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A quote from 2002

The constant terms in an error bound are the least
important parts of error analysis. It is not worth spending
much effort to minimize constants because the achievable
improvements are usually insignificant.

Nick Higham, ASNA 2ed (2002)
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Today: low precision arithmetics

Type Bits Range u = 2−t

fp64 double 64 10±308 2−53 ≈ 1× 10−16

fp32 single 32 10±38 2−24 ≈ 6× 10−8

fp16 half 16 10±5 2−11 ≈ 5× 10−4

bfloat16 half 16 10±38 2−8 ≈ 4× 10−3

Half precision increasingly supported by hardware:
• Present: NVIDIA Pascal & Volta GPUs, AMD Radeon Instinct
MI25 GPU, Google TPU, ARM NEON

• Near future: Fujitsu A64FX ARM, IBM AI chips, Intel Xeon
Cooper Lake and Intel Nervana Neural Network
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Today: low precision arithmetics

Type Bits Range u = 2−t

fp64 double 64 10±308 2−53 ≈ 1× 10−16

fp32 single 32 10±38 2−24 ≈ 6× 10−8

fp16 half 16 10±5 2−11 ≈ 5× 10−4

bfloat16 half 16 10±38 2−8 ≈ 4× 10−3

Designed for machine learning but offer interesting opportunities
for scientific computing:
• Faster flops
• Less storage and communications
• Lower energy consumption

But need to deal with
• Reduced range (fp16)
• Reduced precision (large u)
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Summation
Summation s =

∑n
i=1 xi is at the heart of NLA:

• Inner products aTb =
∑n

i=1 aibi
• Matrix–vector/matrix products ≡ multiple inner products
• LU factorization and linear systems: y = c− (

∑k−1
i=1 aibi)/bk

Backward error analysis:
ŝ2 = (x1 + x2)(1 + δ2)

ŝk = (ŝk−1 + xk)(1 + δk) = x1
k∏
j=2

(1 + δj) + . . .+ xk(1 + δk)

ŝn = ŝ =
n∑
i=1

xi
n∏
j=i

(1 + δj), |δj| ≤ u (δ1 := 0)

Fundamental lemma in backward error analysis

If |δi| ≤ u for i = 1 : n and nu < 1, then
n∏
i=1

(1 + δi) = 1 + θn, |θn| ≤ γn :=
nu

1− nu
= nu+O(u2)
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n∑
i=1

xi
n∏
j=i

(1 + δj), |δj| ≤ u (δ1 := 0)

Fundamental lemma in backward error analysis

If |δi| ≤ u for i = 1 : n and nu < 1, then
n∏
i=1

(1 + δi) = 1 + θn, |θn| ≤ γn :=
nu

1− nu
= nu+O(u2)

4/25 Sharper and smaller error bounds Theo Mary



With low precisions, backward stability is lost

Most backward error bounds in scientific computing ∝ γn ≡ nu
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In half precision, not a single correct
digit guaranteed when n > 1024
(fp16) or n > 128 (bfloat16)

Classical algorithms can no longer
be considered “backward stable”!

The emergence of low precisions has created a need for
• Sharper bounds, to maintain backward stability guarantees
• Smaller bounds, ideally ∝ cu, for some modest c = O(1)
• Both important, as sharp + small bound⇒ small error
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Part 1: sharper bounds

• Traditional worst-case bounds are typically pessimistic because
of statistical effects on the rounding errors

• Consider E =
∑n

i=1 δj for random independent δj of mean zero
⇒ central limit theorem: for n→∞, E/

√
n ∼ N (0,u)

In general, the statistical distribution of the rounding errors will reduce
considerably the function of n occurring in the relative errors. We might
expect in each case that this function should be replaced by something
which is no bigger than its square root.

— James Wilkinson, 1961

Can we rigorously prove this rule of thumb for a wide class of
algorithms?
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Probabilistic model on the rounding errors

We seek an anologous result to the fundamental lemma by using
the following model

Probabilistic model of rounding errors

In the computation of interest, the quantities δ in the model
fl(a op b) = (a op b)(1 + δ), |δ| ≤ u, op ∈ {+,−,×, /}

associated with every pair of operands are independent random
variables of mean zero.

There is no claim that ordinary rounding and chopping are random
processes, or that successive errors are independent. The question to be
decided is whether or not these particular probabilistic models of the
processes will adequately describe what actually happens.

— Hull and Swenson, 1966
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Probabilistic backward error analysis: proof sketch

First step: transform the product in a sum by taking the logarithm

S = log
n∏
i=1

(1 + δi) =

n∑
i=1

log(1 + δi)

Second step: apply Hoeffding’s concentration inequality:

Hoeffding’s inequality

Let X1, …, Xn be random independent variables satisfying |Xi| ≤ c.
Then the sum S =

∑n
i=1 Xi satisfies

Pr(|S− E(S)| ≥ λ
√
nc) ≤ 2 exp(−λ2/2)

to Xi = log(1 + δi)⇒ requires bounding log(1 + δi) and
E (log(1 + δi)) using Taylor expansions

Third step: retrieve the result by taking the exponential of S
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Probabilistic backward error analysis: main result

Main result
Let δi, i = 1 : n, be independent random variables of mean zero
such that |δi| ≤ u. Then, for any constant λ > 0, the relation

n∏
i=1

(1 + δi) = 1 + θn, |θn| ≤ γ̃n(λ) := exp
(
λ
√
nu+

nu2

1− u

)
− 1

≤ λ
√
nu+O(u2)

holds with probability P(λ) = 1− 2 exp
(
−λ2(1− u)2/2

)

Key features:
• Exact bound, not first order (nu < 1 not required)
• No “n→∞” assumption (CLT→ Hoeffding’s inequality)
• Small values of λ suffice: P(1) ≈ 0.73, P(5) ≥ 1− 10−5

• Can be applied in a nearly systematic way: γn → γ̃n(λ)
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Probabilistic backward error analysis: experiments

Single precision
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• Able to guarantee backward stability for a wider range of
problems in a probabilistic sense

• With half precision and [0, 1] data, γ̃n is not valid for large n
• Even γ̃n is not sharp for [−1, 1] data
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Stagnation leads to rounding errors with nonzero mean

si+1 = si + xi ⇒ ŝi+1 = (ŝi + xi)(1 + δi)

Explanation: si keeps increasing, at some point, it becomes so
large that ŝi+1 = ŝi ⇒ δi = −xi/(ŝi + xi) < 0

Backward error at step i |̂si−si|∑i
j=1 xj
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Distribution of the δi

Top: 1 ≤ i ≤ 3000
Bottom: 3000 ≤ i ≤ 105
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Another summation error analysis

Recursive summation computes

ŝi+1 = (ŝi + xi+1)(1 + δi), i = 1 : n with s1 = x1

ŝ− s = ŝn − sn = ŝn−1 − sn−1 + (ŝn−1 + xn)δn 

=

n−1∑
i=1

(ŝi + xi+1)δi =

n−1∑
i=1

ŝi+1δi/(1 + δi) =

n−1∑
i=1

si+1δi +O(u2)

Oettli-Prager backward error formula:

εbwd =
|̂s− s|∑n
i=1 |xi|

=

∣∣∑n−1
i=1 si+1δi

∣∣∑n
i=1 |xi|

+O(u2)

We recover worst-case bound:

εbwd ≤
u
∑n−1

i=1 |si+1|∑n
i=1 |xi|

≤
u
∑n−1

i=1

∑i
j=1 |xj|∑n

i=1 |xi|
≤ nu+O(u2)
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Probabilistic model of the data

We also recover probabilistic bound by applying

Hoeffding’s inequality

Let X1, …, Xn be random independent variables satisfying |Xj| ≤ c.
Then the sum S =

∑n
i=1 Xj satisfies

Pr(|S− E(S)| ≥ λ
√
nc) ≤ 2 exp(−λ2/2)

to Xj = sj+1δj with c = u
∑n

i=1 |xi|

Our objective now is to obtain a sharper bound by taking into
account the distribution of the xi:

Probabilistic model of the data
The xi, i = 1 : n, are independent random variables sampled from
a given distribution of mean µx and satisfy |xi| ≤ Cx.

13/25 Sharper and smaller error bounds Theo Mary



Probabilistic model of the data

We also recover probabilistic bound by applying

Hoeffding’s inequality

Let X1, …, Xn be random independent variables satisfying |Xj| ≤ c.
Then the sum S =

∑n
i=1 Xj satisfies

Pr(|S− E(S)| ≥ λ
√
nc) ≤ 2 exp(−λ2/2)

to Xj = sj+1δj with c = u
∑n

i=1 |xi|

Our objective now is to obtain a sharper bound by taking into
account the distribution of the xi:

Probabilistic model of the data
The xi, i = 1 : n, are independent random variables sampled from
a given distribution of mean µx and satisfy |xi| ≤ Cx.

13/25 Sharper and smaller error bounds Theo Mary



Sharper probabilistic backward error analysis

• Hoeffding 1: |sj| ≤ µxj+ λCx
√
j ⇒ |Xj| ≤ c = (µxn+ λCx

√
n)u

• Hoeffding 2: |̂s− s| = |
∑n−1

j=1 Xj| ≤ λ
√
nc =

(
λµxn3/2 + λ2Cxn

)
u

• Technical difficulty: Xj = sj+1δj are not independent since
sj =

∑j
i=1 xi depend on each other⇒ use martingales

• Hoeffding 3:
∑n

i=1 |xi| ≥ nµ|x| − λCx
√
n

Main result
Under the previously stated models of rounding errors and data,

εbwd =
|̂s− s|∑n
i=1 |xi|

≤ λµx
√
n+ λ2Cx

µ|x| − λCx/
√
n
· u+O(u2)

holds with probability P(λ) = 1− 2(n+ 1) exp
(
−λ2/2

)
• µx = O(1)⇒ εbwd = O(

√
nu)

• µx = 0 or µx ≪ 1⇒ εbwd = O(u)
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Sharper bounds: summary

General δi Probabilistic model on δi
General xi Probabilistic model on xi

µx ̸= 0 µx = 0

Backward nu
√
nu

√
nu u

Forward κnu κ
√
nu κ

√
nu ≡

√
nu κu ≈

√
nu

By incorporating statistical effects on both the rounding errors and
the data we obtained sharp backward error bounds for any data

Forward = κ× Backward

κ =

∑n
i=1 |xi|∣∣∣∑n
i=1 xi

∣∣∣
√
nu is still too large for large u and n
⇒ we do need smaller bounds
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Part 2: smaller bounds

Existing algorithms to avoid error accumulation are expensive.
For example, compensated summation [Kahan 1965]:

s = 0; e = 0;
for i = 1: n do

y = xi + e;
t = s; s = t + y;
e = (t − s) + y;

end for

yields an error bound 2u but is 4× more expensive

⇒ Not suited for low precisions: simply using higher precision
would be cheaper!

Can we design more accurate algorithms while preserving high
performance?
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NVIDIA tensor cores (joint work with P. Blanchard, F. Lopez, S. Pranesh)

4× 4 matrix multiplication in 1 clock cycle:

D = A B + C
× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸
fp16 or fp32

=


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp16


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp16

+


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸
fp16 or fp32

• Possibly, this is a block fused multiply-add (FMA): only one
rounding error per element: D̂ = fl16(D) or fl32(D)

• Algorithms now become intrinsically mixed precision—and
more complicated to analyze
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Tensor cores: error analysis

Let A,B ∈ Rn×n. Computing C = AB with a block FMA yields, for
any row x of A and any column y of B

ŝ = (x1y1+. . .+x4y4)
n/4∏
j=1

(1+δj) + . . . + (xn−3yn−3+. . .+xnyn)(1+δn/4)

|Ĉ− C| ≤ γFMAn/4 |A||B|, uFMA = u16 or u32

Standard Tensor core Tensor core Standard
fp16 TC16 TC32 fp32

(n+ 2)u16 (n/4 + 2)u16 2u16 + nu32/4 nu32

• fp16→ TC16: factor 4 reduction thanks to block FMA
• TC16→ TC32: factor n/8 reduction by accumulating in fp32
• TC32→ fp32: in theory, reduction only if n is small
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Tensor cores: experiments with LU factorization

Should we accumulate in single (TC32) or half (TC16) precision?
Backward error
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Performance (TFlops/s)
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fp32

• TC32 almost as fast as TC16, and much more accurate
• fp32 remains more accurate than TC32 in practice, but only by
∼ an order of magnitude
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The FABsum algorithm (joint work with P. Blanchard)

Classical Blocked summation algorithm:

for i = 1: n/b do
Compute si =

∑ib
j=(i−1)b+1 xj.

end for
Compute s =

∑n/b
i=1 si.

x1 · · · xb︸ ︷︷ ︸
s1

· · · · · · · · ·︸ ︷︷ ︸
···

· · · · · · · · ·︸ ︷︷ ︸
···

· · · · · · · · ·︸ ︷︷ ︸
···

xn−b+1 · · · xn︸ ︷︷ ︸
sn/b︸ ︷︷ ︸

s

• Widely used in NLA libraries (BLAS, LAPACK, …)
• Error bound nu→ (b+ n/b)u

• Only (1 + 1/b)× more expensive
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The FABsum algorithm (joint work with P. Blanchard)

Fast Accurate Blocked summation algorithm (FABsum):

for i = 1: n/b do
Compute si =

∑ib
j=(i−1)b+1 xj with FastSum.

end for
Compute s =

∑n/b
i=1 si with AccurateSum.

x1 · · · xb︸ ︷︷ ︸
s1

· · · · · · · · ·︸ ︷︷ ︸
···

· · · · · · · · ·︸ ︷︷ ︸
···

· · · · · · · · ·︸ ︷︷ ︸
···

xn−b+1 · · · xn︸ ︷︷ ︸
sn/b︸ ︷︷ ︸

s

• Widely used in NLA libraries (BLAS, LAPACK, …)
• Error bound nu→ (b+ n/b)u→ bu with FABsum
• Only (1 + 1/b)× more expensive
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FABsum: numerical results

Backward error (for [0, 1] data)
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• Implementation in multicore library PLASMA achieves high
performance (less than 5% overhead)
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FABsum: numerical results

Backward error (for [−1, 1] data)
Single precision
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• Implementation in multicore library PLASMA achieves high
performance (less than 5% overhead)
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One more idea: zeroing the summands mean

Idea: given xi of mean µx ̸= 0, let yi = xi − µx and compute

s =
n∑
i=1

yi + nµx

|̂s− s|∑n
i=1 |xi|

∝ O(
√
nµyu) +O(u) = O(u)

Cost: 2n flops but for C = AB, where A,B,C ∈ Rn×n the cost of
the algorithm below is O(n2)≪ O(n3)

Ã← A− xeT

C← ÃB+ x(eTB)

where xi = mean of ith row of A and e is the vector full of ones
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Mean zeroing: numerical results

Backward error (for [0, 1] data)
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Smaller bounds: summary

Summation algorithm Backward error Cost

Compensated ∝ u ×4 
Higher precision ∝ u typically ×2 
Blocked∗ ∝ (b+ n/b)u
FABsum∗ ∝ bu ×(1 + 1/b)
Mean zeroing∗∗ ∝ u ×(1 + 1/n)
Tensor Cores ∝ u ÷4

∗ worst case (probabilistic analogues:
√
bu and

√
b+ n/bu)

∗∗ under probabilistic model of the data

• Compensated: not suited for low precisions compared to use
of higher precision

• Blocked: widely used in practice, dependence on n remains
• FABsum, mean zeroing: drop dependence on n for modest
overhead

• Tensor Cores: nice, but hardware specific
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Conclusion

With the emergence of low precision arithmetics,
classical analyses can no longer guarantee

the backward stability of classical algorithms

We need new analyses to obtain sharper bounds
⇒ probabilistic tools are both useful and timely

We need new algorithms to obtain smaller bounds
⇒ both high performance and high accuracy is possible!

Slides and papers available on my webpage

bit.ly/theomary

25/25 Sharper and smaller error bounds Theo Mary

http://bit.ly/theomary

