ARITH 2021 14 June 2021

Opportunities for Mixed Precision Arithmetic in Numerical Linear Algebra

Theo Mary

Sorbonne Université, CNRS, LIP6 https://www-pequan.lip6.fr/~tmary/ Slides available at https://bit.ly/arith21

Today's floating-point landscape

		Bits			
		Signif. (†)	Exp.	Range	$u = 2^{-t}$
bfloat16	В	8	8	$10^{\pm 38}$	4×10^{-3}
fp16	Н	11	5	$10^{\pm 5}$	5×10^{-4}
fp32	S	24	8	$10^{\pm 38}$	6×10^{-8}
fp64	D	53	11	$10^{\pm 308}$	1×10^{-16}
fp128	Q	113	15	$10^{\pm 4932}$	1×10^{-34}

Low precision increasingly supported by hardware:

- Fp16 used by NVIDIA GPUs, AMD Radeon Instinct MI25 GPU, ARM NEON, Fujitsu A64FX ARM
- Bfloat16 used by Google TPU, NVIDIA GPUs, Arm, Intel

Today's floating-point landscape

		Bits			
		Signif. (†)	Exp.	Range	$u = 2^{-t}$
bfloat16	В	8	8	$10^{\pm 38}$	4×10^{-3}
fp16	Н	11	5	$10^{\pm 5}$	5×10^{-4}
fp32	S	24	8	$10^{\pm 38}$	6×10^{-8}
fp64	D	53	11	$10^{\pm 308}$	1×10^{-16}
fp128	Q	113	15	$10^{\pm 4932}$	1×10^{-34}

Great benefits:

- Reduced storage, data movement, and communications
- Increased speed on emerging hardware (16× on A100 from fp32 to fp16/bfloat16)
- Reduced energy consumption (5× with fp16, 9× with bfloat16)

Today's floating-point landscape

		Bits			
		Signif. (†)	Exp.	Range	$u = 2^{-t}$
bfloat16	В	8	8	$10^{\pm 38}$	4×10^{-3}
fp16	Н	11	5	$10^{\pm 5}$	5×10^{-4}
fp32	S	24	8	$10^{\pm 38}$	6×10^{-8}
fp64	D	53	11	$10^{\pm 308}$	1×10^{-16}
fp128	Q	113	15	$10^{\pm 4932}$	1×10^{-34}

Great benefits:

- Reduced storage, data movement, and communications
- Increased speed on emerging hardware (16× on A100 from fp32 to fp16/bfloat16)
- Reduced energy consumption (5× with fp16, 9× with bfloat16)

Some risks too:

- Low precision (large *u*)
- Narrow range

Mix several precisions in the same code with the goal of

- Getting the performance benefits of low precisions
- While preserving the accuracy and stability of the high precision

Terminology varies: Mixed precision, Multiprecision, Adaptive precision, Variable precision, Transprecision, Dynamic precision, ...

Mix several precisions in the same code with the goal of

- Getting the performance benefits of low precisions
- While preserving the accuracy and stability of the high precision

Terminology varies: Mixed precision, Multiprecision, Adaptive precision, Variable precision, Transprecision, Dynamic precision, ...

What space of precisions?

- Arbitrary/custom precisions
- Mixed precision algorithms: small set of widely available precisions, such as IEEE arithmetics + bfloat16

Mix several precisions in the same code with the goal of

- Getting the performance benefits of low precisions
- While preserving the accuracy and stability of the high precision

Terminology varies: Mixed precision, Multiprecision, Adaptive precision, Variable precision, Transprecision, Dynamic precision, ...

What space of precisions?

- Arbitrary/custom precisions
- Mixed precision algorithms: small set of widely available precisions, such as IEEE arithmetics + bfloat16

Crux of the matter: how to select the right precision for the right variable/operation

- Precision tuning: explore the space of variables of a code
 - ▲ Does not need any understanding of what the code does

- Precision tuning: explore the space of variables of a code
 - ▲ Does not need any understanding of what the code does
 - Does not have any understanding of what the code does

- Precision tuning: explore the space of variables of a code
 - ▲ Does not need any understanding of what the code does
 - Does not have any understanding of what the code does
- Algorithm-based, analysis-based, data-based approaches The more knowledge about the code we have, the better:
 - 1. Develop approach tailored to specific algorithm
 - 2. If possible use error analysis to determine best choice of precisions
 - 3. If possible take into account specific data at hand
 - Illustration of this methodology for numerical linear algebra

- Precision tuning: explore the space of variables of a code
 - ▲ Does not need any understanding of what the code does
 - Does not have any understanding of what the code does
- Algorithm-based, analysis-based, data-based approaches The more knowledge about the code we have, the better:
 - 1. Develop approach tailored to specific algorithm
 - 2. If possible use error analysis to determine best choice of precisions
 - 3. If possible take into account specific data at hand
 - Illustration of this methodology for numerical linear algebra
- Mixed precision computing brings new life to numerical analysis (rounding error analysis)

Solving Ax = b

Standard method to solve Ax = b:

1. Factorize A = LU, where L and U are lower and upper triangular

2. Solve Ly = b and Ux = y

Precision $u \Rightarrow$ computed \hat{x} satisfies $\|\hat{x} - x\| \le f(n)\kappa(A)u\|x\|$, with $\kappa(A) = \|A\|\|A^{-1}\|$

Solving Ax = b

Standard method to solve Ax = b:

1. Factorize A = LU, where L and U are lower and upper triangular

2. Solve Ly = b and Ux = y

Precision $u \Rightarrow$ computed \hat{x} satisfies $\|\hat{x} - x\| \le f(n)\kappa(A)u\|x\|$, with $\kappa(A) = \|A\|\|A^{-1}\|$

An algorithm to refine the solution: iterative refinement (IR)

Solve
$$Ax_1 = b$$
 via $x_1 = U^{-1}(L^{-1}b)$
while Not converged do
 $r_i = b - Ax_i$
Solve $Ad_i = r_i$ via $d_i = U^{-1}(L^{-1}r_i)$
 $x_{i+1} = x_i + d_i$
end while

Many variants over the years, depending on choice of precisions and solver for $Ad_i = r_i$

Error analysis of general IR

Carson and Higham (2018) analyze the most general version of IR: For a **target accuracy** u, and assuming $\kappa(A)u < 1$:

Solve $Ax_1 = b$ by LU factorization at precision $\mathbf{u}_{\mathbf{f}}$ while Not converged **do** $r_i = b - Ax_i$ at precision $\mathbf{u}_{\mathbf{r}}$ Solve $Ad_i = r_i$ such that $\|\widehat{d}_i - d_i\| \le \phi_i \|d_i\|$ $x_{i+1} = x_i + d_i$ at precision \mathbf{u} end while

Theorem (simplified from Carson and Higham, 2018)

Under the condition $\phi_i < 1$, the forward error converges to

$$\frac{\|\widehat{x} - x\|}{\|x\|} \le \mathbf{u} + \mathbf{u}_{\mathsf{r}}\kappa(A)$$

Error analysis of general IR

Carson and Higham (2018) analyze the most general version of IR: For a **target accuracy** u, and assuming $\kappa(A)u < 1$:

Solve $Ax_1 = b$ by LU factorization at precision $\mathbf{u}_{\mathbf{f}}$ while Not converged **do** $r_i = b - Ax_i$ at precision $\mathbf{u}_{\mathbf{r}}$ Solve $Ad_i = r_i$ such that $\|\widehat{d}_i - d_i\| \le \phi_i \|d_i\|$ $x_{i+1} = x_i + d_i$ at precision \mathbf{u} end while

Theorem (simplified from Carson and Higham, 2018)

Under the condition $\phi_i < 1$, the forward error converges to

$$\frac{\|\widehat{x} - x\|}{\|x\|} \le \mathbf{u} + \mathbf{u}_{\mathsf{r}}\kappa(A)$$

- Limiting accuracy: depends on u and u_r only, can be made independent of κ(A) by taking u_r = u²
- Convergence condition: depends on the choice of solver

LU-IR: reuse LU factors to solve for d_i : $d_i = U^{-1}L^{-1}r_i \Rightarrow \|\widehat{d}_i - d_i\| \le f(n)\kappa(A)\mathbf{u_f}\|d_i\| \Rightarrow \phi_i = O(\kappa(A)\mathbf{u_f})$

end for	
$x_{i+1} = x_i + d_i$	in precision u
Solve $Ad_i = r_i$ via $d_i = U^{-1}(L^{-1}r_i)$	
$r_i = b - Ax_i$	in precision u_r
for $i = 1$: nsteps do	
Solve $Ax_1 = b$ by LU factorization	in precision <mark>u_f</mark>

 Uf	и	Ur	$\max \kappa(A)$	Forward error

LU-IR: reuse LU factors to solve for d_i : $d_i = U^{-1}L^{-1}r_i \Rightarrow \|\widehat{d}_i - d_i\| \le f(n)\kappa(A)\mathbf{u_f}\|d_i\| \Rightarrow \phi_i = O(\kappa(A)\mathbf{u_f})$

Solve $Ax_1 = b$ by LU factorization	$u_f = double$
for $i = 1$: nsteps do	
$r_i = b - Ax_i$	$\mathbf{u_r} = \mathbf{double}$
Solve $Ad_i = r_i$ via $d_i = U^{-1}(L^{-1}r_i)$	
$x_{i+1} = x_i + d_i$	$\mathbf{u} = \mathbf{double}$
end for	

	Uf	и	U _r	max $\kappa(A)$	Forward error
Fixed	D	D	D	10^{16}	$\kappa(A) \cdot 10^{-16}$
Fixed-precision					
🖹 Jankowski and Wozniakowski (1977) 🛛 🖹 Skeel (1980)					

LU-IR: reuse LU factors to solve for d_i : $d_i = U^{-1}L^{-1}r_i \Rightarrow \|\widehat{d}_i - d_i\| \le f(n)\kappa(A)\mathbf{u_f}\|d_i\| \Rightarrow \phi_i = O(\kappa(A)\mathbf{u_f})$

Solve $Ax_1 = b$ by LU factorization	$u_f = double$
for $i = 1$: nsteps do	
$r_i = b - Ax_i$	$u_r = quadruple$
Solve $Ad_i = r_i$ via $d_i = U^{-1}(L^{-1}r_i)$	
$x_{i+1} = x_i + d_i$	$\mathbf{u} = \mathbf{double}$
end for	

	Uf	и	U _r	max $\kappa(A)$	Forward error
Fixed	D	D	D	10^{16}	$\kappa(A) \cdot 10^{-16}$
Traditional	D	D	Q	10^{16}	10^{-16}
Traditional					
🖹 Wil	kinsor	า (194	18)	🖹 Moler (196	7)

LU-IR: reuse LU factors to solve for d_i : $d_i = U^{-1}L^{-1}r_i \Rightarrow \|\widehat{d}_i - d_i\| \le f(n)\kappa(A)\mathbf{u_f}\|d_i\| \Rightarrow \phi_i = O(\kappa(A)\mathbf{u_f})$

Solve $Ax_1 = b$ by LU factorization	$u_f = single$
for $i = 1$: nsteps do	
$r_i = b - Ax_i$	$\mathbf{u_r} = \mathbf{double}$
Solve $Ad_i = r_i$ via $d_i = U^{-1}(L^{-1}r_i)$	
$x_{i+1} = x_i + d_i$	$\mathbf{u} = \mathbf{double}$
end for	

	Uf	и	ur	$\max \kappa(A)$	Forward error
Fixed	D	D	D	10^{16}	$\kappa(A) \cdot 10^{-16}$
Traditional	D	D	Q	10^{16}	10^{-16}
Low prec. fact.	S	D	D	10^{8}	$\kappa(A) \cdot 10^{-16}$

Low precision factorization

Langou et al (2006)

LU-IR: reuse LU factors to solve for d_i : $d_i = U^{-1}L^{-1}r_i \Rightarrow \|\widehat{d}_i - d_i\| \le f(n)\kappa(A)\mathbf{u_f}\|d_i\| \Rightarrow \phi_i = O(\kappa(A)\mathbf{u_f})$

Solve $Ax_1 = b$ by LU factorization	$u_f = single$
for $i = 1$: nsteps do	
$r_i = b - Ax_i$	$\mathbf{u_r} = \mathbf{quadruple}$
Solve $Ad_i = r_i$ via $d_i = U^{-1}(L^{-1}r_i)$	
$x_{i+1} = x_i + d_i$	u=double
end for	

	Uf	и	ur	max $\kappa(A)$	Forward error
Fixed	D	D	D	10^{16}	$\kappa(A) \cdot 10^{-16}$
Traditional	D	D	Q	10^{16}	10^{-16}
Low prec. fact.	S	D	D	10^{8}	$\kappa(A) \cdot 10^{-16}$
3 precisions	S	D	Q	10^{8}	10^{-16}

Three precisions

Carson and Higham (2018)

LU-IR: reuse LU factors to solve for d_i : $d_i = U^{-1}L^{-1}r_i \Rightarrow \|\widehat{d}_i - d_i\| \le f(n)\kappa(A)\mathbf{u_f}\|d_i\| \Rightarrow \phi_i = O(\kappa(A)\mathbf{u_f})$

Solve $Ax_1 = b$ by LU factorization	u _f = half
for $i = 1$: nsteps do	
$r_i = b - Ax_i$	$u_r = quadruple$
Solve $Ad_i = r_i$ via $d_i = U^{-1}(L^{-1}r_i)$	
$x_{i+1} = x_i + d_i$	$\mathbf{u} = \mathbf{double}$
end for	

	Uf	и	ur	max $\kappa(A)$	Forward error
Fixed	D	D	D	10^{16}	$\kappa(A) \cdot 10^{-16}$
Traditional	D	D	Q	10^{16}	10^{-16}
Low prec. fact.	Н	D	D	10^{3}	$\kappa(A) \cdot 10^{-16}$
3 precisions	Н	D	Q	10^{3}	10^{-16}

Only well-conditioned problems can be solved with a half precision factorization!

GMRES-IR

GMRES-based IR: 🖹 Carson and Higham (2017)

- Replace LU by GMRES solver: solve $\widetilde{A}d_i = \widetilde{r}_i$ with GMRES, where $\widetilde{A} = U^{-1}L^{-1}A$ is preconditioned by LU factors
- Rationale:
 - $\circ \kappa(\widetilde{A})$ often smaller than $\kappa(A)$
 - $\circ\,$ GMRES can be asked to converge to accuracy $u \ll u_f$
 - $\Rightarrow \widetilde{A}d_i = \widetilde{r}_i$ is solved with accuracy $\phi_i = \kappa(\widetilde{A})$ **u**
 - $\circ~$ Convergence condition improved from $\kappa(A) {\bf u_f} < 1$ to $\kappa(\widetilde{A}) {\bf u} < 1$

GMRES-IR

GMRES-based IR: 🖹 Carson and Higham (2017)

- Replace LU by GMRES solver: solve $\widetilde{A}d_i = \widetilde{r}_i$ with GMRES, where $\widetilde{A} = U^{-1}L^{-1}A$ is preconditioned by LU factors
- Rationale:
 - $\circ \kappa(\widetilde{A})$ often smaller than $\kappa(A)$
 - $\,\circ\,$ GMRES can be asked to converge to accuracy $u \ll u_f$
 - $\Rightarrow \widetilde{A}d_i = \widetilde{r}_i$ is solved with accuracy $\phi_i = \kappa(\widetilde{A})$ **u**
 - $\circ~$ Convergence condition improved from $\kappa(A) {\bf u_f} < 1$ to $\kappa(\widetilde{A}) {\bf u} < 1$
- The catch: the matrix-vector products are with $\tilde{A} = U^{-1}L^{-1}A$, introduce an extra $\kappa(A)$ unless performed in higher precision

Solve $Ax_1 = b$ by LU factorization at precision $\mathbf{u}_{\mathbf{f}}$ while Not converged **do** $r_i = b - Ax_i$ at precision $\mathbf{u}_{\mathbf{r}}$ Solve $U^{-1}L^{-1}Ad_i = U^{-1}L^{-1}r_i$ by GMRES at precision \mathbf{u} with products with $U^{-1}L^{-1}A$ at precision \mathbf{u}^2 $x_{i+1} = x_i + d_i$ at precision \mathbf{u} end while

8/3

LU-IR vs GMRES-IR

Using $\kappa(\widetilde{A}) \leq (1+\kappa(A)\mathbf{u_f})^2$ we determine the convergence condition on $\kappa(A)$

	Uf	и	u _r	$\max \kappa(A)$	Forward error
LU-IR	S	D	Q	10^{8}	10^{-16}
GMRES-IR	S	D	Q	10^{16}	10^{-16}
LU-IR	Н	D	Q	10^{3}	10^{-16}
GMRES-IR	Н	D	Q	10^{11}	10^{-16}

GMRES-IR can handle much more ill-conditioned matrices.

LU-IR vs GMRES-IR

Using $\kappa(\widetilde{A}) \leq (1+\kappa(A)\mathbf{u_f})^2$ we determine the convergence condition on $\kappa(A)$

	Uf	и	u _r	max $\kappa(A)$	Forward error
LU-IR	S	D	Q	10^{8}	10^{-16}
GMRES-IR	S	D	Q	10^{16}	10^{-16}
LU-IR	Н	D	Q	10^{3}	10^{-16}
GMRES-IR	Н	D	Q	10^{11}	10^{-16}

GMRES-IR can handle much more ill-conditioned matrices. **However:**

- LU solves are performed at precision u² instead of u_f ⇒ practical limitation
 - Increases cost per iteration
 - \circ If *u* is D, requires use of quad precision
 - Practical implementations have relaxed this requirement by replacing u^2 with u, with no theoretical guarantee

Rethinking GMRES-IR

- Goal: solve $Ad_i = r_i$ with GMRES and bound $\phi_i = \|\widehat{d}_i d_i\|/\|d_i\|$
 - In what precision do we really need to run GMRES?
 - How much extra precision is really needed in the matvec products?

```
Solve Ax_1 = b by LU factorization at precision \mathbf{u_f}
for i = 1: nsteps do
r_i = b - Ax_i at precision \mathbf{u_r}
Solve Ad_i = r_i with preconditioned GMRES at
precision \mathbf{u} except matvecs at precision \mathbf{u}^2
x_{i+1} = x_i + d_i at precision \mathbf{u}
end for
```

Rethinking GMRES-IR

- Goal: solve $Ad_i = r_i$ with GMRES and bound $\phi_i = \|\widehat{d}_i d_i\|/\|d_i\|$
 - In what precision do we really need to run GMRES?
 - How much extra precision is really needed in the matvec products?

```
Solve Ax_1 = b by LU factorization at precision \mathbf{u}_{\mathbf{f}}

for i = 1: nsteps do

r_i = b - Ax_i at precision \mathbf{u}_{\mathbf{r}}

Solve Ad_i = r_i with preconditioned GMRES at

precision \mathbf{u} except matvecs at precision \mathbf{u}^2

x_{i+1} = x_i + d_i at precision \mathbf{u}

end for
```

Rethinking GMRES-IR

- Goal: solve $Ad_i = r_i$ with GMRES and bound $\phi_i = \|\widehat{d}_i d_i\|/\|d_i\|$
 - In what precision do we really need to run GMRES?
 - How much extra precision is really needed in the matvec products?

```
Solve Ax_1 = b by LU factorization at precision \mathbf{u_f}
for i = 1: nsteps do
r_i = b - Ax_i at precision \mathbf{u_r}
Solve Ad_i = r_i with preconditioned GMRES at
precision \mathbf{u_g} except matvecs at precision \mathbf{u_p}
x_{i+1} = x_i + d_i at precision \mathbf{u}
end for
```

Relax the requirements on the GMRES precisions: run at precision $u_g \leq u$ with matvecs at precision $u_p \leq u^2$

⇒ FIVE precisions in total!

What can we say about the convergence of this GMRES-IR5? $_{0/32}$

Two precision GMRES

- Unpreconditioned GMRES in precision **u** for Ax = b:
 - Backward error of order u Paige, Rozloznik, Strakos (2006)
 - Forward error of order $\kappa(A)$ **u**
- Two precision preconditioned GMRES for Ax = b:
 - \circ Backward error of order $\kappa(A)\mathbf{u_p} + \mathbf{u_g}$
 - The matrix-vector products are performed with $\widetilde{A} = U^{-1}L^{-1}A$: $y = U^{-1}L^{-1}Ax \Rightarrow \|\widehat{y} - y\| \lesssim \kappa(A)\mathbf{u_p}\|\widetilde{A}\|\|x\|$
 - The rest is at precision **u**g
 - Forward error of order $\kappa(\widetilde{A}) (\kappa(A) \mathbf{u_p} + \mathbf{u_g})$
 - $\circ \ \kappa(\widetilde{A}) \leq (1 + \kappa(A)\mathbf{u}_{\mathbf{f}})^2 \Rightarrow \phi_i \sim \kappa(A)^2 \mathbf{u}_{\mathbf{f}}^2 \big(\kappa(A)\mathbf{u}_{\mathbf{p}} + \mathbf{u}_{\mathbf{g}}\big)$

Side-result: generalization of the backward stability of GMRES to a preconditioned two-precision GMRES

🖹 Amestoy, Buttari, Higham, L'Excellent, M., Vieublé (2021)

Five precision GMRES-IR

Solve $Ax_1 = b$ by LU factorization at precision $\mathbf{u_f}$ for i = 1: nsteps do $r_i = b - Ax_i$ at precision $\mathbf{u_r}$ Solve $Ad_i = r_i$ with preconditioned GMRES at precision $\mathbf{u_g}$ except matvecs at precision $\mathbf{u_p}$ $x_{i+1} = x_i + d_i$ at precision \mathbf{u} end for

Theorem (convergence of GMRES-IR5)

Under the condition $(\mathbf{u}_{g} + \kappa(A)\mathbf{u}_{p})\kappa(A)^{2}\mathbf{u}_{f}^{2} < 1$, the forward error converges to its limiting accuracy

$$\frac{\|\widehat{x} - x\|}{\|x\|} \le \mathbf{u}_{\mathsf{r}}\kappa(A) + \mathbf{u}$$

🖹 Amestoy, Buttari, Higham, L'Excellent, M., Vieublé (2021)

With five arithmetics (fp16, bfloat16, fp32, fp64, fp128) there are over **3000 different combinations** of GMRES-IR5!

They are not all relevant !

Meaningful combinations: those where none of the precisions can be lowered without worsening either the limiting accuracy or the convergence condition.

Filtering rules	
• $\mathbf{u}^2 \leq \mathbf{u_r} \leq \mathbf{u} \leq \mathbf{u_f}$	• $\mathbf{u_p} < \mathbf{u}, \mathbf{u_p} = \mathbf{u}, \mathbf{u_p} > \mathbf{u}$ all possible
• $u_p \le u_g$	• $u_g \ge u$
• $u_p < u_f$	$\bullet \ \mathbf{u_g} < \mathbf{u_f}, \mathbf{u_g} = \mathbf{u_f}, \mathbf{u_g} > \mathbf{u_f} \text{ all possible}$

Meaningful combinations of GMRES-IR5 for $\mathbf{u}_{\mathbf{f}} = H$ and $\mathbf{u} = D$.

ug	u _p	Convergence Condition $\max(\kappa(A))$
LU	-IR	2×10^3
В	S	3×10^4
Н	S	4×10^4
Н	D	9×10^4
S	D	$8 imes 10^6$
D	D	$3 imes 10^7$
D	Q	2×10^{11}

Five combinations between LU-IR and Carson & Higham's GMRES-IR \Rightarrow More **flexible** precisions choice to fit at best the **hardware constraints** and the **problem difficulty**.

$$u_f = H$$
 $u_g = D$

Take 100 random matrices with specified $\kappa(A)$ and measure the success rate: the percentage of matrices for which GMRES-IR5 converges to a small forward error

Take 100 random matrices with specified $\kappa(A)$ and measure the success rate: the percentage of matrices for which GMRES-IR5 converges to a small forward error

Similar picture on many types of matrices

Tensor cores units available on NVIDIA GPUs V100 carry out a 4×4 matrix multiplication **in 1 clock cycle**:

• **Performance boost**: peaks at 125 TFLOPS (8× speedup vs fp32, 16× on A100)

Tensor cores units available on NVIDIA GPUs V100 carry out a 4×4 matrix multiplication in 1 clock cycle:

- **Performance boost**: peaks at 125 TFLOPS (8× speedup vs fp32, 16× on A100)
- Accuracy boost: let C = AB, with A ∈ ℝ^{m×n}, B ∈ ℝ^{n×p}, the computed C satisfies

$$|\widehat{C}-C| \lesssim c_n |A| |B|, \quad c_n = \langle$$

16/32 🖹 Blanchard, Higham, Lopez, M., Pranesh (2020)

Tensor cores units available on NVIDIA GPUs V100 carry out a 4×4 matrix multiplication in 1 clock cycle:

- **Performance boost**: peaks at 125 TFLOPS (8× speedup vs fp32, 16× on A100)
- Accuracy boost: let C = AB, with A ∈ ℝ^{m×n}, B ∈ ℝ^{n×p}, the computed C satisfies

$$|\hat{C} - C| \lesssim c_n |A| |B|, \quad c_n = \begin{cases} nu_{16} & \text{(fp16)} \\ nu_{32} & \text{(fp32)} \end{cases}$$

6/32 🕒 Blanchard, Higham, Lopez, M., Pranesh (2020)

Tensor cores units available on NVIDIA GPUs V100 carry out a 4×4 matrix multiplication in 1 clock cycle:

- **Performance boost**: peaks at 125 TFLOPS (8× speedup vs fp32, 16× on A100)
- Accuracy boost: let C = AB, with A ∈ ℝ^{m×n}, B ∈ ℝ^{n×p}, the computed C satisfies

$$|\widehat{C} - C| \lesssim c_n |A| |B|, \quad c_n = \begin{cases} nu_{16} & \text{(fp16)} \\ 2u_{16} + nu_{32} & \text{(tensor cores)} \\ nu_{32} & \text{(fp32)} \end{cases}$$

6/32 🕒 Blanchard, Higham, Lopez, M., Pranesh (2020)

Block LU factorization

Block version to use matrix-matrix operations

```
for k = 1: n/b do
    Factorize L_{kk}U_{kk} = A_{kk} (with unblocked alg.)
    for i = k + 1: n/b do
         Solve L_{ik}U_{kk} = A_{ik} and L_{kk}U_{ki} = A_{ki} for L_{ik} and U_{ki}
    end for
    for i = k + 1: n/b do
         for i = k + 1: n/b do
             A_{ii} \leftarrow A_{ii} - \widetilde{L}_{ik}\widetilde{U}_{ki}
         end for
    end for
end for
```

Block LU factorization with tensor cores

- Block version to use matrix-matrix operations
- $O(n^3)$ part of the flops done with tensor cores

```
for k = 1: n/b do
    Factorize L_{kk}U_{kk} = A_{kk} (with unblocked alg.)
    for i = k + 1: n/b do
         Solve L_{ik}U_{kk} = A_{ik} and L_{kk}U_{ki} = A_{ki} for L_{ik} and U_{ki}
    end for
    for i = k + 1: n/b do
         for j = k + 1: n/b do
              L_{ik} \leftarrow \mathsf{fl}_{16}(L_{ik}) and U_{ki} \leftarrow \mathsf{fl}_{16}(U_{ki})
              A_{ii} \leftarrow A_{ii} - L_{ik}U_{ki} using tensor cores
         end for
    end for
end for
```

LU factorization with tensor cores

Error analysis for LU follows from matrix multiplication analysis and gives same bounds to first order 🖹 Blanchard et al. (2020)

Impact on iterative refinement

- TC accuracy boost can be critical!
- TC performance suboptimal here, but can reach up to 50
 TFLOPS with optimized data movements Lopez and M. (2020)

Preconditioners other than LU

Solve $Ax_1 = b$ by LU factorization at precision $\mathbf{u}_{\mathbf{f}}$ Compute $M^{-1} \approx A^{-1}$ and initialize x_1 for i = 1: nsteps do $r_i = b - Ax_i$ at precision $\mathbf{u}_{\mathbf{r}}$ Solve $Ad_i = r_i$ with preconditioned GMRES at precision $\mathbf{u}_{\mathbf{g}}$ except matvecs at precision $\mathbf{u}_{\mathbf{p}}$ $x_{i+1} = x_i + d_i$ at precision \mathbf{u} end for

Preconditioners other than LU

Solve $Ax_1 = b$ by LU factorization at precision $\mathbf{u}_{\mathbf{f}}$ Compute $M^{-1} \approx A^{-1}$ and initialize x_1 for i = 1: nsteps do $r_i = b - Ax_i$ at precision $\mathbf{u}_{\mathbf{r}}$ Solve $Ad_i = r_i$ with preconditioned GMRES at precision $\mathbf{u}_{\mathbf{g}}$ except matvecs at precision $\mathbf{u}_{\mathbf{p}}$ $x_{i+1} = x_i + d_i$ at precision \mathbf{u} end for

- A better preconditioner implies:
- ▲ Smaller $\kappa(M^{-1}A)$
- ▼ More expensive to compute/apply
- **v** Larger error in matvecs with $M^{-1}A$ in GMRES

Convergence condition becomes

$$\kappa(M^{-1}A)\left(\frac{\|M^{-1}\|\|A\|}{\|M^{-1}A\|}u_{p}+u_{g}\right)<1$$

Mixed precision restarted GMRES

```
Initialize x_1

for i = 1: nsteps do

r_i = b - Ax_i at precision \mathbf{u_{high}}

Solve Ad_i = r_i with GMRES at precision \mathbf{u_{low}}

x_{i+1} = x_i + d_i at precision \mathbf{u}

end for
```

With no preconditioner (M = I), GMRES-IR becomes equivalent to mixed precision restarted GMRES (inner-outer scheme)
 Turner and Walker (1992)
 Buttari et al. (2008)
 Lindquist et al. (2020)
 Loe et al. (2021)

Mixed precision restarted GMRES

```
Initialize x_1

for i = 1: nsteps do

r_i = b - Ax_i at precision \mathbf{u_{high}}

Solve Ad_i = r_i with GMRES at precision \mathbf{u_{low}}

x_{i+1} = x_i + d_i at precision \mathbf{u}

end for
```

- With no preconditioner (M = I), GMRES-IR becomes equivalent to mixed precision restarted GMRES (inner-outer scheme)
 Turner and Walker (1992)
 Buttari et al. (2008)
 Lindquist et al. (2020)
 Loe et al. (2021)
- Preconditioners can exploit mixed precision too
 Anzt et al. (2018)

Mixed precision restarted GMRES

```
Initialize x_1

for i = 1: nsteps do

r_i = b - Ax_i at precision \mathbf{u_{high}}

Solve Ad_i = r_i with GMRES at precision \mathbf{u_{low}}

x_{i+1} = x_i + d_i at precision \mathbf{u}

end for
```

- With no preconditioner (M = I), GMRES-IR becomes equivalent to mixed precision restarted GMRES (inner-outer scheme)
 Turner and Walker (1992)
 Buttari et al. (2008)
 Lindquist et al. (2020)
 Loe et al. (2021)
- Preconditioners can exploit mixed precision too
 Anzt et al. (2018)

Data-driven mixed precision computing?

- So far, precisions are chosen independently of input data (ex: A and b are not taken into account in Ax = b)
- Simple example: run $\kappa(A)$ estimator before selecting optimal GMRES-IR5 variant
- In the following, more sophisticated examples exploit the matrix structure (sparsity, data sparsity) to use even lower precisions
- Different approaches sharing a strong connection! Based on the same fundamental observation:

$$\begin{array}{c} 1.0\ 1\ 0\ 1\ 1\ 0\ 1 \\ + \\ = 1.1\ 0(1\ 0\ 1\ 1\ 0) \times 2^{-6} \\ = 1.0\ 1\ 1\ 0\ 0\ 0\ 0 \end{array}$$

\Rightarrow Small elements can be stored in lower precision

Consider the sparse matrix-vector (SpMV) product y = AxAhmad, Sundar, Hall (2020) propose to split $A = A_d + A_s$, where A_s contains the "small" elements of A, and compute:

Consider the sparse matrix-vector (SpMV) product y = AxAhmad, Sundar, Hall (2020) propose to split $A = A_d + A_s$, where A_s contains the "small" elements of A_s and compute:

Analysis: split row *i* of *A* into *p* buckets B_{ik} and sum elements of B_{ik} in precision u_k

$$y_{i} = \sum_{i=1}^{p} y_{i}^{(k)}, \quad y_{i}^{(k)} = \sum_{a_{ij}x_{j} \in B_{ik}} a_{ij}x_{j}$$
$$|\hat{y}_{i}^{(k)} - y_{i}^{(k)}| \le n_{i}^{(k)}u_{k} \sum_{a_{ij}x_{j} \in B_{ik}} |a_{ij}x_{j}|$$

Backward error (Oettli-Präger):

$$\max_{i} \frac{|\widehat{y}_i - y_i|}{|A||x|} \le \max_{i} \sum_{k=1}^{p} n_i^{(k)} u_k \frac{\sum_{a_{ij}x_j \in B_{ik}} |a_{ij}x_j|}{\sum_{j=1}^{n} |a_{ij}x_j|}$$

23/32

To achieve a backward error of order ε , must control the ratios $\phi_{ik} = \frac{\sum_{a_{ij}x_j \in B_{ik}} |a_{ij}x_j|}{\sum_{j=1}^{n} |a_{ij}x_j|} \Rightarrow$ explicit rule for building the buckets B_{ik}

To achieve a backward error of order ε , must control the ratios $\phi_{ik} = \frac{\sum_{a_{ij}x_j \in B_{ik}} |a_{ij}x_j|}{\sum_{i=1}^n |a_{ij}x_j|}$ \Rightarrow explicit rule for building the buckets B_{ik} Matrix: lund a 100 10⁰ Cost wrt uniform precision (%)80 10⁻⁵ 60 Ieasured 40 10⁻¹⁰ 20 -Cost (%) 10⁻¹⁵ -Error 0 10⁻¹⁵ 10⁻¹⁰ 10⁻⁵ 10⁰ Prescribed error

To achieve a backward error of order ε , must control the ratios $\phi_{ik} = \frac{\sum_{a_{ij}x_j \in B_{ik}} |a_{ij}x_j|}{\sum_{j=1}^{n} |a_{ij}x_j|} \Rightarrow$ explicit rule for building the buckets B_{ik}

Data sparse matrices

 Data sparse matrices possess a block low rank structure: a block B represents the interaction between two subdomains ⇒ singular values decay rapidly for far away subdomains

Block low rank (BLR) matrices use a flat 2D block partitioning Amestoy et al. (2015)

Example of a BLR matrix (Schur complement of a 64^3 Poisson problem with block size 128)

• Diagonal blocks are full rank

- Off-diagonal blocks A_{ij} are approximated by low-rank blocks T_{ij} satisfying $||A_{ij} - T_{ij}|| \le \varepsilon ||A||$
- ε controls the backward error of BLR
 LU Higham and M. (2021)

Data-driven mixed precision BLR matrices

Idea: store blocks far away from the diagonal in lower precisions Abdulah et al. (2019) Doucet et al. (2019) Abdulah et al. (2021)

- double
- single
- half

Data-driven mixed precision BLR matrices

Idea: store blocks far away from the diagonal in lower precisions Abdulah et al. (2019) Doucet et al. (2019) Abdulah et al. (2021)

- double
- single
- half

Analysis:

• Converting A_{ij} to precision \mathbf{u}_{low} introduces an error $\mathbf{u}_{low} \|A_{ij}\|$

 \Rightarrow If $||A_{ij}|| \le \varepsilon ||A|| / \mathbf{u}_{low}$, block can be safely stored in precision \mathbf{u}_{low}

Data-driven mixed precision BLR matrices

Idea: store blocks far away from the diagonal in lower precisions Abdulah et al. (2019) Doucet et al. (2019) Abdulah et al. (2021)

- double
- single
- half

Analysis:

• Converting A_{ij} to precision \mathbf{u}_{low} introduces an error $\mathbf{u}_{low} \|A_{ij}\|$

 \Rightarrow If $||A_{ij}|| \le \varepsilon ||A|| / \mathbf{u}_{low}$, block can be safely stored in precision \mathbf{u}_{low}

Data-driven mixed precision low rank compression

• Low-rank compress based on, e.g., SVD: $\Rightarrow ||B - U\Sigma V^T|| \le \varepsilon$, everything stored in **double precision**

Data-driven mixed precision low rank compression

- Low-rank compress based on, e.g., SVD: $\Rightarrow ||B U\Sigma V^T|| \le \varepsilon$, everything stored in **double precision**
- Mixed precision compression: partition the SVD into several groups of different precision
- Converting U_i and V_i to precision u_i introduces error proportional $u_i ||\Sigma_i||$

Data-driven mixed precision low rank compression

- Low-rank compress based on, e.g., SVD: $\Rightarrow ||B U\Sigma V^T|| \le \varepsilon$, everything stored in **double precision**
- Mixed precision compression: partition the SVD into several groups of different precision
- Converting U_i and V_i to precision u_i introduces error proportional $u_i ||\Sigma_i||$
- \Rightarrow Need to partition Σ such that $\|\Sigma_i\| \leq \varepsilon/u_i$

Back to mixed precision BLR matrices

- double
- single
- half

Back to mixed precision BLR matrices

- single \Rightarrow single/half
- half

Results with mixed precision BLR LU

30/32

🖹 Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L'Excellent, M. (2021)
Compute MP-BLR approximation $M \approx A$ using MP-SVD on each block Solve $Mx_1 = b$ with MP-LU factorization for i = 1: nsteps do $r_i = b - Ax_i$ with MP-SpMV Solve $Ad_i = r_i$ with MP-GMRES, using MP-preconditioner and MP-SpMV $x_{i+1} = x_i + d_i$ (in uniform precision!) end for

Conclusion: take-home messages

- Numerical linear algebra is **full of opportunities** for mixed precision arithmetic
- Expert knowledge of the algorithms is crucial: need for cross-disciplinary research in linear algebra, numerical analysis, and computer arithmetic
- Rounding **error analysis is a precious guide** to the mixed precision practitioner
- Should adapt precisions to the data at hand: **data-driven mixed precision computing**

Slides available at https://bit.ly/arith21 (references are clickable)