
MIXED PRECISION BLOCK FUSED MULTIPLY-ADD: ERROR
ANALYSIS AND APPLICATION TO GPU TENSOR CORES∗

PIERRE BLANCHARD† , NICHOLAS J. HIGHAM‡ , FLORENT LOPEZ§ , THEO MARY¶,

AND SRIKARA PRANESH‖

Abstract. Computing units that carry out a fused multiply-add (FMA) operation with matrix
arguments, referred to as tensor units by some vendors, have great potential for use in scientific
computing. However, these units are inherently mixed precision and existing rounding error analyses
do not support them. We consider a mixed precision block FMA that generalizes both the usual
scalar FMA and existing tensor units. We describe how to exploit such a block FMA in the numerical
linear algebra kernels of matrix multiplication and LU factorization and give detailed rounding error
analyses of both kernels. An important application is to GMRES-based iterative refinement with
block FMAs, for which our analysis provides new insight. Our framework is applicable to the tensor
core units in the NVIDIA Volta and Turing GPUs. For these we compare matrix multiplication
and LU factorization with TC16 and TC32 forms of FMA, which differ in the precision used for the
output of the tensor cores. Our experiments on an NVDIA V100 GPU confirm the predictions of
the analysis that the TC32 variant is much more accurate than the TC16 one, and they show that
the accuracy boost is obtained with almost no performance loss.

Key words. fused multiply-add, tensor cores, floating-point arithmetic, rounding error analysis,
NVIDIA GPU, matrix multiplication, LU factorization

AMS subject classifications. 65F05, 65G50

1. Introduction. A new development in high performance computing is the
emergence of hardware supporting low precision floating-point formats such as the 16-
bit IEEE half precision format (fp16) and the 16-bit bfloat16 format1 [23]. Examples
of such hardware include the NVIDIA P100 and V100 GPUs, the AMD Radeon
Instinct MI25 GPU, Google’s Tensor Processing Units (TPUs), the ARM NEON
architecture [3], and the Fujitsu A64FX ARM processor [10]. Expected to join them
in the near future are IBM’s next generation AI chips [11] (supporting an 8-bit floating-
point format in addition to fp16), and Intel’s upcoming Xeon Cooper Lake [31] and
Nervana Neural Network processors [28].

These new computing units execute low precision arithmetic faster than single
precision (fp32), typically by a factor 2. But in the NVIDIA V100 GPU, thanks to
special computing units called tensor cores, fp16 arithmetic executes up to 8 times
faster than fp32 arithmetic.

This faster low precision arithmetic can be exploited in numerical algorithms. In
[12], [13], [14], [15] it is shown how on an NVIDIA V100, fp16 arithmetic can be

∗Version of February 22, 2020. Funding: This work was supported by Engineering and Physical
Sciences Research Council grant EP/P020720/1, The MathWorks, and the Royal Society. The
opinions and views expressed in this publication are those of the authors, and not necessarily those
of the funding bodies.
†Department of Mathematics, The University of Manchester, Manchester M13 9PL, UK

(pierre.blanchard00@gmail.com).
‡Department of Mathematics, University of Manchester, Manchester, M13 9PL, UK

(nick.higham@manchester.ac.uk).
§Innovative Computing Laboratory (ICL), University of Tennessee, Knoxville, USA

(flopez@icl.utk.edu).
¶Sorbonne Université, CNRS, LIP6, F-75005 Paris, France (theo.mary@lip6.fr).
‖Department of Mathematics, The University of Manchester, Manchester M13 9PL, UK

(srikara.pranesh@manchester.ac.uk).
1https://en.wikipedia.org/wiki/Bfloat16 floating-point format

1

https://en.wikipedia.org/wiki/Bfloat16_floating-point_format

Table 1.1: Parameters and year of announcement for block FMAs on current or future
hardware. Source: [16].

b1 b b2 ulow uhigh

Google TPU v1 2016 256 256 256 bfloat16 fp32
Google TPU v2 2017 128 128 128 bfloat16 fp32
NVIDIA Volta 2017 4 4 4 fp16 fp32
Intel NNP-T 2018 32 32 32 bfloat16 fp32
Armv8-A 2019 2 4 2 bfloat16 fp32

used with mixed precision iterative refinement to solve a linear system Ax = b up
to 4 times faster and with 80 percent less energy usage than by an optimized double
precision solver, with no loss of accuracy or stability. Similar improvements over a
single precision solver for complex systems are obtained in [1]. Moreover, the same
iterative refinement approach running on Summit [27], [32], the machine with 4608
nodes with 6 NVIDIA V100 GPUs per node that leads the November 2019 TOP 500
list,2 has achieved a performance of 550 petaflops [13].

The tensor cores in the NVIDIA Volta and Turing architectures are able to carry
out the operation D = C +AB, where all matrices are 4× 4, in only one clock cycle
and in precision fp32 [2]. Moreover, while they require the matrices A and B to be in
the fp16 format, C and the result can be in fp16 or fp32. Pictorially, we have

D = C + A B.
× × × ×
× × × ×
× × × ×
× × × ×

︸ ︷︷ ︸

fp16 or fp32

=

× × × ×
× × × ×
× × × ×
× × × ×

︸ ︷︷ ︸

fp16 or fp32

+

× × × ×
× × × ×
× × × ×
× × × ×

︸ ︷︷ ︸

fp16

× × × ×
× × × ×
× × × ×
× × × ×

︸ ︷︷ ︸

fp16

Tensor cores can therefore be seen as a generalization of a fused multiply-add (FMA)
unit to 4× 4 matrices, and they are an instance of what we call a “block FMA.”

Multiprecision computing units called matrix units (MXU) are available on Google
TPUs [34]. They use bfloat16 rather than fp16 as the low precision format and they
operate on square matrices of dimension 128 or 256. However, Google TPUs are not
commercially available, and details of computation in MXUs has not been made pub-
licly available. Other vendors, including Intel and Arm, have announced hardware
that will use block FMA units; see Table 1.1.

Block FMAs are inherently mixed precision units. Existing rounding error analy-
ses will be pessimistic when applied to computations with block FMAs, as they do
not reflect the mixed precision nature of the computation.

In this work we define a mixed precision block FMA that includes the forms
provided by the hardware in Table 1.1 as special cases and should be general enough
to include future units. We present algorithms for matrix multiplication and LU
factorization with a block FMA and give detailed rounding error analyses of them.
Our analysis provides more realistic error bounds than standard analysis and can

2https://www.top500.org/lists/2019/06/

2

https://www.top500.org/lists/2019/06/

be used to determine the optimal tradeoff between performance and accuracy. In
particular, in the case of NVIDIA tensor cores our analysis and experiments show
that storing C and D in the block FMA in fp32 rather than fp16 can significantly
improve the accuracy and stability of the algorithms, while not hindering too much
their performance.

We define a block FMA in section 2. In section 3 we show how to exploit it
in matrix multiplication and give a rounding error analysis. We then test accuracy
and performance on an NVIDIA V100 for several matrix multiplication variants. In
section 4 we present an algorithm for LU factorization based on a block FMA and give
a rounding error analysis for the factorization and the solution of Ax = b. We show
that the analysis gives new insights into GMRES-based iterative refinement. Then
we give numerical experiments on an NVIDIA V100 to illustrate the error analysis
and test the performance of four LU factorization variants. Concluding remarks are
given in section 5.

We will denote by fl16 and fl32 the operations of rounding to the fp16 and fp32
formats, and note that u16 = 2−11 and u32 = 2−24 are the respective unit roundoffs.
With a standard abuse of notation we will write f lp with an argument that is a
matrix expression to denote that the expression is evaluated at some specified precision
(possibly different from p) and then rounded to precision p. The absolute value of a
matrix is defined componentwise: |A| = (|aij |).

2. Block fused multiply-add.

2.1. General framework for mixed-precision block FMA. A scalar FMA
has the form d = c + ab and is computed as the correctly rounded exact result, that
is, with one rounding error rather than two [17, sect. 2.6]. Hardware implementing an
FMA at the same speed as a single addition or multiplication first became available
over twenty years ago.

We define a mixed precision block FMA to take as input matrices A ∈ Rb1×b,
B ∈ Rb×b2 , and C ∈ Rb1×b2 , where A and B are provided in a given precision ulow
and C is either in precision ulow or in a higher precision uhigh. The block FMA
computes

D︸︷︷︸
ulow or uhigh

= C︸︷︷︸
ulow or uhigh

+ A︸︷︷︸
ulow

B︸︷︷︸
ulow

and returns D in precision ulow or uhigh. A key point is that the output D can be
taken in precision uhigh and used as the input C to a subsequent FMA. By chaining
FMAs together in this way, larger matrix products can be computed, as we will show
in the next section. Table 1.1 gives the precisions and matrix dimensions for block
FMAs that are currently available or have been announced.

There is a spectrum of ways in which D can be computed. With flFMA denoting
fllow or flhigh, two extreme possibilities are

D = flFMA(C +AB) (rounded exact result),(2.1)

D = flFMA

(
C +AB︸ ︷︷ ︸
precision u

)
(C +AB is computed at precision u).(2.2)

In (2.1) every element of D is computed with just a single rounding error. In (2.2),
the expression C +AB is computed at a precision u equal to ulow or uhigh and there
are multiple rounding errors per element of D. The evaluation (2.1) is ideal from an
accuracy perspective, but in general it will be expensive. The NVIDIA Volta and
Turing architectures use (2.2) with u = u16 or u = u32 [2].

3

The evaluation (2.1) with all inputs and the output at precision ulow corresponds
to the “long accumulator” proposed by Kulisch and Miranker [25], which has found
use in interval arithmetic (see, for example, [24], [29]). Evaluating according to (2.1)
is expensive, and although proposals have been made for implementing it in hardware
(e.g., [5], [33]), it is not, to our knowledge, supported in commercial processors because
of the hardware costs. However, manufacturers could implement something between
(2.1) and (2.2) by using a little extra precision, perhaps the extended precisions defined
in the IEEE standard [22] or the 80-bit registers on Intel processors. Indeed we note
that NVIDIA’s CUDA C++ Programming Guide [9] states that when C is in fp32
the computation is performed in at least single precision, allowing for the possibility
of using extra precision in future implementations.

In order to capture the range of possible block FMA implementations in our
analysis, we will use a model for the evaluation that includes a range of possibilities
that has (2.1) and (2.2) as the extreme cases. Denote the precision of the output of
the FMA by uFMA, which is either ulow or uhigh. We assume that C+AB is computed
at precision u ≤ uFMA and then rounded to precision uFMA; if u = uFMA then the
latter rounding is not needed.

We will use the standard model of floating-point arithmetic [17, sec. 2.2]

(2.3) f l(a op b) = (a op b)(1 + δ), |δ| ≤ u, op ∈ {+,−,×, /}

and the alternative form

(2.4) f l(a op b) =
a op b

1 + δ
, |δ| ≤ u, op ∈ {+,−,×, /}.

We will need the quantity

γk =
ku

1− ku
.

Throughout the paper we assume that ku < 1 for the relevant integers k and pre-
cisions u. An accent on γ denotes that u carries that accent and a superscript on
γ denotes that u also carries that superscript as a subscript; thus below we will use
γk = ku/(1− ku) and γ̃FMA

k = kũFMA/(1− kũFMA).

By standard analysis for matrix multiplication [17, sect. 3.5], the matrix D̃ com-
puted in precision u satisfies

|D̃ −D| ≤ γb+1(|C|+ |A||B|).

Using (2.4), the final rounding to precision uFMA gives D̂ satisfying

(2.5) (1 + δij)d̂ij = d̃ij |δij | ≤ uFMA, i = 1 : b1, j = 1 : b2.

Hence
|D̂ −D| ≤ |D̂ − D̃|+ |D̃ −D| ≤ uFMA|D̂|+ γb+1(|C|+ |A||B|).

Our model is therefore

(2.6) |D̂ −D| ≤ uFMA|D̂|+ γb+1(|C|+ |A||B|).

Setting u = 0 corresponds to (2.1) (to within O(u2FMA) because of the presence of

D̂ instead of D on the right-hand side), while u = uhigh corresponds to (2.2). While
the model (2.6) is useful, it is not so convenient when chaining FMAs, so in the next
section we will directly analyze a chain of FMAs as it arises in Algorithm 3.1 for
matrix multiplication.

For b = b1 = b2 we will refer to the block FMA as a b× b FMA.

4

2.2. GPU tensor cores. The tensor cores in the NVIDIA Volta and Turing
architectures perform a b×b FMA for b = 4. As noted in section 1, while they require
A and B to be fp16 matrices (that is, ulow = u16), C and D can be either fp16 or
fp32 (that is, uhigh = u32). We will consider two cases:

(2.7) D̂ =

{
f l16(C(16) +AB), case 1: TC16,

f l32(C(32) +AB), case 2: TC32,

where C(16) and C(32) denote an fp16 matrix and an fp32 matrix, respectively. We
note that the NVIDIA CUDA C++ Programming Guide [9] states that

Element-wise multiplication of matrix A and B is performed with at
least single precision. When .ctype or .dtype is .f32, accumulation of
the intermediate values is performed with at least single precision.
When both .ctype and .dtype are specified as .f16, the accumulation
is performed with at least half precision.

We therefore have u = u16 for TC16 and u = u32 for TC32. (For TC16, the multipli-
cations are actually performed in precision u32, but taking this into account makes the
analysis more complicated and barely improves the resulting bounds). The computed

D̂ satisfies (2.6) with uFMA = u16 for TC16 and uFMA = u32 for TC32.

3. Matrix multiplication with block FMA. In this section we describe an
algorithm to exploit a block FMA in matrix multiplication. We perform the rounding
error analysis of this algorithm and compare our error bounds with the results of
numerical experiments using tensor cores on an NVIDIA V100.

3.1. Description of the algorithm. Consider matrices A ∈ Rm×n and B ∈
Rn×t partitioned into b1 × b and b × b2 blocks, respectively, where for simplicity
we assume that p = m/b1, q = n/b, and r = t/b2 are integers. We describe in
Algorithm 3.1 how to multiply A and B in a way that can exploit a block FMA.

Algorithm 3.1 Let A ∈ Rm×n and B ∈ Rn×t be partitioned into b1 × b blocks Aij

and b × b2 blocks Bij , respectively, where p = m/b1, q = n/b, and r = t/b2 are
assumed to be integers. This algorithm performs the matrix multiplication C = AB
using a block FMA. The output C is in precision u.

1: Ã← f llow(A) and B̃ ← f llow(B) (if necessary).
2: for i = 1: p do
3: for j = 1: r do
4: Cij = 0
5: for ` = 1: q do
6: Compute Cij = Cij + Ãi`B̃`j using a block FMA with output at preci-

sion uFMA.
7: end for
8: If u 6= uFMA then round Cij to precision u.
9: end for

10: end for

Note that the algorithm does not assume that A and B are given in precision
ulow; in the context of mixed precision LU factorization [13], [14], for example, they
may be given in uhigh. We use the term “convert” on line 1 rather than “round”
because in practice it might be necessary to do some kind of scaling to avoid overflow

5

or underflow; see [21] for such considerations. However, in our analysis we will assume
that underflow and overflow do not occur.

3.2. Rounding error analysis. We now give a rounding error analysis for
Algorithm 3.1. We recall from standard error analysis [17, chap. 3] that the computed
value of an expression w = p0 + p1q1 + · · · + pnqn evaluated in precision u from left
to right can be expressed as

ŵ = p0(1 + θn) + p1q1(1 + θn+1) + p2q2(1 + θ′n) + p3q3(1 + θn−1) + · · ·+ pnqn(1 + θ2),

where |θk| ≤ γk.
Let x denote a row of A and y a column of B and write sn = xT y as

sn = (x1y1+ · · ·+xbyb)+(xb+1yb+1+ · · ·+x2by2b)+ · · ·+(xn−b+1yn−b+1+ · · ·+xnyn).

Algorithm 3.1 evaluates sn by setting s0 = 0, forming

(3.1) si = si−1 + x(i−1)b+1y(i−1)b+1 + · · ·+ xibyib, i = 1 : q,

where the right-hand side is evaluated in the block FMA at precision u and we assume
that the evaluation is from left to right, then rounding the result back to precision
uFMA, or to precision u if u > uFMA. Since the block FMA produces output only
at precision ulow or uhigh, two roundings will be needed if u > uFMA > u: first to
precision uFMA and then to precision u. We will include only a single rounding in our
analysis, for simplicity; this has a negligible affect on the final error bound (see [30]
for analysis of the effects of double rounding). The computed ŝi satisfies

(3.2) ŝi =
[
ŝi−1

(
1+θ

(i)
b

)
+x(i−1)b+1y(i−1)b+1

(
1+θ

(i)
b+1

)
+ · · ·+xibyib

(
1+θ

(i)
2

)]
(1+δi)

where |θj | ≤ γj and |δj | ≤ ũFMA, where

(3.3) ũFMA =

u, u > uFMA,

0, u ≥ uFMA,

uFMA, u < uFMA.

Here, the first condition is not mutually exclusive with the second and third, so the
equality should be read as taking the first choice (u) if the first condition is satisfied.
For i = 1, since s0 = 0, (3.2) holds with b+ 1 replaced by b in the θ term multiplying
x1y1. Overall, we have

ŝn =

(
x1y1

(
1 + θ

(1)
b

)
+ · · ·+ xbyb

(
1 + θ

(1)
2

)) q∏
i=2

(
1 + θ

(i)
b

) q∏
i=1

(1 + δi)

+ · · ·+
(
xn−b+1yn−b+1

(
1 + θ

(q)
b+1

)
+ · · ·+ xnyn

(
1 + θ

(q)
2

))
(1 + δq)

=

n∑
i=1

xiyi(1 + αi)(1 + βi),

where, by [17, Lems. 3.1, 3.3] and using qb = n, |αi| ≤ γ̃FMA
q and |βi| ≤ γn. Hence

(3.4) |sn − ŝn| ≤
(
γ̃FMA
q + γn + γ̃FMA

q γn
)
|x|T |y|,

6

Table 3.1: First order part of constant in (3.5) in particular cases. Here, we assume
that A and B are given in precision ulow and that u ≤ uFMA.

uFMA u ũFMA Bound

ulow ulow 0 nulow
ulow uhigh ulow qulow + nuhigh
ulow 0 ulow qulow
uhigh ulow 0 nulow
uhigh uhigh 0 nuhigh
uhigh 0 uhigh quhigh

We note that if (3.1) is evaluated from right to left—which amounts to blocked sum-
mation [4]—then s1 (for example) participates in q rather than n additions and so
γn can be replaced by γq+b−1 in (3.4). It is not hard to see that (3.4) is valid for all
orders of evaluation of (3.1).

If the input matrices A and B are given in precision ulow then we can directly
apply the above analysis to obtain the following bound for Algorithm 3.1.

Theorem 3.1. Let the product C = AB of A ∈ Rm×n and B ∈ Rn×t given in
precision ulow be evaluated by Algorithm 3.1, where q = n/b. The computed Ĉ satisfies

(3.5) |C − Ĉ| ≤ (γ̃FMA
q + γn + γ̃FMA

q γn)|A||B|.

Table 3.1 shows the first order part of the constant in the bound (3.5) in several
particular cases. Let us compare the constants in the table with the constant nulow in
the bound for a standard evaluation of C at precision ulow. The case uFMA = u = ulow
has the same constant, so the block FMA offers no accuracy benefits in this case. But
when uFMA = u = uhigh the constant is a factor uhigh/ulow smaller than for the
standard evaluation, while for uFMA = ulow and u = uhigh the constant is a factor b
smaller.

If A and B are not given in precision ulow then we must account for the initial
conversion to precision ulow. Assuming rounding with no underflow or overflow, we
have

Ã = fllow(A) = A+∆A, |∆A| ≤ ulow|A|,

B̃ = fllow(B) = B +∆B, |∆B| ≤ ulow|B|.

Applying (3.5) to the computation of C = ÃB̃ yields

Ĉ = ÃB̃ +∆C, |∆C| ≤ (γ̃FMA
q + γn + γ̃FMA

q γn)|Ã||B̃|,

so
Ĉ = AB +∆AB +A∆B +∆A∆B +∆C =: AB + E.

Bounding E yields the following result.

Theorem 3.2. Let the product C = AB of A ∈ Rm×n and B ∈ Rn×t (not nec-
essarily given in precision ulow) be evaluated by Algorithm 3.1, where q = n/b. The

computed Ĉ satisfies

(3.6) |C − Ĉ| ≤
(
2ulow + u2low + (γ̃FMA

q + γn + γ̃FMA
q γn)(1 + ulow)2

)
|A||B|.

7

Table 3.2: Dominant terms in the error constant multiplying |A||B| for standard
matrix multiplication and for the block FMA-based Algorithm 3.1, from (3.6). Here,
q = n/b, u ≤ uFMA is assumed, and A and B are not assumed to be given in precision
ulow.

Evaluation method Bound

Standard in precision ulow (n+ 2)ulow
Block FMA uFMA = ulow u = ulow (n+ 2)ulow
Block FMA uFMA = ulow u = uhigh (q + 2)ulow + nuhigh
Block FMA uFMA = ulow u = 0 (q + 2)ulow
Block FMA uFMA = uhigh u = ulow (n+ 2)ulow
Block FMA uFMA = uhigh u = uhigh 2ulow + nuhigh
Block FMA uFMA = uhigh u = 0 2ulow + quhigh

Standard in precision uhigh nuhigh

The bound (3.6) should be compared with [17, eq. (3.13)]

(3.7) |C − Ĉ| ≤ γn|A||B|

for a standard matrix product that does not use a block FMA.
We gather in Table 3.2 the dominant terms in the error bounds (3.6) for five block

FMA implementations, with A and B given in precision uhigh, and compare them with
the bounds for standard multiplication in precision uhigh or ulow (error bound (3.7)).
For the sake of readability, in Table 3.2 we have assumed that uhigh � ulow.

Let us now compare these five different variants, using Table 3.2. Compared
with the standard multiplication in precision ulow, the mixed-precision block FMA
multiplication achieves smaller error bounds in all cases except for uFMA = u = ulow.
Let us first consider u = uhigh. With uFMA = ulow, the bound is reduced by a factor
approximately b, while with uFMA = uhigh, the factor of improvement is even larger
and equal to min(n/2, ulow/uhigh). Indeed, the bound (3.6) does not grow with n to
first order (that is, as long as n ≤ 2ulow/uhigh) and, for larger n, the bound becomes
equivalent to the bound for standard multiplication in precision uhigh. With u = 0,
the bounds are even smaller: for uFMA = ulow the improvement is negligible since it
amounts to removal of the nuhigh term, while for uFMA = uhigh and nuhigh � 2ulow
the bound is reduced by a factor approximately b.

The bounds above are worst-case and so may be pessimistic, especially for large
dimensions (see the numerical results in the next subsection). To derive more realistic
bounds, we can use a probabilistic model of the rounding errors [18]. A probabilistic
analogue of Theorem 3.2 directly follows from [18, Thm. 3.1]. It contains a modified
version of (3.6) with γ̃FMA

q and γn replaced by relaxed constants γ̃FMA
q (λ) and γn(λ)

proportional to λq1/2ũFMA and λn1/2u, respectively. This relaxed bound holds with
a probability at least a given quantity that is very close to 1 for λ of order 10 or so. In
particular, this means that the block FMA bound with uFMA = uhigh = u may only
start growing with n for much larger n than the worst-case bound suggests (perhaps
for n larger than 4(ulow/uhigh)2).

We now apply these bounds to NVIDIA tensor cores. This amounts to taking
b = 4, uhigh = u32, and ulow = u16 in Theorem 3.1 and Theorem 3.2 (or Table 3.2).
We gather the resulting bounds in Table 3.3, where we consider standard half and

8

Table 3.3: Specialization of the bounds in Theorem 3.1 and Theorem 3.2 (or Table 3.2)
for NVIDIA tensor cores, for which b = 4, uhigh = u32, and ulow = u16, and where
uFMA = u = u16 (TC16) or uFMA = u = u32 (TC32).

Precision Standard Tensor core, TC16 Tensor core, TC32 Standard
of A and B fp16 uFMA = u = u16 uFMA = u = u32 fp32

u16 nu16 nu16 nu32 nu32
u32 (n+ 2)u16 (n+ 2)u16 2u16 + nu32 nu32

single precision multiplication (fp16 and fp32), and tensor core multiplication in either
TC16 (uFMA = u = u16) or TC32 (uFMA = u = u32) mode. We see clearly that the
TC32 mode achieves a much smaller bound than the TC16 mode, by removing the
constant n multiplying the u16 term and relegating it to the u32 term.

3.3. Numerical experiments with tensor core matrix multiplication. We
now present numerical experiments to investigate whether the error bounds correctly
predict the relative accuracy of the different methods and to assess the performance
of the methods. We use the implementation of the four matrix multiplication variants
provided in the cuBLAS library v10.1. The matrices A and B are random, with
entries sampled uniformly from [0, 10−3] or [−1, 1]. We set the upper bound to 10−3

in the former case to avoid overflow in the multiplication for large sizes. Matrices
are generated in single precision in order to compare the accuracy of the fp16, TC16,
and TC32 computations with those for fp32. As a result, for the first three methods
matrices A and B will be converted to half precision prior to multiplication. To
assess the sharpness of the bounds we consider A ∈ Rm×n and B ∈ Rn×t with n
varying from 1024 to approximately 2 × 107, and in order that the matrices fit on a
single GPU we take m = t = 8. Figures 3.1 and 3.2 plot the componentwise error
maxi,j |Ĉ −C|ij/(|A||B|)ij for increasing values of n, where C is an approximation of
the exact result obtained with a standard double precision multiplication computed
with cuBLAS. This error measure is not the true relative forward error but is what the
analysis bounds. Bounds associated with each variant are represented in dashed lines.
Once a bound reaches the value 1, we set it to 1 as it provides no useful information.

As expected almost all the errors are relatively far from their worst-case bounds.
Moreover, the errors in Figure 3.2 are generally much smaller than their counterparts
in Figure 3.1. For matrices with positive entries (Figure 3.1) the errors for fp16 and
TC16 range from 10−3 to 1 and exceed 0.1 for n ≈ 106. Interestingly, TC16 achieves
a noticeably smaller error than fp16, even though they both have the same error
bound. We suspect this might be because the matrix multiplication algorithm of
cuBLAS implements blocked summation which, as mentioned previously, achieves a
bound a factor b = 4 smaller. More importantly, the errors for TC32 and fp32 are
much smaller than those for fp16 and TC16, by a factor between 10−5 and 10−2 for
TC32 and between 10−7 and 10−5 for fp32. We observe that the error bound for
TC32 is rather loose (a constant two orders of magnitude gap) but still insightful, as
it captures the growth of the error with n. Finally, we mention that the fact that
the error decreases with n in Figure 3.2 is related to the entries of the matrices being
distributed uniformly in [−1, 1] and thus having zero mean, as explained in the recent
probabilistic analysis for random data [19].

In order to give a baseline for the performance of each matrix multiplication

9

104 105 106 107

10−7

10−5

10−3

10−1

101

Matrix size: n

fp16

TC16

TC32

fp32

Fig. 3.1: Componentwise errors for four matrix multiplication variants on NVIDIA
V100 GPU (fp16, TC16, TC32, and fp32) where matrix entries are sampled uniformly
in [0, 10−3]. Solid lines represent errors while dashed lines represent error bounds.

method we run additional simulations for square matrices (with uniform entries).
Figure 3.3 shows the maximum flop rate out of five runs (in TFlops) for each mul-
tiplication method and each matrix size. We see that although the TC16 variant
performs slightly better than the TC32 variant for matrix sizes up to n = 8000, the
two variants have similar asymptotic performance for n > 8000. In that range of
sizes the flop rates associated with tensor core-enabled multiplication are about 3.5×
larger than fp16 multiplication (3.3 to 3.6) and about 7× larger than single precision
multiplication (6.8 to 7.3), both executed on CUDA cores. The flop rate of TC16
multiplication reaches a maximum of 101.2 TFlops (about 90% of the theoretical per-
formance, namely 112.7 TFlops) for n = 8000. Our performance results are in good
agreement with other existing benchmarks, e.g., [26].

4. Solution of linear systems with block FMA. Now we consider the solu-
tion of linear systems Ax = b by LU factorization, where A is a dense n× n matrix.
Since LU factorization can be formulated to exploit matrix multiplication it can ben-
efit from using a block FMA.

Algorithm 4.1 computes an LU factorization using a block FMA. The algorithm
employs three precisions: the working precision u and the precisions ulow and uhigh
used by the block FMA employed within the call to Algorithm 3.1 on line 9. We
assume that A is given in precision u and that precision u is used on lines 2 and 4.
Other versions of the algorithm can be defined by varying these precisions.

4.1. Rounding error analysis. We now perform a rounding error analysis of
Algorithm 4.1. and its use to solve linear systems Ax = b. We begin with a simple
application of Theorem 3.1.

Corollary 4.1. Let B = A −
∑q

j=1XjYj, where A,B ∈ Rb×b are given in

precision uhigh and Xj , Yj ∈ Rb×b are given in precision ulow, be computed with a

10

104 105 106 107
10−9

10−7

10−5

10−3

10−1

101

Matrix size: n

fp16

TC16

TC32

fp32

Fig. 3.2: Componentwise errors for four matrix multiplication variants on NVIDIA
V100 GPU (fp16, TC16, TC32, and fp32) where matrix entries are sampled uniformly
in [−1, 1]. Solid lines represent errors while dashed lines represent error bounds.

Algorithm 4.1 Let A ∈ Rn×n be given in precision u and partitioned into b × b
blocks Aij , where q = n/b is assumed to be an integer. This algorithm performs the
right-looking LU factorization A = LU (with L and U partitioned into b × b blocks)
exploiting a b× b FMA.

1: for k = 1: q do
2: Factorize LkkUkk = Akk.
3: for i = k + 1: q do
4: Solve LikUkk = Aik and LkkUki = Aki for Lik and Uki.
5: end for
6: for i = k + 1: q do
7: for j = k + 1: q do
8: L̃ik ← f llow(Lik) and Ũki ← f llow(Uki).

9: Aij ← Aij − L̃ikŨkj using Algorithm 3.1.
10: end for
11: end for
12: end for

b× b FMA. The computed B̂ satisfies

(4.1) |B̂ −B| ≤ (γ̃FMA
q + γn+1 + γ̃FMA

q γn+1)

(
|A|+

q∑
j=1

|Xj ||Yj |)
)
.

Proof. Write B = A− [X1 X2 . . . Xq][Y T
1 Y T

2 . . . Y T
q]T , and apply Theorem 3.1,

where the +1 subscript on γ comes from the initial subtraction with A.

We also need the following lemma for the next theorem.

11

2,000 4,000 6,000 8,000 10,000 12,000 14,000
0

20

40

60

80

100

120

Matrix size: n

perf. peak

TC16

TC32

fp16

fp32

Fig. 3.3: Performance results (in TFlops) for matrix multiplication variants on
NVIDIA V100 GPU (fp16, TC16, TC32 and fp32) with square matrices.

Lemma 4.2. If the LU factorization of A ∈ Rb×b runs to completion then the
computed LU factors L̂ and Û satisfy

(4.2) L̂Û = A+∆A, |∆A| ≤ γb|L̂||Û |.

Moreover, the computed solution X̂ to the multiple right-hand side system TX = B,
where T ∈ Rb×b is nonsingular and triangular, and B ∈ Rb×c, satisfies

(4.3) TX̂ = B +∆B, |∆B| ≤ γb|T ||X̂|.

Proof. See [17, Thm. 9.3] and [17, Thm. 8.5].

Theorem 4.3. Let A ∈ Rn×n be partitioned in b × b blocks, with q = n/b. If

Algorithm 4.1 runs to completion then the computed LU factors L̂ and Û satisfy
A+∆A = L̂Û , where

|∆A| ≤
(

2ulow + u2low + max(γ̃FMA
q−1 + γn−b+1 + γ̃FMA

q−1 γn−b+1, γb)(1 + ulow)2
)

× (|A|+ |L̂||Û |).(4.4)

Proof. The (i, k) block of the L factor is computed by solving

LikÛkk = Rik, Rik = Aik −
k−1∑
j=1

L̃ijŨjk, i > k,

where L̃ and Ũ denote the computed factors that have been converted to precision
ulow (line 8 of Algorithm 4.1) and satisfy L̃ij = L̂ij +Eij and Ũjk = Ûjk +Fjk, where

12

|Eij | ≤ ulow|L̂ij | and |Fjk| ≤ ulow|Ûjk|. By Corollary 4.1, the computed R̂ik satisfies,
since k ≤ q,

|Rik − R̂ik| ≤ (γ̃FMA
q−1 + γn−b+1 + γ̃FMA

q−1 γn−b+1)

(
|Aik|+

k−1∑
j=1

|L̃ij ||Ũjk|
)
.

By (4.3) we have

|L̂ikÛkk − R̂ik| ≤ γb|L̂ik||Ûkk|.(4.5)

Combining these two inequalities gives∣∣∣∣Aik −
k−1∑
j=1

L̃ijŨjk − L̂ikÛkk

∣∣∣∣ ≤ max(γ̃FMA
q−1 + γn−b+1 + γ̃FMA

q−1 γn−b+1, γb)

×
(
|Aik|+

k−1∑
j=1

|L̃ij ||Ũjk|+ |L̂ik||Ûkk|
)
.

Replacing L̃ij by L̂ij + Eij and Ũjk by Ûjk + Fjk, we obtain∣∣∣∣Aik −
k∑

j=1

L̂ijÛjk −G
∣∣∣∣ ≤ max(γ̃FMA

q−1 + γn−b+1 + γ̃FMA
q−1 γn−b+1, γb)(1 + ulow)2

×
(
|Aik|+

k∑
j=1

|L̂ij ||Ûjk|
)
,

where

G =

k−1∑
j=1

(
EijÛjk + L̂ijFjk + EijFjk

)
and thus |G| ≤ (2ulow + u2low)

∑k−1
j=1 |L̂ij ||Ûjk|. We conclude that for i > k,

|Aik −
k∑

j=1

L̂ijÛjk| ≤
(

2ulow + u2low + max
(
γ̃FMA
q−1 + γn−b+1 + γ̃FMA

q−1 γn−b+1, γb
)

× (1 + ulow)2
)
×
(
|Aik|+

k∑
j=1

|L̂ij ||Ûjk|
)
.(4.6)

For i = k, Lkk is determined with Ukk on line 2 of Algorithm 4.1, and by (4.2) we

have |L̂kkÛkk − R̂kk| ≤ γb|L̂kk||Ûkk|. Therefore (4.5) holds for i = k, too, and hence
so does (4.6). In a similar way, the inequality (4.6) can be shown to hold for i < k.

Theorem 4.4. Let A ∈ Rn×n be partitioned in b × b blocks, with q = n/b an

integer. If Algorithm 4.1 produces computed LU factors L̂ and Û and substitution
yields a computed solution x̂ to Ax = b then (A+∆A)x̂ = b, where

|∆A| ≤
(

2ulow + u2low + max
(
γ̃FMA
q−1 + γn−b+1 + γ̃FMA

q−1 γn−b+1, γb
)
(1 + ulow)2(4.7)

+ 2γn + γ2n

)
× (|A|+ |L̂||Û |).

Proof. The result is obtained by combining Theorem 4.3 with the error analysis
for the solution of triangular systems [17, Thm. 8.5] and is analogous to the proof of
[17, Thm. 9.4].

13

Table 4.1: Dominant terms in the error constant c(n, u16, u32) in the backward error

bound |∆A| ≤ c(n, u16, u32)(|A|+ |L̂||Û |) in (4.4) and (4.7) for LU factorization and
the solution of Ax = b using NVIDIA tensor cores. We have taken u = u16 for fp16
and TC16, and u = u32 for fp32 and TC32.

fp16 TC16 TC32 fp32

LU (Thm. 4.3) nu16 (n− 1)u16 2u16 + (n− 3)u32 nu32
Ax = b (Thm. 4.4) 3nu16 (3n− 1)u16 2u16 + (3n− 3)u32 3nu32

We gather in Table 4.1 the dominant terms in the error bound for LU factorization
and the solution of linear systems using NVIDIA tensor cores, for which b = 4,
u = uhigh = u32, and ulow = u16. We distinguish the same four variants of matrix
multiplication as in Table 3.3. In the fp16 and fp32 cases, we naturally take the
working precision to be u = u16 and u = u32, respectively, and the bounds are the
standard ones [17, Thms. 9.3, 9.4]. In the TC16 case, both u = u16 and u = u32 are
possible, but since the FMA uses uFMA = u = u16, we might as well take the working
precision to be u = u16. Finally, in the TC32 case, in order to preserve the accuracy
benefit of using an FMA and avoid the error growing with n to first order, we must
take u = uFMA = u = u32. We have ũFMA = 0 in (3.3) in both cases.

Overall, these bounds lead to the same conclusions as in the matrix multipli-
cation case: the TC16 bound is almost identical to the fp16 one and exhbits lin-
ear growth with n, while the TC32 variant leads to a much smaller bound, which
only starts growing with n when n & 2u16/u32 = 16384 (LU factorization) or when
n & 2

3u16/u32 ≈ 5461 (linear system), at which point it is almost equivalent to the
fp32 bound.

Our analysis is applicable to the work in Haidar et al. [14], in which an imple-
mentation of Algorithm 4.1 on an NVIDIA V100 was used with single precision as
the working precision and fp16 or TC32 for the matrix multiplications. The resulting
LU factorization was used as a preconditioner in GMRES-based iterative refinement
[6], [7]. In the experiments reported in [14], the total number of GMRES iterations
(a good measure of the cost of refinement) for TC32 was at most half that for fp16
(with a significant increase in performance too). This is what would be expected
from Table 4.1, where the LU factorization error constant for TC32 is a factor rang-
ing from approximately 900 to 5500 smaller than that for fp16 for the matrix sizes
n ∈ [2000, 34000] used in those experiments.

4.2. Numerical experiments with tensor core LU factorization. We now
present experiments testing the accuracy and performance of the LU factorization
computed by Algorithm 4.1 for solving Ax = b on an NVIDIA V100 GPU. Our
implementation does not use pivoting in the LU factorization and it performs all the
operations (factor, solve, and update) solely on the GPU. We use our own CUDA
kernels for the factor and solve operations and use the cublasGemmEx routine from
the cuBLAS library, which is the same as the routine tested in Section 3 for the matrix
multiplication, for performing the update operation. In the following experiments, we
use fp32 as working precision and compare the four variants fp16, TC16, TC32, and
fp32 listed in Table 4.1.

The test matrices are randomly generated as Q1DQ2, where Q1 and Q2 are
random orthogonal matrices from the Haar distribution and D is diagonal, with dii =

14

10,000 20,000 30,000 40,000

0

10

20

30

40

Matrix size: n

TC16

TC32

fp16

fp32

Fig. 4.1: Performance in Tflop of the LU factorization computed by Algorithm 4.1 on
an NVIDIA V100 GPU for the four variants fp16, TC16, TC32, and fp32.

10,000 20,000 30,000 40,000

10−7

10−6

10−5

10−4

10−3

Matrix size: n

fp16 TC16

TC32 fp32

Fig. 4.2: Componentwise backward error for the solution of Ax = b using an LU
factorization on an NVIDIA V100 GPU for the four variants fp16, TC16, TC32, and
fp32.

10−c(i−1)/(n−1). The resulting matrix has singular values lying between 1 and 10−c

and thus a condition number equal to 10c. In our experiments we set c = 3.
In Figure 4.1 we show the performance for the fp16, TC16, TC32, and fp32 vari-

ants for square matrices with n ranging between 1000 and 45000. Note that we do not
include the times for the forward and backward substitution in these results because

15

the cost of the factorization largely dominates the total cost for solving the linear sys-
tem. In this figure we see that the fp32 variant asymptotically reaches 10 TFlops and
that, as expected, the fp16 variant achieves twice the performance of that variant with
around 20 TFlops. Note that the cuSOLVER library, as part of the CUDA toolkit,
provides a single-precision LU factorization routine called cusolverDnSgetrf corre-
sponding to our fp32 variant. For the sake of clarity, we do not include experimental
results for the cusolverDnSgetrf routine but we observed that our implementation
achieves similar performance to this routine. The TC16 and TC32 variants achieve
much higher asymptotic performance, respectively around 36 and 32 TFlops, due to
the use of the tensor cores. Although the TC16 and TC32 variants show similar per-
formance behavior, the TC16 variant is slightly less efficient on the smaller matrices.
On the largest matrix, though, the TC16 variants offer slightly better performance
than TC32, which is consistent with the performance results obtained with the matrix
multiply operation shown in Figure 3.3.

A comparison of the componentwise backward errors

max
i

|Ax̂− b|i
((|A|+ |L̂||Û |)|x|)i

is given in Figure 4.2. Just as for matrix multiplication (section 3.3), the TC16
variant gives a smaller backward error than the fp16 one, even though their bounds
are identical: this might again be explained by the use of blocked summation within
the cuBLAS implementation of matrix multiplication. The TC32 variant gives a
backward error between one and two orders of magnitude smaller than the fp16 and
TC16 variants, as could be expected from the bounds shown in Table 4.1. The fp32
variant gives the smallest backward error but it is up to 3 times slower than the TC32
variant, as shown by Figure 4.1.

We conclude from these results that the TC32 variant offers the best performance
versus accuracy tradeoff, as it exploits the performance capabilities of the tensor cores
and has similar performance to TC16 variant, while giving much smaller backward
errors than the fp16 and TC16 variants and backward errors only 1 to 1.5 orders of
magnitude larger than for fp32.

5. Conclusion. We have considered a general mixed precision block FMA unit
that carries out a mixed-precision fused multiply-add operation D ← C+AB on b×b
matrices. This block FMA generalizes the usual scalar FMA in two ways. First, it
works on matrices (for b > 1) instead of scalars. Second, it takes A and B stored
in precision ulow and C stored in precision ulow or uhigh (where uhigh < ulow), and
returns D in precision uFMA (equal to uhigh or ulow), carrying out the computation
at precision u.

We have proposed matrix multiplication and LU factorization algorithms that
exploit such units and given detailed rounding error analyses of the algorithms, dis-
tinguishing several variants depending on the choice of each precision parameter.

If uFMA = ulow and u = uhigh, then a b × b block FMA leads to error bounds
a factor b smaller than those for conventional algorithms in precision ulow. More
significantly, by storing C and D in precision uhigh (that is, uFMA = uhigh), the
error bounds are reduced from O(nulow) to culow +O(nuhigh), where c is independent
of the problem size n. Assuming uhigh � ulow, we obtain bounds with a much
weaker dependence on n, which suggests we can obtain more accurate results than
for algorithms with only one precision, ulow.

We applied our analysis to the tensor core units available in the NVIDIA Volta

16

and Turing GPUs, which are specific block FMA units with b = 4 and with fp16
and fp32 precisions. We compared two variants, TC16 (uFMA = u = u16) and TC32
(uFMA = u = u32), which differ in the precision used for the output of the tensor
cores. Our analysis predicts the TC32 variant to be much more accurate than the
TC16 one. Our numerical experiments confirm this prediction and show that the
accuracy boost is achieved with almost no performance loss.

Our analysis can be applied to other matrix factorizations that are able to exploit
a block FMA, such as mixed precision QR factorization (used in [8]) and mixed
precision Cholesky factorization (used in [20]). The analysis is sufficiently general
that it should be applicable to future block FMAs, including those in Table 1.1.

REFERENCES

[1] A. Abdelfattah, S. Tomov, and J. Dongarra, Towards half-precision computation for com-
plex matrices: A case study for mixed-precision solvers on GPUs, in 2019 IEEE/ACM 10th
Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA),
2019, pp. 17–24, https://doi.org/10.1109/ScalA49573.2019.00008.

[2] J. Appleyard and S. Yokim, Programming tensor cores in CUDA 9. https://devblogs.nvidia.
com/programming-tensor-cores-cuda-9/, Oct. 2017. Accessed March 25, 2019.

[3] ARM Architecture Reference Manual. ARMv8, for ARMv8-A Architecture Profile, ARM
Limited, Cambridge, UK, 2018, https://developer.arm.com/docs/ddi0487/latest. Version
dated 31 October 2018. Original release dated 30 April 2013.

[4] P. Blanchard, N. J. Higham, and T. Mary, A class of fast and accurate summation al-
gorithms, SIAM J. Sci. Comput., 42 (2020), pp. A1541–A1557, https://doi.org/10.1137/
19M1257780.

[5] P. R. Capello and W. L. Miranker, Systolic super summation, IEEE Trans. Comput., 37
(1988), pp. 657–677, https://doi.org/10.1109/12.2205.

[6] E. Carson and N. J. Higham, A new analysis of iterative refinement and its application to
accurate solution of ill-conditioned sparse linear systems, SIAM J. Sci. Comput., 39 (2017),
pp. A2834–A2856, https://doi.org/10.1137/17M1122918.

[7] E. Carson and N. J. Higham, Accelerating the solution of linear systems by iterative re-
finement in three precisions, SIAM J. Sci. Comput., 40 (2018), pp. A817–A847, https:
//doi.org/10.1137/17M1140819.

[8] E. Carson, N. J. Higham, and S. Pranesh, Three-precision GMRES-based iterative refine-
ment for least squares problems, MIMS EPrint 2020.5, Manchester Institute for Math-
ematical Sciences, The University of Manchester, UK, Feb. 2020, http://eprints.maths.
manchester.ac.uk/2745/.

[9] CUDA C++ programming guide. https://docs.nvidia.com/cuda/cuda-c-programming-guide/
index.html#wmma-type-sizes, Nov. 2019. Version 10.2.89.

[10] M. Feldman, Fujitsu reveals details of processor that will power Post-K supercom-
puter. https://www.top500.org/news/fujitsu-reveals-details-of-processor-that-will-power-
post-k-supercomputer, Aug. 2018. Accessed November 22, 2018.

[11] M. Feldman, IBM takes aim at reduced precision for new generation of AI chips.
https://www.top500.org/news/ibm-takes-aim-at-reduced-precision-for-new-generation-
of-ai-chips/, Dec. 2018. Accessed January 8, 2019.

[12] A. Haidar, A. Abdelfattah, M. Zounon, P. Wu, S. Pranesh, S. Tomov, and J. Dongarra,
The design of fast and energy-efficient linear solvers: On the potential of half-precision
arithmetic and iterative refinement techniques, in Computational Science—ICCS 2018,
Y. Shi, H. Fu, Y. Tian, V. V. Krzhizhanovskaya, M. H. Lees, J. Dongarra, and P. M. A.
Sloot, eds., Springer International Publishing, Cham, 2018, pp. 586–600, https://doi.org/
10.1007/978-3-319-93698-7 45.

[13] A. Haidar, H. Bayraktar, S. Tomov, J. Dongarra, and N. J. Higham, Mixed-precision
solution of linear systems using accelerator-based computing, Technical Report ICL-UT-
20-05, Innovative Computing Laboratory, University of Tennessee, Knoxville, TN, USA,
May 2020, https://www.icl.utk.edu/publications/mixed-precision-solution-linear-systems-
using-accelerator-based-computing.

[14] A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham, Harnessing GPU tensor cores for fast
FP16 arithmetic to speed up mixed-precision iterative refinement solvers, in Proceedings of
the International Conference for High Performance Computing, Networking, Storage, and

17

https://doi.org/10.1109/ScalA49573.2019.00008
https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/
https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/
https://developer.arm.com/docs/ddi0487/latest
https://doi.org/10.1137/19M1257780
https://doi.org/10.1137/19M1257780
https://doi.org/10.1109/12.2205
https://doi.org/10.1137/17M1122918
https://doi.org/10.1137/17M1140819
https://doi.org/10.1137/17M1140819
http://eprints.maths.manchester.ac.uk/2745/
http://eprints.maths.manchester.ac.uk/2745/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#wmma-type-sizes
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#wmma-type-sizes
https://www.top500.org/news/fujitsu-reveals-details-of-processor-that-will-power-post-k-supercomputer
https://www.top500.org/news/fujitsu-reveals-details-of-processor-that-will-power-post-k-supercomputer
https://www.top500.org/news/ibm-takes-aim-at-reduced-precision-for-new-generation-of-ai-chips/
https://www.top500.org/news/ibm-takes-aim-at-reduced-precision-for-new-generation-of-ai-chips/
https://doi.org/10.1007/978-3-319-93698-7_45
https://doi.org/10.1007/978-3-319-93698-7_45
https://www.icl.utk.edu/publications/mixed-precision-solution-linear-systems-using-accelerator-based-computing
https://www.icl.utk.edu/publications/mixed-precision-solution-linear-systems-using-accelerator-based-computing

Analysis, SC ’18 (Dallas, TX), Piscataway, NJ, USA, 2018, IEEE Press, pp. 47:1–47:11,
https://doi.org/10.1109/SC.2018.00050.

[15] A. Haidar, P. Wu, S. Tomov, and J. Dongarra, Investigating half precision arithmetic
to accelerate dense linear system solvers, in Proceedings of the 8th Workshop on Latest
Advances in Scalable Algorithms for Large-Scale Systems, ScalA ’17 (Denver, CO), Nov.
2017, pp. 10:1–10:8, https://doi.org/10.1145/3148226.3148237.

[16] J. W. Hanlon, New chips for machine intelligence. https://jameswhanlon.com/new-chips-
for-machine-intelligence.html, Oct. 2019. Accessed November 27, 2019.

[17] N. J. Higham, Accuracy and Stability of Numerical Algorithms, Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, second ed., 2002, https://doi.org/10.1137/
1.9780898718027.

[18] N. J. Higham and T. Mary, A new approach to probabilistic rounding error analysis, SIAM
J. Sci. Comput., 41 (2019), pp. A2815–A2835, https://doi.org/10.1137/18M1226312.

[19] N. J. Higham and T. Mary, Sharper probabilistic backward error analysis for basic linear
algebra kernels with random data, MIMS EPrint 2020.4, Manchester Institute for Math-
ematical Sciences, The University of Manchester, UK, Jan. 2020, http://eprints.maths.
manchester.ac.uk/2743/.

[20] N. J. Higham and S. Pranesh, Exploiting lower precision arithmetic in solving symmetric
positive definite linear systems and least squares problems, MIMS EPrint 2019.20, Man-
chester Institute for Mathematical Sciences, The University of Manchester, UK, Nov. 2019,
http://eprints.maths.manchester.ac.uk/2736/.

[21] N. J. Higham, S. Pranesh, and M. Zounon, Squeezing a matrix into half precision, with an
application to solving linear systems, SIAM J. Sci. Comput., 41 (2019), pp. A2536–A2551,
https://doi.org/10.1137/18M1229511.

[22] IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2019 (Revision of IEEE 754-
2008), IEEE Computer Society, New York, 2019, https://doi.org/10.1109/IEEESTD.2019.
8766229.

[23] Intel Corporation, BFLOAT16—hardware numerics definition, Nov. 2018, https://software.
intel.com/en-us/download/bfloat16-hardware-numerics-definition. White paper. Docu-
ment number 338302-001US.

[24] W. Krämer and M. Zimmer, Fast (parallel) dense linear system solvers in C-XSC using error
free transformations and BLAS, in Numerical Validation in Current Hardware Architec-
tures, A. Cuyt, W. Krämer, W. Luther, and P. Markstein, eds., Berlin, Heidelberg, 2009,
Springer Berlin Heidelberg, pp. 230–249, https://doi.org/10.1007/978-3-642-01591-5 15.

[25] U. W. Kulisch and W. L. Miranker, The arithmetic of the digital computer: A new approach,
SIAM Rev., 28 (1986), pp. 1–40, https://doi.org/10.1137/1028001.

[26] S. Markidis, S. Wei Der Chien, E. Laure, I. B. Peng, and J. S. Vetter, NVIDIA tensor
core programmability, performance & precision, in 2018 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), May 2018, pp. 522–531, https:
//doi.org/10.1109/ipdpsw.2018.00091.

[27] ORNL launches Summit supercomputer. https://www.ornl.gov/news/ornl-launches-summit-
supercomputer, June 2018. Accessed June 30, 2018.

[28] N. Rao, Beyond the CPU or GPU: Why enterprise-scale artificial intelligence requires a more
holistic approach. https://newsroom.intel.com/editorials/artificial-intelligence-requires-
holistic-approach, May 2018. Accessed November 5, 2018.

[29] S. M. Rump, Verification methods: Rigorous results using floating-point arithmetic, Acta Nu-
merica, 19 (2010), pp. 287–449, https://doi.org/10.1017/S096249291000005X.

[30] S. M. Rump, IEEE754 precision-k base-β arithmetic inherited by precision-m base-β arithmetic
for k < m, ACM Trans. Math. Software, 43 (2016), pp. 20:1–20:15, https://doi.org/10.
1145/2785965.

[31] A. Shilov, Intel architecture manual updates: bfloat16 for Cooper Lake Xeon scal-
able only? https://www.anandtech.com/show/14179/intel-manual-updates-bfloat16-for-
cooper-lake-xeon-scalable-only, Apr. 2019. Accessed May 22, 2019.

[32] Summit by the numbers. https://www.olcf.ornl.gov/wp-content/uploads/2018/06/Summit
bythenumbers FIN.png, June 2018. Accessed June 30, 2018.

[33] Y. Tao, G. Deyuan, F. Xiaoya, and J. Nurmi, Correctly rounded architectures for floating-
point multi-operand addition and dot-product computation, in 2013 IEEE 24th Interna-
tional Conference on Application-Specific Systems, Architectures and Processors, June
2013, pp. 346–355, https://doi.org/10.1109/ASAP.2013.6567600.

[34] S. Wang and P. Kanwar, BFloat16: the secret to high performance on cloud
TPUs. https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-
to-high-performance-on-cloud-tpus, Aug. 2019. Accessed September 14, 2019.

18

https://doi.org/10.1109/SC.2018.00050
https://doi.org/10.1145/3148226.3148237
https://jameswhanlon.com/new-chips-for-machine-intelligence.html
https://jameswhanlon.com/new-chips-for-machine-intelligence.html
https://doi.org/10.1137/1.9780898718027
https://doi.org/10.1137/1.9780898718027
https://doi.org/10.1137/18M1226312
http://eprints.maths.manchester.ac.uk/2743/
http://eprints.maths.manchester.ac.uk/2743/
http://eprints.maths.manchester.ac.uk/2736/
https://doi.org/10.1137/18M1229511
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/IEEESTD.2019.8766229
https://software.intel.com/en-us/download/bfloat16-hardware-numerics-definition
https://software.intel.com/en-us/download/bfloat16-hardware-numerics-definition
https://doi.org/10.1007/978-3-642-01591-5_15
https://doi.org/10.1137/1028001
https://doi.org/10.1109/ipdpsw.2018.00091
https://doi.org/10.1109/ipdpsw.2018.00091
https://www.ornl.gov/news/ornl-launches-summit-supercomputer
https://www.ornl.gov/news/ornl-launches-summit-supercomputer
https://newsroom.intel.com/editorials/artificial-intelligence-requires-holistic-approach
https://newsroom.intel.com/editorials/artificial-intelligence-requires-holistic-approach
https://doi.org/10.1017/S096249291000005X
https://doi.org/10.1145/2785965
https://doi.org/10.1145/2785965
https://www.anandtech.com/show/14179/intel-manual-updates-bfloat16-for-cooper-lake-xeon-scalable-only
https://www.anandtech.com/show/14179/intel-manual-updates-bfloat16-for-cooper-lake-xeon-scalable-only
https://www.olcf.ornl.gov/wp-content/uploads/2018/06/Summit_bythenumbers_FIN.png
https://www.olcf.ornl.gov/wp-content/uploads/2018/06/Summit_bythenumbers_FIN.png
https://doi.org/10.1109/ASAP.2013.6567600
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus

	Introduction
	Block fused multiply-add
	General framework for mixed-precision block FMA
	GPU tensor cores

	Matrix multiplication with block FMA
	Description of the algorithm
	Rounding error analysis
	Numerical experiments with tensor core matrix multiplication

	Solution of linear systems with block FMA
	Rounding error analysis
	Numerical experiments with tensor core LU factorization

	Conclusion
	References

