ARITH 2021

14 June 2021

Opportunities for Mixed Precision Arithmetic in Numerical Linear Algebra

Theo Mary

Sorbonne Université, CNRS, LIP6
https://www-pequan.lip6.fr/~tmary/
Slides available at https://bit.ly/arith21

Today's floating-point landscape

	Bits				
		Signif. (t)	Exp.	Range	$u=2^{-t}$
bfloat16	B	8	8	$10^{ \pm 38}$	4×10^{-3}
fp16	H	11	5	$10^{ \pm 5}$	5×10^{-4}
fp32	S	24	8	$10^{ \pm 38}$	6×10^{-8}
fp64	D	53	11	$10^{ \pm 308}$	1×10^{-16}
fp128	Q	113	15	$10^{ \pm 4932}$	1×10^{-34}

Low precision increasingly supported by hardware:

- Fp16 used by NVIDIA GPUs, AMD Radeon Instinct MI25 GPU, ARM NEON, Fujitsu A64FX ARM
- Bfloat16 used by Google TPU, NVIDIA GPUs, Arm, Intel

Today's floating-point landscape

	Bits				
		Signif. (t)	Exp.	Range	$u=2^{-t}$
bfloat16	B	8	8	$10^{ \pm 38}$	4×10^{-3}
fp16	H	11	5	$10^{ \pm 5}$	5×10^{-4}
fp32	S	24	8	$10^{ \pm 38}$	6×10^{-8}
fp64	D	53	11	$10^{ \pm 308}$	1×10^{-16}
fp128	Q	113	15	$10^{ \pm 4932}$	1×10^{-34}

Great benefits:

- Reduced storage, data movement, and communications
- Increased speed on emerging hardware ($16 \times$ on A100 from fp32 to fp16/bfloat16)
- Reduced energy consumption ($5 \times$ with $\mathrm{fp} 16,9 \times$ with bfloat16)

Today's floating-point landscape

	Bits				
		Signif. (t)	Exp.	Range	$u=2^{-t}$
bfloat16	B	8	8	$10^{ \pm 38}$	4×10^{-3}
fp16	H	11	5	$10^{ \pm 5}$	5×10^{-4}
fp32	S	24	8	$10^{ \pm 38}$	6×10^{-8}
fp64	D	53	11	$10^{ \pm 308}$	1×10^{-16}
fp128	Q	113	15	$10^{ \pm 4932}$	1×10^{-34}

Great benefits:

- Reduced storage, data movement, and communications
- Increased speed on emerging hardware ($16 \times$ on A100 from fp32 to fp16/bfloat16)
- Reduced energy consumption ($5 \times$ with $\mathrm{fp} 16,9 \times$ with bfloat16)

Some risks too:

- Low precision (large u)
- Narrow range

Mixed precision algorithms

Mix several precisions in the same code with the goal of

- Getting the performance benefits of low precisions
- While preserving the accuracy and stability of the high precision

Terminology varies: Mixed precision, Multiprecision, Adaptive precision, Variable precision, Transprecision, Dynamic precision, ...

Mixed precision algorithms

Mix several precisions in the same code with the goal of

- Getting the performance benefits of low precisions
- While preserving the accuracy and stability of the high precision

Terminology varies: Mixed precision, Multiprecision, Adaptive precision, Variable precision, Transprecision, Dynamic precision, ...

What space of precisions?

- Arbitrary/custom precisions
- Mixed precision algorithms: small set of widely available precisions, such as IEEE arithmetics + bfloat16

Mixed precision algorithms

Mix several precisions in the same code with the goal of

- Getting the performance benefits of low precisions
- While preserving the accuracy and stability of the high precision

Terminology varies: Mixed precision, Multiprecision, Adaptive precision, Variable precision, Transprecision, Dynamic precision, ...

What space of precisions?

- Arbitrary/custom precisions
- Mixed precision algorithms: small set of widely available precisions, such as IEEE arithmetics + bfloat16

Crux of the matter: how to select the right precision for the right variable/operation

How are precisions selected?

- Precision tuning: explore the space of variables of a code
Δ Does not need any understanding of what the code does

How are precisions selected?

- Precision tuning: explore the space of variables of a code
Δ Does not need any understanding of what the code does
$\boldsymbol{\nabla}$ Does not have any understanding of what the code does

How are precisions selected?

- Precision tuning: explore the space of variables of a code
Δ Does not need any understanding of what the code does
$\boldsymbol{\nabla}$ Does not have any understanding of what the code does
- Algorithm-based, analysis-based, data-based approaches The more knowledge about the code we have, the better:

1. Develop approach tailored to specific algorithm
2. If possible use error analysis to determine best choice of precisions
3. If possible take into account specific data at hand

Illustration of this methodology for numerical linear algebra

How are precisions selected?

- Precision tuning: explore the space of variables of a code
Δ Does not need any understanding of what the code does
$\boldsymbol{\nabla}$ Does not have any understanding of what the code does
- Algorithm-based, analysis-based, data-based approaches The more knowledge about the code we have, the better:

1. Develop approach tailored to specific algorithm
2. If possible use error analysis to determine best choice of precisions
3. If possible take into account specific data at hand

Illustration of this methodology for numerical linear algebra

- Mixed precision computing brings new life to numerical analysis (rounding error analysis)

Solving $A x=b$

Standard method to solve $A x=b$:

1. Factorize $A=L U$, where L and U are lower and upper triangular
2. Solve $L y=b$ and $U x=y$

Precision $u \Rightarrow$ computed \widehat{x} satisfies $\|\widehat{x}-x\| \leq f(n) \kappa(A) u\|x\|$, with $\kappa(A)=\|A\|\left\|A^{-1}\right\|$

Solving $A x=b$

Standard method to solve $A x=b$:

1. Factorize $A=L U$, where L and U are lower and upper triangular
2. Solve $L y=b$ and $U x=y$

Precision $u \Rightarrow$ computed \widehat{x} satisfies $\|\widehat{x}-x\| \leq f(n) \kappa(A) u\|x\|$, with $\kappa(A)=\|A\|\left\|A^{-1}\right\|$

An algorithm to refine the solution: iterative refinement (IR)
Solve $A x_{1}=b$ via $x_{1}=U^{-1}\left(L^{-1} b\right)$
while Not converged do

$$
\begin{aligned}
& r_{i}=b-A x_{i} \\
& \text { Solve } A d_{i}=r_{i} \text { via } d_{i}=U^{-1}\left(L^{-1} r_{i}\right) \\
& x_{i+1}=x_{i}+d_{i}
\end{aligned}
$$

end while
Many variants over the years, depending on choice of precisions and solver for $\mathrm{Ad}_{i}=r_{i}$

Error analysis of general IR

国 Carson and Higham (2018) analyze the most general version of IR:
For a target accuracy u, and assuming $\kappa(A) u<1$:
Solve $A x_{1}=b$ by LU factorization at precision u_{f} while Not converged do

$$
r_{i}=b-A x_{i} \text { at precision } u_{r}
$$

Solve $A d_{i}=r_{i}$ such that $\left\|\widehat{d}_{i}-d_{i}\right\| \leq \phi_{i}\left\|d_{i}\right\|$
$x_{i+1}=x_{i}+d_{i}$ at precision \mathbf{u}
end while
Theorem (simplified from Carson and Higham, 2018)
Under the condition $\phi_{i}<1$, the forward error converges to

$$
\frac{\|\hat{x}-x\|}{\|x\|} \leq \mathbf{u}+\mathbf{u}_{\mathbf{r}} \kappa(A)
$$

Error analysis of general IR

国 Carson and Higham (2018) analyze the most general version of IR: For a target accuracy u, and assuming $\kappa(A) u<1$:

Solve $A x_{1}=b$ by LU factorization at precision u_{f}
while Not converged do
$r_{i}=b-A x_{i}$ at precision u_{r}
Solve $A d_{i}=r_{i}$ such that $\left\|\widehat{d}_{i}-d_{i}\right\| \leq \phi_{i}\left\|d_{i}\right\|$
$x_{i+1}=x_{i}+d_{i}$ at precision \mathbf{u}
end while

Theorem (simplified from Carson and Higham, 2018)

Under the condition $\phi_{i}<1$, the forward error converges to

$$
\frac{\|\hat{x}-x\|}{\|x\|} \leq \mathbf{u}+\mathbf{u}_{\mathbf{r}} \kappa(A)
$$

- Limiting accuracy: depends on u and u_{r} only, can be made independent of $\kappa(A)$ by taking $\mathbf{u}_{\mathbf{r}}=\mathbf{u}^{2}$
- Convergence condition: depends on the choice of solver

70 years of LU-IR

LU-IR: reuse LU factors to solve for d_{i} :
$d_{i}=U^{-1} L^{-1} r_{i} \Rightarrow\left\|\widehat{d}_{i}-d_{i}\right\| \leq f(n) \kappa(A) \mathbf{u}_{\mathbf{f}}\left\|d_{i}\right\| \Rightarrow \phi_{i}=O\left(\kappa(A) \mathbf{u}_{f}\right)$
Solve $A x_{1}=b$ by LU factorization for $i=1$: nsteps do

$$
r_{i}=b-A x_{i}
$$

Solve $A d_{i}=r_{i}$ via $d_{i}=U^{-1}\left(L^{-1} r_{i}\right)$
$x_{i+1}=x_{i}+d_{i} \quad$ in precision \mathbf{u}
end for
in precision \mathbf{u}_{f}
in precision \mathbf{u}_{r}

	u_{f}	u	u_{r}	max $\kappa(A)$ Forward error

70 years of LU-IR

LU-IR: reuse LU factors to solve for d_{i} :
$d_{i}=U^{-1} L^{-1} r_{i} \Rightarrow\left\|\widehat{d}_{i}-d_{i}\right\| \leq f(n) \kappa(A) \mathbf{u}_{\mathbf{f}}\left\|d_{i}\right\| \Rightarrow \phi_{i}=O\left(\kappa(A) \mathbf{u}_{f}\right)$
Solve $A x_{1}=b$ by LU factorization
$u_{f}=$ double
for $i=1$: nsteps do

$$
r_{i}=b-A x_{i} \quad u_{r}=\text { double }
$$

Solve $A d_{i}=r_{i}$ via $d_{i}=U^{-1}\left(L^{-1} r_{i}\right)$
$x_{i+1}=x_{i}+d_{i} \quad \mathbf{u}=$ double
end for

	u_{f}	u	u_{r}	$\max \kappa(A)$	Forward error
Fixed	D	D	D	10^{16}	$\kappa(\mathrm{~A}) \cdot 10^{-16}$

Fixed-precision
国 Jankowski and Wozniakowski (1977) 国 Skeel (1980)

70 years of LU-IR

LU-IR: reuse LU factors to solve for d_{i} :
$d_{i}=U^{-1} L^{-1} r_{i} \Rightarrow\left\|\widehat{d}_{i}-d_{i}\right\| \leq f(n) \kappa(A) \mathbf{u}_{\mathbf{f}}\left\|d_{i}\right\| \Rightarrow \phi_{i}=O\left(\kappa(A) \mathbf{u}_{f}\right)$
Solve $A x_{1}=b$ by LU factorization $\mathbf{u}_{\mathrm{f}}=$ double for $i=1$: nsteps do

$$
\begin{aligned}
& r_{i}=b-A x_{i} \\
& \text { Solve } A d_{i}=r_{i} \text { via } d_{i}=U^{-1}\left(L^{-1} r_{i}\right)
\end{aligned}
$$

$$
u_{r}=\text { quadruple }
$$

$$
x_{i+1}=x_{i}+d_{i} \quad \mathbf{u}=\text { double }
$$

end for

	u_{f}	u	u_{r}	$\max \kappa(A)$	Forward error
Fixed	D	D	D	10^{16}	$\kappa(\mathrm{~A}) \cdot 10^{-16}$
Traditional	D	D	Q	10^{16}	10^{-16}

Traditional

70 years of LU-IR

LU-IR: reuse LU factors to solve for d_{i} :
$d_{i}=U^{-1} L^{-1} r_{i} \Rightarrow\left\|\widehat{d}_{i}-d_{i}\right\| \leq f(n) \kappa(A) \mathbf{u}_{f}\left\|d_{i}\right\| \Rightarrow \phi_{i}=O\left(\kappa(A) \mathbf{u}_{f}\right)$
Solve $A x_{1}=b$ by LU factorization $\mathbf{u}_{\mathrm{f}}=$ single for $i=1$: nsteps do

$$
\begin{array}{ll}
r_{i}=b-A x_{i} & \mathbf{u}_{\mathrm{r}}=\text { double } \\
\text { Solve } A d_{i}=r_{i} \text { via } d_{i}=U^{-1}\left(L^{-1} r_{i}\right) & \mathbf{u}=\text { double } \\
x_{i+1}=x_{i}+d_{i} &
\end{array}
$$

end for

	u_{f}	u	u_{r}	$\max \kappa(A)$	Forward error
Fixed	D	D	D	10^{16}	$\kappa(\mathrm{~A}) \cdot 10^{-16}$
Traditional	D	D	Q	10^{16}	10^{-16}
Low prec. fact.	S	D	D	10^{8}	$\kappa(\mathrm{~A}) \cdot 10^{-16}$

Low precision factorization
딬 Langou et al (2006)

70 years of LU-IR

LU-IR: reuse LU factors to solve for d_{i} :
$d_{i}=U^{-1} L^{-1} r_{i} \Rightarrow\left\|\widehat{d}_{i}-d_{i}\right\| \leq f(n) \kappa(A) \mathbf{u}_{f}\left\|d_{i}\right\| \Rightarrow \phi_{i}=O\left(\kappa(A) \mathbf{u}_{f}\right)$
Solve $A x_{1}=b$ by LU factorization $\mathbf{u}_{\mathrm{f}}=$ single for $i=1$: nsteps do

$$
\begin{array}{lr}
r_{i}=b-A x_{i} & \mathbf{u}_{\mathrm{r}}=\text { quadruple } \\
\text { Solve } A d_{i}=r_{i} \text { via } d_{i}=U^{-1}\left(L^{-1} r_{i}\right) & \mathbf{u}=\text { double } \\
x_{i+1}=x_{i}+d_{i} &
\end{array}
$$

end for

	u_{f}	u	u_{r}	$\max \kappa(\mathrm{~A})$	Forward error
Fixed	D	D	D	10^{16}	$\kappa(\mathrm{~A}) \cdot 10^{-16}$
Traditional	D	D	Q	10^{16}	10^{-16}
Low prec. fact.	S	D	D	10^{8}	$\kappa(\mathrm{~A}) \cdot 10^{-16}$
3 precisions	S	D	Q	10^{8}	10^{-16}

Three precisions
国 Carson and Higham (2018)

70 years of LU-IR

LU-IR: reuse LU factors to solve for d_{i} :
$d_{i}=U^{-1} L^{-1} r_{i} \Rightarrow\left\|\widehat{d}_{i}-d_{i}\right\| \leq f(n) \kappa(A) \mathbf{u}_{\mathbf{f}}\left\|d_{i}\right\| \Rightarrow \phi_{i}=O\left(\kappa(A) \mathbf{u}_{f}\right)$
Solve $A x_{1}=b$ by LU factorization
$\mathbf{u}_{\mathrm{f}}=$ half
for $i=1$: nsteps do

$$
\begin{array}{lr}
r_{i}=b-A x_{i} & \mathbf{u}_{\mathrm{r}}=\text { quadruple } \\
\text { Solve } A d_{i}=r_{i} \text { via } d_{i}=U^{-1}\left(L^{-1} r_{i}\right) & \mathbf{u}=\text { double } \\
x_{i+1}=x_{i}+d_{i} &
\end{array}
$$

end for

	u_{f}	u	u_{r}	$\max \kappa(\mathrm{~A})$	Forward error
Fixed	D	D	D	10^{16}	$\kappa(\mathrm{~A}) \cdot 10^{-16}$
Traditional	D	D	Q	10^{16}	10^{-16}
Low prec. fact.	H	D	D	10^{3}	$\kappa(\mathrm{~A}) \cdot 10^{-16}$
3 precisions	H	D	Q	10^{3}	10^{-16}

Only well-conditioned problems can be solved

GMRES-IR

GMRES-based IR: 国 Carson and Higham (2017)

- Replace LU by GMRES solver: solve $\widetilde{A} d_{i}=\widetilde{r}_{i}$ with GMRES, where $\widetilde{A}=U^{-1} L^{-1} A$ is preconditioned by $L U$ factors
- Rationale:
- $\kappa(\widetilde{A})$ often smaller than $\kappa(A)$
- GMRES can be asked to converge to accuracy $\mathbf{u} \ll \mathbf{u}_{\mathrm{f}}$
$\Rightarrow \widetilde{A} d_{i}=\widetilde{r}_{i}$ is solved with accuracy $\phi_{i}=\kappa(\widetilde{A}) \mathbf{u}$
- Convergence condition improved from $\kappa(A) \mathbf{u}_{f}<1$ to $\kappa(\widetilde{A}) \mathbf{u}<1$

GMRES-IR

GMRES-based IR: R Carson and Higham (2017)

- Replace LU by GMRES solver: solve $\widetilde{A} d_{i}=\widetilde{r}_{i}$ with GMRES, where $\widetilde{A}=U^{-1} L^{-1} A$ is preconditioned by $L U$ factors
- Rationale:
- $\kappa(\widetilde{A})$ often smaller than $\kappa(\mathrm{A})$
- GMRES can be asked to converge to accuracy $\mathbf{u} \ll \mathbf{u}_{\mathrm{f}}$
$\Rightarrow \widetilde{A} d_{i}=\widetilde{r}_{i}$ is solved with accuracy $\phi_{i}=\kappa(\widetilde{A}) \mathbf{u}$
- Convergence condition improved from $\kappa(A) \mathbf{u}_{f}<1$ to $\kappa(\widetilde{A}) \mathbf{u}<1$
- The catch: the matrix-vector products are with $\widetilde{A}=U^{-1} L^{-1} A$, introduce an extra $\kappa(A)$ unless performed in higher precision

Solve $A x_{1}=b$ by LU factorization at precision u_{f} while Not converged do
$r_{i}=b-A x_{i}$ at precision u_{r}
Solve $U^{-1} L^{-1} A d_{i}=U^{-1} L^{-1} r_{i}$ by GMRES at precision \mathbf{u} with products with $U^{-1} L^{-1} A$ at precision \mathbf{u}^{2}
$x_{i+1}=x_{i}+d_{i}$ at precision u
end while

LU-IR vs GMRES-IR

Using $\kappa(\widetilde{A}) \leq\left(1+\kappa(A) \mathbf{u}_{\mathbf{f}}\right)^{2}$ we determine the convergence condition on $\kappa(A)$

	u_{f}	u	u_{r}	$\max \kappa(A)$	Forward error
LU-IR	S	D	Q	10^{8}	10^{-16}
GMRES-IR	S	D	Q	10^{16}	10^{-16}
LU-IR	H	D	Q	10^{3}	10^{-16}
GMRES-IR	H	D	Q	10^{11}	10^{-16}

GMRES-IR can handle much more ill-conditioned matrices.

LU-IR vs GMRES-IR

Using $\kappa(\widetilde{A}) \leq\left(1+\kappa(A) \mathbf{u}_{\mathbf{f}}\right)^{2}$ we determine the convergence condition on $\kappa(A)$

	u_{f}	u	u_{r}	$\max \kappa(A)$	Forward error
LU-IR	S	D	Q	10^{8}	10^{-16}
GMRES-IR	S	D	Q	10^{16}	10^{-16}
LU-IR	H	D	Q	10^{3}	10^{-16}
GMRES-IR	H	D	Q	10^{11}	10^{-16}

GMRES-IR can handle much more ill-conditioned matrices.

However:

- LU solves are performed at precision \mathbf{u}^{2} instead of $\mathbf{u}_{\boldsymbol{f}}$ \Rightarrow practical limitation
- Increases cost per iteration
- If u is D, requires use of quad precision
- Practical implementations have relaxed this requirement by replacing u^{2} with u, with no theoretical guarantee
- Goal: solve $A d_{i}=r_{i}$ with GMRES and bound $\phi_{i}=\left\|\widehat{d}_{i}-d_{i}\right\| /\left\|d_{i}\right\|$
- In what precision do we really need to run GMRES?
- How much extra precision is really needed in the matvec products?

> Solve $A x_{1}=b$ by $L U$ factorization at precision \mathbf{u}_{f} for $i=1:$ nsteps do
> $\quad r_{i}=b-A x_{i}$ at precision $\mathbf{u}_{\mathbf{r}}$ Solve $A d_{i}=r_{i}$ with preconditioned GMRES at precision \mathbf{u} except matvecs at precision \mathbf{u}^{2} $x_{i+1}=x_{i}+d_{i}$ at precision \mathbf{u}
> end for

- Goal: solve $A d_{i}=r_{i}$ with GMRES and bound $\phi_{i}=\left\|\widehat{d}_{i}-d_{i}\right\| /\left\|d_{i}\right\|$
- In what precision do we really need to run GMRES?
- How much extra precision is really needed in the matvec products?

Solve $A x_{1}=b$ by LU factorization at precision u_{f} for $i=1$: nsteps do
$r_{i}=b-A x_{i}$ at precision u_{r}
Solve $A d_{i}=r_{i}$ with preconditioned GMRES at precision \mathbf{u} except matvecs at precision \mathbf{u}^{2} $x_{i+1}=x_{i}+d_{i}$ at precision u
end for

- Goal: solve $A d_{i}=r_{i}$ with GMRES and bound $\phi_{i}=\left\|\widehat{d}_{i}-d_{i}\right\| /\left\|d_{i}\right\|$
- In what precision do we really need to run GMRES?
- How much extra precision is really needed in the matvec products?

$$
\begin{aligned}
& \text { Solve } A x_{1}=b \text { by LU factorization at precision } \mathbf{u}_{\mathrm{f}} \\
& \text { for } i=1: n \text { nsteps do } \\
& \quad r_{i}=b-A x_{i} \text { at precision } \mathbf{u}_{\mathrm{r}} \\
& \text { Solve } A d_{i}=r_{i} \text { with preconditioned GMRES at } \\
& \quad \text { precision } \mathbf{u}_{\mathrm{g}} \text { except matvecs at precision } \mathbf{u}_{\mathrm{p}} \\
& x_{i+1}=x_{i}+d_{i} \text { at precision } \mathbf{u} \\
& \text { end for }
\end{aligned}
$$

Relax the requirements on the GMRES precisions: run at precision $\mathbf{u}_{\mathbf{g}} \leq \mathbf{u}$ with matvecs at precision $\mathbf{u}_{\mathbf{p}} \leq \mathbf{u}^{2}$
\Rightarrow FIVE precisions in total!
What can we say about the convergence of this GMRES-IR5?

Two precision GMRES

- Unpreconditioned GMRES in precision \mathbf{u} for $A x=b$:
- Backward error of order u 国 Paige, Rozloznik, Strakos (2006)
- Forward error of order $\kappa(A) \mathbf{u}$
- Two precision preconditioned GMRES for $\widetilde{A} x=b$:
- Backward error of order $\kappa(A) \mathbf{u}_{\mathrm{p}}+\mathbf{u}_{\mathrm{g}}$
- The matrix-vector products are performed with $\widetilde{A}=U^{-1} L^{-1} A$:

$$
y=U^{-1} L^{-1} A x \Rightarrow\|\hat{y}-y\| \lesssim \kappa(A) u_{p}\|\widetilde{A}\|\|x\|
$$

- The rest is at precision u_{g}
- Forward error of order $\kappa(\widetilde{A})\left(\kappa(A) \mathbf{u}_{\mathrm{p}}+\mathbf{u}_{\mathrm{g}}\right)$
- $\kappa(\widetilde{A}) \leq\left(1+\kappa(A) \mathbf{u}_{\mathbf{f}}\right)^{2} \Rightarrow \phi_{i} \sim \kappa(A)^{2} \mathbf{u}_{\mathbf{f}}{ }^{2}\left(\kappa(A) \mathbf{u}_{\mathbf{p}}+\mathbf{u}_{\mathbf{g}}\right)$

Side-result: generalization of the backward stability of GMRES to a preconditioned two-precision GMRES
目 Amestoy, Buttari, Higham, L'Excellent, M., Vieublé (2021)

```
Solve \(A x_{1}=b\) by LU factorization at precision \(u_{f}\)
for \(i=1\) : nsteps do
    \(r_{i}=b-A x_{i}\) at precision \(u_{r}\)
        Solve \(A d_{i}=r_{i}\) with preconditioned GMRES at
        precision \(u_{g}\) except matvecs at precision \(u_{p}\)
        \(x_{i+1}=x_{i}+d_{i}\) at precision \(\mathbf{u}\)
    end for
```


Theorem (convergence of GMRES-IR5)

Under the condition $\left(u_{g}+\kappa(A) \mathbf{u}_{p}\right) \kappa(A)^{2} \mathbf{u}_{f}{ }^{2}<1$, the forward error converges to its limiting accuracy

$$
\frac{\|\widehat{x}-x\|}{\|x\|} \leq \mathbf{u}_{\mathrm{r}} \kappa(A)+\mathbf{u}
$$

国 Amestoy, Buttari, Higham, L'Excellent, M., Vieublé (2021)

Meaningful combinations

With five arithmetics (fp16, bfloat16, fp32, fp64, fp128) there are over $\mathbf{3 0 0 0}$ different combinations of GMRES-IR5!

They are not all relevant!
Meaningful combinations: those where none of the precisions can be lowered without worsening either the limiting accuracy or the convergence condition.

Filtering rules

- $\mathbf{u}^{2} \leq \mathbf{u}_{\mathbf{r}} \leq \mathbf{u} \leq \mathbf{u}_{\boldsymbol{f}}$
- $\mathbf{u}_{\mathbf{p}}<\mathbf{u}, \mathbf{u}_{\mathbf{p}}=\mathbf{u}_{1} \mathbf{u}_{\mathbf{p}}>\mathbf{u}$ all possible
- $u_{p} \leq u_{g}$
- $\mathbf{u}_{\mathrm{p}}<\mathbf{u}_{\mathrm{f}}$
- $u_{g} \geq u$
- $\mathbf{u}_{\mathbf{g}}<\mathbf{u}_{\mathbf{f}} \mathbf{u}_{\mathbf{g}}=\mathbf{u}_{\mathbf{f}} \mathbf{u}_{\mathbf{g}}>\mathbf{u}_{\mathbf{f}}$ all possible

Theoretical results

Meaningful combinations of GMRES-IR5 for $\mathbf{u}_{\mathbf{f}}=H$ and $\mathbf{u}=D$.

$\mathbf{u}_{\mathbf{g}}$	$\mathbf{u}_{\mathbf{p}}$	Convergence Condition $\max (\kappa(A))$
LU-IR		2×10^{3}
B	S	3×10^{4}
H	S	4×10^{4}
H	D	9×10^{4}
S	D	8×10^{6}
D	D	3×10^{7}
D	Q	2×10^{11}

Five combinations between LU-IR and Carson \& Higham's GMRES-IR \Rightarrow More flexible precisions choice to fit at best the hardware constraints and the problem difficulty.

Experimental results

Take 100 random matrices with specified $\kappa(A)$ and measure the success rate: the percentage of matrices for which GMRES-IR5 converges to a small forward error

$$
u_{f}=H \quad u_{g}=D
$$

Experimental results

Take 100 random matrices with specified $\kappa(A)$ and measure the success rate: the percentage of matrices for which GMRES-IR5 converges to a small forward error

Experimental results

Take 100 random matrices with specified $\kappa(A)$ and measure the success rate: the percentage of matrices for which GMRES-IR5 converges to a small forward error

Experimental results

Take 100 random matrices with specified $\kappa(A)$ and measure the success rate: the percentage of matrices for which GMRES-IR5 converges to a small forward error

Experimental results

Take 100 random matrices with specified $\kappa(A)$ and measure the success rate: the percentage of matrices for which GMRES-IR5 converges to a small forward error

Experimental results

Take 100 random matrices with specified $\kappa(A)$ and measure the success rate: the percentage of matrices for which GMRES-IR5 converges to a small forward error

Similar picture on many types of matrices

NVIDIA GPU tensor cores

Tensor cores units available on NVIDIA GPUs V10O carry out a 4×4 matrix multiplication in 1 clock cycle:

- Performance boost: peaks at 125 TFLOPS ($8 \times$ speedup vs fp32, $16 \times$ on A100)

NVIDIA GPU tensor cores

Tensor cores units available on NVIDIA GPUs V10O carry out a 4×4 matrix multiplication in 1 clock cycle:

- Performance boost: peaks at 125 TFLOPS ($8 \times$ speedup vs fp32, $16 \times$ on A100)
- Accuracy boost: let $C=A B$, with $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}$, the computed \widehat{C} satisfies

$$
|\widehat{C}-C| \lesssim c_{n}|A||B|, \quad c_{n}=\{
$$

16/32 国 Blanchard, Higham, Lopez, M., Pranesh (2020)

NVIDIA GPU tensor cores

Tensor cores units available on NVIDIA GPUs V10O carry out a 4×4 matrix multiplication in 1 clock cycle:

- Performance boost: peaks at 125 TFLOPS ($8 \times$ speedup vs fp32, $16 \times$ on A100)
- Accuracy boost: let $C=A B$, with $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}$, the computed \widehat{C} satisfies

$$
|\widehat{C}-C| \lesssim c_{n}|A||B|, \quad c_{n}= \begin{cases}n u_{16} & \text { (fp16) } \\ n u_{32} & \text { (fp32) }\end{cases}
$$

16/32 国 Blanchard, Higham, Lopez, M., Pranesh (2020)

NVIDIA GPU tensor cores

Tensor cores units available on NVIDIA GPUs V1OO carry out a 4×4 matrix multiplication in 1 clock cycle:

- Performance boost: peaks at 125 TFLOPS ($8 \times$ speedup vs fp32, $16 \times$ on A100)
- Accuracy boost: let $C=A B$, with $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}$, the computed \widehat{C} satisfies

$$
|\widehat{C}-C| \lesssim c_{n}|A||B|, \quad c_{n}= \begin{cases}n u_{16} & \text { (fp16) } \\ 2 u_{16}+n u_{32} & \text { (tensor cores) } \\ n u_{32} & \text { (fp32) }\end{cases}
$$

16/32 国 Blanchard, Higham, Lopez, M., Pranesh (2020)

Block LU factorization

- Block version to use matrix-matrix operations

```
for k}=1:n/b d
    Factorize L}\mp@subsup{L}{kk}{}\mp@subsup{U}{kk}{}=\mp@subsup{A}{kk}{}\quad\mathrm{ (with unblocked alg.)
        for i=k+1:n/b do
        Solve Lik}\mp@subsup{U}{kk}{}=\mp@subsup{A}{ik}{}\mathrm{ and }\mp@subsup{L}{kk}{}\mp@subsup{U}{ki}{}=\mp@subsup{A}{ki}{}\mathrm{ for Lik and }\mp@subsup{U}{ki}{
        end for
        for i=k+1:n/b do
        for j=k+1:n/b do
            A ij}\leftarrow\mp@subsup{A}{ij}{}-\mp@subsup{\widetilde{L}}{ik}{}\mp@subsup{\widetilde{U}}{kj}{
        end for
    end for
end for
```

- Block version to use matrix-matrix operations
- $O\left(n^{3}\right)$ part of the flops done with tensor cores

$$
\begin{aligned}
& \text { for } k=1: n / b \text { do } \\
& \text { Factorize } L_{k k} U_{k k}=A_{k k} \quad \text { (with unblocked alg.) } \\
& \text { for } i=k+1: n / b \text { do } \\
& \text { Solve } L_{i k} U_{k k}=A_{i k} \text { and } L_{k k} U_{k i}=A_{k i} \text { for } L_{i k} \text { and } U_{k i} \\
& \text { end for } \\
& \text { for } i=k+1: n / b \text { do } \\
& \quad \text { for } j=k+1: n / b \text { do } \\
& \left.\widetilde{L}_{i k} \leftarrow f\right|_{16}\left(L_{i k}\right) \text { and } \widetilde{U}_{k i} \leftarrow \mathrm{fl}_{16}\left(U_{k i}\right) \\
& \quad A_{i j} \leftarrow A_{i j}-\widetilde{L}_{i k} \widetilde{U}_{k j} \text { using tensor cores } \\
& \text { end for } \\
& \text { end for } \\
& \text { end for }
\end{aligned}
$$

LU factorization with tensor cores

Error analysis for LU follows from matrix multiplication analysis and gives same bounds to first order 国 Blanchard et al. (2020) Standard fp16 Tensor cores Standard fp32

$n u_{16}$	$2 u_{16}+n u_{32}$	$n u_{32}$

Impact on iterative refinement

Results from 잌 Haidar et al. (2018)

- TC accuracy boost can be critical!
- TC performance suboptimal here, but can reach up to 50 TFLOPS with optimized data movements 目 Lopez and M. (2020)

Solve $A x_{1}=b$ by $L U$ factorization at precision u_{f} Compute $M^{-1} \approx A^{-1}$ and initialize x_{1}
for $i=1$: nsteps do
$r_{i}=b-A x_{i}$ at precision u_{r} Solve $A d_{i}=r_{i}$ with preconditioned GMRES at precision u_{g} except matvecs at precision u_{p} $x_{i+1}=x_{i}+d_{i}$ at precision \mathbf{u}
end for

```
Solve \(A x_{1} \equiv b\) by \(L U\) factorization at precision \(u_{f}\)
Compute \(M^{-1} \approx A^{-1}\) and initialize \(x_{1}\)
for \(i=1\) : nsteps do
    \(r_{i}=b-A x_{i}\) at precision \(u_{r}\)
        Solve \(A d_{i}=r_{i}\) with preconditioned GMRES at
        precision \(u_{g}\) except matvecs at precision \(u_{p}\)
    \(x_{i+1}=x_{i}+d_{i}\) at precision \(u\)
end for
```

A better preconditioner implies:
Δ Smaller $\kappa\left(M^{-1} A\right)$

- More expensive to compute/apply
\boldsymbol{V} Larger error in matvecs with $M^{-1} A$ in GMRES
Convergence condition becomes

$$
\kappa\left(M^{-1} A\right)\left(\frac{\left\|M^{-1}\right\|\|A\|}{\left\|M^{-1} A\right\|} u_{p}+u_{g}\right)<1
$$

Mixed precision restarted GMRES

$$
\begin{aligned}
& \text { Initialize } x_{1} \\
& \text { for } i=1: \text { nsteps do } \\
& \quad r_{i}=b-A x_{i} \text { at precision } \mathbf{u}_{\text {high }} \\
& \text { Solve } A d_{i}=r_{i} \text { with GMRES at precision } u_{\text {low }} \\
& \quad x_{i+1}=x_{i}+d_{i} \text { at precision } \mathbf{u} \\
& \text { end for }
\end{aligned}
$$

－With no preconditioner $(M=I)$ ，GMRES－IR becomes equivalent to mixed precision restarted GMRES（inner－outer scheme）
国 Turner and Walker（1992）且 Buttari et al．（2008）
둥 Lindquist et al．（2020）国 Loe et al．（2021）

Mixed precision restarted GMRES

$$
\begin{aligned}
& \text { Initialize } x_{1} \\
& \text { for } i=1: \text { nsteps do } \\
& \quad r_{i}=b-A x_{i} \text { at precision } u_{\text {high }} \\
& \text { Solve } A d_{i}=r_{i} \text { with GMRES at precision } u_{\text {low }} \\
& \quad x_{i+1}=x_{i}+d_{i} \text { at precision } \mathbf{u} \\
& \text { end for }
\end{aligned}
$$

－With no preconditioner $(M=I)$ ，GMRES－IR becomes equivalent to mixed precision restarted GMRES（inner－outer scheme）

둥 Lindquist et al．（2020）国 Loe et al．（2021）
－Preconditioners can exploit mixed precision too
⿴⼌여 Anzt et al．（2018）

Mixed precision restarted GMRES

$$
\begin{aligned}
& \text { Initialize } x_{1} \\
& \text { for } i=1: \text { nsteps do } \\
& \quad r_{i}=b-A x_{i} \text { at precision } \mathbf{u}_{\text {high }} \\
& \text { Solve } A d_{i}=r_{i} \text { with GMRES at precision } u_{\text {low }} \\
& \quad x_{i+1}=x_{i}+d_{i} \text { at precision } \mathbf{u} \\
& \text { end for }
\end{aligned}
$$

－With no preconditioner $(M=I)$ ，GMRES－IR becomes equivalent to mixed precision restarted GMRES（inner－outer scheme）
国 Turner and Walker（1992）且 Buttari et al．（2008）

－Preconditioners can exploit mixed precision too
⿴囗玉宝 Anzt et al．（2018）
－GMRES can exploit mixed precision too
国 Gratton et al．（2019）目 Agullo et al．（2020）目 Aliaga et al．（2020）

Data-driven mixed precision computing?

- So far, precisions are chosen independently of input data (ex: A and b are not taken into account in $A x=b$)
- Simple example: run $\kappa(A)$ estimator before selecting optimal GMRES-IR5 variant
- In the following, more sophisticated examples exploit the matrix structure (sparsity, data sparsity) to use even lower precisions
- Different approaches sharing a strong connection! Based on the same fundamental observation:

$$
\begin{aligned}
& 1.0101101 \\
&+ \\
&+ \times 2^{0} \\
&= 1.10110(10110) \times 2^{-6}
\end{aligned}
$$

\Rightarrow Small elements can be stored in lower precision

Data-driven mixed precision SpMV

Consider the sparse matrix-vector (SpMV) product $y=A x$ F- Ahmad, Sundar, Hall (2020) propose to split $A=A_{d}+A_{s}$, where A_{s} contains the "small" elements of A, and compute:

$$
y=\underbrace{A_{s} x}_{\text {Compute in single }}+\underbrace{A_{d x}}_{\text {Compute in double }}
$$

Data-driven mixed precision SpMV

Consider the sparse matrix-vector (SpMV) product $y=A x$
国 Ahmad, Sundar, Hall (2020) propose to split $A=A_{d}+A_{s}$, where A_{s} contains the "small" elements of A, and compute:

$$
y=\underbrace{A_{s} x}_{\text {Compute in single }}+\underbrace{A_{d} x}_{\text {Compute in double }}
$$

Analysis: split row i of A into p buckets $B_{i k}$ and sum elements of $B_{i k}$ in precision u_{k}

$$
\begin{aligned}
& y_{i}=\sum_{i=1}^{p} y_{i}^{(k)}, \quad y_{i}^{(k)}=\sum_{a_{i j} x_{j} \in B_{i k}} a_{i j} x_{j} \\
& \left|\hat{y}_{i}^{(k)}-y_{i}^{(k)}\right| \leq n_{i}^{(k)} u_{k} \sum_{a_{i j} x_{j} \in B_{i k}}\left|a_{i j} x_{j}\right|
\end{aligned}
$$

Backward error (Oettli-Präger):

$$
\max _{i} \frac{\left|\widehat{y}_{i}-y_{i}\right|}{|A||x|} \leq \max _{i} \sum_{k=1}^{p} n_{i}^{(k)} u_{k} \frac{\sum_{a_{i j} x_{j} \in B_{i k}}\left|a_{i j} x_{j}\right|}{\sum_{j=1}^{n}\left|a_{i j} x_{j}\right|}
$$

Data-driven mixed precision SpMV

To achieve a backward error of order ε, must control the ratios $\phi_{i k}=\frac{\sum_{a_{i j j_{j}} \in B_{i k}}\left|a_{i j} x_{j}\right|}{\sum_{j=1}\left|a_{i j} x_{j}\right|} \Rightarrow$ explicit rule for building the buckets $B_{i k}$

Data-driven mixed precision SpMV

To achieve a backward error of order ε, must control the ratios $\phi_{i k}=\frac{\sum_{a_{i j} x_{j} \in B_{i k}}\left|a_{i j} x_{j}\right|}{\sum_{j=1}^{j}\left|a_{i j} x_{j}\right|} \Rightarrow$ explicit rule for building the buckets $B_{i k}$

Matrix: lund_a

国 Graillat, Jézéquel, M., Molina (2021)

Data-driven mixed precision SpMV

To achieve a backward error of order ε, must control the ratios $\phi_{i k}=\frac{\sum_{a_{i j_{j} j} \in B_{i k}}\left|a_{i j} x_{j}\right|}{\sum_{j=1}\left|a_{i j} x_{j}\right|} \Rightarrow$ explicit rule for building the buckets $B_{i k}$

Matrix: mesh1e1

国 Graillat, Jézéquel, M., Molina (2021)

Data-driven mixed precision SpMV

To achieve a backward error of order ε, must control the ratios $\phi_{i k}=\frac{\sum_{a_{i j} x_{j} \in B_{i k}}\left|a_{i j} x_{j}\right|}{\sum_{j=1}^{j}\left|a_{i j} x_{j}\right|} \Rightarrow$ explicit rule for building the buckets $B_{i k}$

Matrix: arc130

Data-driven mixed precision SpMV

To achieve a backward error of order ε, must control the ratios $\phi_{i k}=\frac{\sum_{a_{i j} x_{j} \in B_{i k}}\left|a_{i j} x_{j}\right|}{\sum_{j=1}^{j}\left|a_{i j} x_{j}\right|} \Rightarrow$ explicit rule for building the buckets $B_{i k}$

Matrix: plat362

国 Graillat, Jézéquel, M., Molina (2021)

Data-driven mixed precision SpMV

To achieve a backward error of order ε, must control the ratios $\phi_{i k}=\frac{\sum_{a_{i j} x_{j} \in B_{i k}}\left|a_{i j} x_{j}\right|}{\sum_{j=1}^{j}\left|a_{i j} x_{j}\right|} \Rightarrow$ explicit rule for building the buckets $B_{i k}$

Matrix: steam3

国 Graillat, Jézéquel, M., Molina (2021)

Data-driven mixed precision SpMV

To achieve a backward error of order ε, must control the ratios $\phi_{i k}=\frac{\sum_{a_{i j_{j} j} \in B_{i k}}\left|a_{i j} x_{j}\right|}{\sum_{j=1}^{j}\left|a_{i j} x_{j}\right|} \Rightarrow$ explicit rule for building the buckets $B_{i k}$

Matrix: bcsstk04

国 Graillat, Jézéquel, M., Molina (2021)

Data sparse matrices

- Data sparse matrices possess a block low rank structure: a block B represents the interaction between two subdomains \Rightarrow singular values decay rapidly for far away subdomains

Block low rank (BLR) matrices use a flat 2D block partitioning 융 Amestoy et al. (2015) 듕 Amestoy et al. (2019)

- Diagonal blocks are full rank
- Off-diagonal blocks $A_{i j}$ are approximated by low-rank blocks $T_{i j}$ satisfying $\left\|A_{i j}-T_{i j}\right\| \leq \varepsilon\|A\|$
- ε controls the backward error of BLR LU 国 Higham and M. (2021)

Data－driven mixed precision BLR matrices

Idea：store blocks far away from the diagonal in lower precisions国 Abdulah et al．（2019）国 Doucet et al．（2019）且 Abdulah et al．（2021）

－double
－single
－half

Data－driven mixed precision BLR matrices

Idea：store blocks far away from the diagonal in lower precisions国 Abdulah et al．（2019）国 Doucet et al．（2019）且 Abdulah et al．（2021）

－double
－single
－half

Analysis：
－Converting $A_{i j}$ to precision $\mathbf{u}_{\text {low }}$ introduces an error $\mathbf{u}_{\text {low }}\left\|A_{i j}\right\|$
\Rightarrow If $\left\|A_{i j}\right\| \leq \varepsilon\|A\| / \mathbf{u}_{\text {low，}}$ ，block can be safely stored in precision $\mathbf{u}_{\text {low }}$

Data－driven mixed precision BLR matrices

Idea：store blocks far away from the diagonal in lower precisions
国 Abdulah et al．（2019）国 Doucet et al．（2019）且 Abdulah et al．（2021）

$$
\text { (Poisson, } \varepsilon=10^{-10} \text {) }
$$

－double
－single
－half

Analysis：
－Converting $A_{i j}$ to precision $\mathbf{u}_{\text {low }}$ introduces an error $\mathbf{u}_{\text {low }}\left\|A_{i j}\right\|$
\Rightarrow If $\left\|A_{i j}\right\| \leq \varepsilon\|A\| / \mathbf{u}_{\text {low，}}$ block can be safely stored in precision $\mathbf{u}_{\text {low }}$

Data-driven mixed precision low rank compression

- Low-rank compress based on, e.g., SVD: $\Rightarrow\left\|B-U \Sigma V^{\top}\right\| \leq \varepsilon$, everything stored in double precision

Data-driven mixed precision low rank compression

- Low-rank compress based on, e.g., SVD: $\Rightarrow\left\|B-U \Sigma V^{\top}\right\| \leq \varepsilon$, everything stored in double precision
- Mixed precision compression: partition the SVD into several groups of different precision
- Converting U_{i} and V_{i} to precision u_{i} introduces error proportional $u_{i}\left\|\Sigma_{i}\right\|$

Data-driven mixed precision low rank compression

- Low-rank compress based on, e.g., SVD: $\Rightarrow\left\|B-U \Sigma V^{\top}\right\| \leq \varepsilon$, everything stored in double precision
- Mixed precision compression: partition the SVD into several groups of different precision
- Converting U_{i} and V_{i} to precision u_{i} introduces error proportional $u_{i}\left\|\Sigma_{i}\right\|$
\Rightarrow Need to partition Σ such that $\left\|\Sigma_{i}\right\| \leq \varepsilon / u_{i}$

Back to mixed precision BLR matrices

- double
- single
- half

Back to mixed precision BLR matrices

- double $\Rightarrow\left\{\begin{array}{l}\text { double } \\ \text { double/single/half }\end{array}\right.$
- single \Rightarrow single/half
- half

Results with mixed precision BLR LU

Flops compression $\left(\varepsilon=10^{-9}\right)$

Up to $3.3 \times$ flops reduction with almost no error increase
国 Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L'Excellent, M. (2021)

Compute MP-BLR approximation $M \approx A$ using MP-SVD on each block
Solve $M x_{1}=b$ with MP-LU factorization
for $i=1$: nsteps do
$r_{i}=b-A x_{i}$ with MP-SpMV
Solve $A d_{i}=r_{i}$ with MP-GMRES, using
MP-preconditioner and MP-SpMV
$x_{i+1}=x_{i}+d_{i}$ (in uniform precision!)
end for

- Numerical linear algebra is full of opportunities for mixed precision arithmetic
- Expert knowledge of the algorithms is crucial: need for cross-disciplinary research in linear algebra, numerical analysis, and computer arithmetic
- Rounding error analysis is a precious guide to the mixed precision practitioner
- Should adapt precisions to the data at hand: data-driven mixed precision computing

Slides available at https://bit.ly/arith21
(references are clickable)

