for the mixed precision memory accessor variants than for the uniform
precision ones. For example, by switching from the fork–join to the task-based parallelization, the fp16+fp64 variant
becomes more effiant than the uniform fp32 variant. However, as previously noted, the case 𝑏 = 256 is not optimal for
the memory accessor, for which 𝑏 = 128 (center plot) should be preferred. Unfortunately, with this task-based approach,
reducing the block size to 𝑏 = 128 leads to a huge performance drop, to the point where it is actually less efficient than
the fork–join approach. As discussed in the previous section, this is likely due to the task granularity being too small
and leading to a high overhead.

This finally brings us to the task-based approach with batching (third group of 8 bars). The figure shows that batching
successfully solves the issue of the task overhead and can achieve high performance even for the smaller block size
𝑏 = 128. This almost does not benefit the uniform precision variants (black and green bars), which attain their optimal
performance with 𝑏 = 256, for which the task batching only slightly improves performance. However, task batching is
really critical for the mixed precision memory accessor variants, which attain their optimal performance with 𝑏 = 128.
Overall, the best parallel memory accessor implementation is the task-based approach with batching and with a small
block size 𝑏 = 128. For this optimal implementation, the memory accessor successfully translates a lower storage
precision into significant performance gains.

We conclude this section by mentioning that we have also implemented a parallel version of Algorithm 3 for BLR
matrices. We draw the same conclusions as for dense systems with the fork–join approach. However, with task-based
approaches (with or without batching), our implementation attains very poor performance; we did not investigate in
depth the reasons for this behavior, and decide to rather focus our efforts on the integration of our approach within the
MUMPS solver.

8 Preliminary results with MUMPS

In this section we provide some preliminary results with the MUMPS solver [6, 7]. MUMPS provides several approximate
computing methods, including BLR compression [6], mixed precision iterative refinement [2], and adaptive precision
BLR [3]. In this preliminary study we focus on using the memory accessor to accelerate the adaptive precision BLR
triangular solve. In this context, the LU factors are compressed using the BLR format, and each low-rank block is
further compressed by partitioning it into components stored in gradually lower precisions depending on the decay of
its singular values [3]. As explained in section 2.3, such an adaptive precision algorithm can exploit a continuum of
precisions; MUMPS supports the same types fp64, fp56, fp48, fp40, fp32, fp24, and fp16 as defined in Table 5.1.

MUMPS implements this approach to reduce the storage cost of the LU factors, and maintains the use of fp64 for the
triangular solve. Before the integration of this work, this was achieved via a naive “memory accessor” which converted
each adaptive precision low-rank block back to fp64, without any vectorized conversion or cache-aware strategies such
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Table 8.1. Preliminary results with MUMPS (Queen_4147 matrix, BLR truncation threshold 𝜀 = 3 × 10−9).

Compute
precision

Storage
precisions

Accessor
method

Backward
error

LU factor
storage (GB)

Solve
time (ms)

Full-rank fp64 fp64 — 10−16 112 871
BLR fp64 fp64 — 10−11 57 505
BLR fp64 fp64, fp32 Naive 10−11 44 922
BLR fp64 fp64, fp32 This work 10−11 44 509
BLR fp64 fp64, fp56, . . . , fp16 Naive 10−11 37 1089
BLR fp64 fp64, fp56, . . . , fp16 This work 10−11 37 479

as subblocking. We have implemented a much more optimized memory accessor based on the lessons learned in the
previous sections of this work. In particular, we employ the efficient conversion routines from custom types described
in section 5.2, and we use subblocking for the off-diagonal full-rank blocks as described in section 6.2. Note that we do
not use subblocking for diagonal blocks, and the triangular solve is parallelized with a fork–join approach rather than a
task-based one, so further optimizations are possible. We leave them for future work as they would require complex
and intrusive modifications of the MUMPS data structures and kernels that are outside of the scope of this preliminary
study.

We present our preliminary results in Table 8.1, takingmatrix Queen_41476 from the SuiteSparsematrix collection [16]
as an example. We have set the BLR truncation threshold to 𝜀 = 3 × 10−9. We compare several approaches: the fp64
full-rank and BLR (without any adaptive precision) baselines, and four variants of the adaptive precision BLR solver
depending on the storage precisions (either only the natively supported fp64 and fp32 types, or the full continuum
of types including the custom ones) and on the memory accessor implementation (naive one originally provided by
MUMPS, or the new one based on this work).

First of all, the table shows that the adaptive precision BLR variants achieve a normwise backward error ∥𝐴𝑥−𝑏 ∥
∥𝐴∥ ∥𝑥 ∥+∥𝑏 ∥

of the same order 10−11 as the fp64 BLR baseline, as guaranteed by the method [3]. Second, the storage cost of the
uniform fp64 BLR solver (which is, at 57 GB, already much lower than the 112 GB of the full-rank solver) can be
significantly further reduced with the use of adaptive precision. Using only fp64 and fp32 as storage precisions leads
to a 44 GB storage cost, whereas using the full continuum of precisions further reduces this cost to 37 GB. Third and
most importantly, with the naive accessor originally implemented in MUMPS, these storage reductions do not lead to
corresponding time reductions but are on the contrary achieved at the expense of time. With our new accessor from this
work, we obtain significant speedups (greater than 2×), which brings the adaptive precision solve back to being as fast
as the uniform precision one, or even slightly faster with the full continuum of precisions. These positive preliminary
results confirm the potential of memory accessors to minimize the storage cost of the solver while maintaining its
efficiency.

6https://sparse.tamu.edu/Janna/Queen_4147
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9 Conclusions

We have proposed a memory accessor approach for accelerating memory-bound triangular solves, based on a mixed
precision decoupling of the storage (low) precision and the compute (high) precision. Our approach differs from previous
ones by proposing a BLAS-based block accessor that loads and converts the matrix by blocks and relies on BLAS
kernels for the computations (Algorithm 2). This approach is minimally intrusive and easily portable, as it only requires
wrapping the uniform precision BLAS kernels with conversion routines. Moreover, it can be highly efficient provided
that the block workspace fits into the fast memory and that the conversion from the storage to the compute precision is
efficient.

We have performed a thorough study of this approach by incrementally complexifying it to incorporate support for
custom floating-point types, compressed BLR matrix representations, and parallelization. We can draw the following
key lessons from this study.

• The matrix should be represented using a tiled storage layout. With such a layout, right- and left-looking
algorithms perform comparably.

• The block size should be chosen sufficienly small so that the block workspace fits into the fast memory and
sufficiently large so that the BLAS calls are efficient.

• Custom floating-point storage types can be efficiently handled by truncating some mantissa bytes from a standard
format. For truncating an fp64 number to a type of size less than 32 bits, using fp32 as intermediate allows for
reducing the exponent and gaining 3 bits of precision, without any significant performance penalty.

• The conversion from a custom type to a standard one can be efficiently vectorized using the AVX512-VBMI
instruction set available on recent CPUs.

• The block size used for BLR matrices should be decoupled from the block size used for the accessor by further
partitioning the full-rank blocks into smaller subblocks that fit into the fast memory.

• The optimal parallelization strategy is a task-based approach with task batching, which allows to define tasks
with sufficiently small blocks that fit into the fast memory, while limiting the task generation and scheduling
overhead.

• With the above optimizations, the performance adequately matches the storage cost of the matrix, that is,
reducing the storage precision increases the performance.

We have leveraged these conclusions to improve the MUMPS direct solver [6, 7], which provides an adaptive precision
BLR compression method to reduce storage [3]. Preliminary performance results with this new memory accessor in
MUMPS indicate significant speedups, which allows for optimizing storage while maintaining efficiency. This represents
a first major application of our accessor approach. A second possible application, that we will tackle in future work,
consists in using it in mixed precision iterative refinement [2]. Moreover, while this study has focused on the triangular
solve step of direct methods, it could be possible to extend it to the factorization step, provided that the latter remains
memory bound, as might be the case, for example, with BLR compression.
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