A Quick Introduction to C++ Programming

Julien Tierny

Abstract These are brief notes for a quick introduction to C++ programming. For
conciseness, only the key concepts are presented. For further readings, see [1].

1 Basics

1.1 Programming

e Program: sequence of instructions (cooking recipe);
e Interpreted VS Compiled programs:

— Compiled program: the code is transformed into a set of low level instructions
that the CPU can directly understand (binary file);
— Interpreted program: the program is analyzed, interpreted and transformed on
the fly;
— Examples:
Interpreted: Bash, Perl, Python, Matlab, Java, Ruby, etc;
Compiled: C, C++, ObjectiveC, Fortran, etc.
— Comparison: Compiled program are MUCH faster.

1.2 The C++ language

e Invented in 1982 by Bjarne Stroustrup;
e Successor of the C language (1969, Dennis Ritchie);

Julien Tierny
CNRS LIP6, Sorbonne Universites; CNRS LTCI, Telecom ParisTech; France.
e-mail: julien.tierny@lip6.fr

julien.tierny@lip6.fr

2 Julien Tierny

e Pros:

Fast compiled language;

— General purpose programming language;
Highly portable (pretty much any processor);
Object-oriented: well suited for large programs;
— WIDELY used (lots of additional libraries);

e Cons:

— Often considered as a difficult language to learn.

1.3 My First C++ program

#include <=iostream

using std;

**argv) {
cout =<

_ return 0;

Fig. 1 A simple C++ program that prints “Hello world”.

e Edit a file called main. cpp;
e It must at least include:

— int main(int argc, char *xargv) {
- // Some code here
— return 0;
-}
e In general, one line = one instruction;
e Each instruction line MUST end with the character ““; ”;
e Comments (text which is not executed) must be preceded by “/ /”’;

A Quick Introduction to C++ Programming 3

2 Setting up a C++ program

2.1 Compilation

e C++ source codes are translated into binary executable files through a process
called Compilation;

e The output binary file contains low level instructions that are directly executable
by the CPU;

e In our exercises, the program in charge of the compilation, called a compiler, will
be gcc.

2.2 Libraries

e It is possible to call from your C++ program external functionalities that have
been programmed by a third-party independently;

e External functionalities are implemented in “/ibraries*, which can be understood
as program building blocks;

e Libraries are C++ functions that have been compiled. Independently, they cannot
be executed. They need to be called by a C++ program to be executed.

e A C++ program that makes use of a library needs, after compilation into a binary
file, to be linked to the binary files of the libraries it uses. The linking process is
done by programs such as 1d.

e An example of library (that we will use in our exercises) is the Visualization
Tool Kit (VTK, http://www.vtk.org), which already implements many interesting
visualization features.

e To use an external library from a C++ program:

— One needs to include a header file (+ .h) which formally describes (from a
C++ perspectives) the functionalities of the library;
— InFigure 1, such an inclusion happens with the line #include <iostream>.

2.3 Building Instructions

e In general, a C++ program is made of a large number of source (x .cpp) and
header (* . h) files and links to several libraries.

e Then compiling a code and linking it to its libraries with low level programs such
as gcc and 1d can be a very tedious task for a developer.

e Moreover, depending on the operating systems (Windows, Linux, MacOs, etc.),
libraries can be installed in different paths, which challenges even more the com-
pilation of a given program;

http://www.vtk.org

4 Julien Tierny

e To simplify the compilation of C++ programs and to make this process easily
portable (to be able to easily compile a program on Windows and Linux), com-
pilation instruction systems have been developed. In our exercise, we will use
cmake (http://www.cmake.org).

e For each C++ program, a file called CMakeLists.txt needs to be edited;

Fig. 2 CMakeLists.txt file for building the program shown in Figure 1.

cmake_minimum_required(VERSIO!
project (1

set (CMAKE_BUILD TYPE

Fig. 3 CMakeLists.txt file for building one of the programs of the exercises.

e Two examples of CMakeLists.txt files are given:

— Figure 2: This file contains the building instructions for the simple pro-
gram shown in Figure 1. It specifies the name of the executable program file
(myFirstProgram) and specifies which C++ source files should be con-
sidered for compilation.

http://www.cmake.org

A Quick Introduction to C++ Programming 5

— Figure 3 shows the CMakeLists.txt file for a more complex program
(used later in the exercices). In particular, with the find package com-
mand, the paths where the VTK libraries files are installed are automatically
identitied. Several x . cpp source files are considered and the instructions for
the linking to the VTK library are set with the command target_link_libraries.

e Then under Linux for example, to compile the program, enter the directory con-
taining the file CMakeLists.txt and enter following command (omit the $
character):

— $ cmake . && make

2.4 Integrated Development Environment

VI: INSERT MODE

Fig. 4 Screenshot of the KDevelop IDE with the simple C++ program of Figure 1.

e Integrated Development Environments (IDE) are programs that enable program
developers to easily write, debug and execute code.

e Popular examples of IDEs are: MicroSoft Visual Studio, XCode, Eclipse, Net-
beans, KDevelop, etc.
In our exercises, we will use the KDevelop IDE;
A screenshot of KDevelop for the simple C++ program of Figure 1 is shown in
Figure 4:

— To compile your program, click on the ”Build* button (top left);
— To execute your program, click on the ”Execute* button (top left);

6 Julien Tierny

— The banner on the left shows the different C++ files (* . cpp and * . h) used
in the program;
— The central banner consists of a text editor for editing source files (* . cpp
and * .h):
This editor provides syntactic coloring as well as auto-completion;
— The bottom banner shows the result of the execution of the program ("Hello
world!* is printed on the output);
- KDevelop also provides a debugging mode:
To execute your program in Debug mode, click on the ”Debug* button (top
left);
Debug mode enables you to pause (and later resume) the execution of your
program at specific execution lines, called "breakpoints*;
An example of breakpoint is given at the execution line colored in red (with
a red marker on the left margin);
Pausing the execution of a program in Debug mode enables to inspect the
values taken by the variables of a program at specific points of the execu-
tion and better understand the behavior of a program.

Important Note: In the exercises, a skeleton of code will be provided to you in
KDevelop. This means you will not have to create your own CMakeLists.txt
file. To compile your program, you’ll only need to click on the ”Build*“ button of
KDevelop. Moreover, you will only be asked to complete portions of existing code
(no start from scratch).

3 Basic Types and Operators

3.1 Variables

e To store some information inside a program, one needs to use variables;
e Variables are defined with a specific rype, for example:

— Dbool for booleans (variables that can only take the values t rue or false);
— 1int for integer values;

— double for real values (double floating point precision);

— string for character string (words and sentences);

99,99

e Variables need to be declared with an instruction line, ending by ”*;
by a type specification, as shown in Figure 5;

e It is a good practice to initialize variables with an initial value, as showcased in
Figure 5;

e It is also a good practice to use explicit variable names. Another person should
understand, when reading the name of your variable, what information it stores.

and starting

A Quick Introduction to C++ Programming 7

argc, **argv) {

myBooleanVariable = false;

myIntegerVariable

myRealVariable

string mySringVariable

cout <<

return
1
g

Fig. 5 Examples of variable definitions.

3.2 Operators

Several operators exist to apply operations on variables;
Of particular importance is the assignment operator =:

— int myIntegerVariable = 5;

will assign the value 5 to the variable myIntegervVariable;
Common operators include +, —, *, /;
For example:
int myVariableO = 5;
int myVariablel = 2;
int myVariable?2
myVariable2 = myVariableO x myVariablel;
will assign the value 10 to myVariable?2 (5 * 2);
e Specific operators enable to increment or decrement the content of variables:

|
o
~.

— ++ increments the content of a variable;

— —— decrements the content of a variable:
int myIntegerVariable = 0;
myIntegerVariable++;

8 Julien Tierny

// myIntegerVariable now contains 1
myIntegerVariable——;
// myIntegerVariable now contains 0 again

4 Control Structures

4.1 Conditions

Fig. 6 Example of usage of the i £ condition control structure.

e In a program, some instructions may need to be executed only if certain condi-
tions are fulfilled;
To verify if a condition is fulfilled, one needs to use the control structure if;
Figure 6 shows a basic example of usage of the i f condition control structure:

— Note the { } characters, which delimit the instructions that should be exe-
cuted if the condition is fulfilled;
— Note the presence of parenthesis to delimit conditions.

e Several condition operators can be used in conjunction with a i £ condition:

— == checks if two expressions are equal (cf. Figure 6);

— 1= checks if two expressions are different;

— < checks if one expression is lower than the other;

— <= checks if one expression is lower or equal to the other;
— > checks if one expression is higher than the other;

— >= checks if one expression is higher or equal to the other.

e Several conditions can be checked simultaneously (as showcased in Figure 7):

— &&: Both conditions need to be fulfilled (AND);
— | | : At least one condition needs to be fulfilled (OR).

A Quick Introduction to C++ Programming 9

Fig. 7 1if control structure with multiple conditions.

4.2 Iterations

Fig. 8 Example of simple for loop: the program iterates from 0 to 9 (included) and prints out a
specific message in the first 5 iterations and another in the last 5 iterations.

e Within a program, it is often useful to iterate over a set of elements, to apply a
specific processing to each item;
e Several control structures exist for iterating over a set:

— for loops:
- This control structure enables to iterate over a sequence and to apply spe-
cific instructions at each iteration;
An example is given in Figure 8;
The specification of the starting, stopping and iteration conditions of a for
loop is done as follows (see Figure 8):
- First the starting condition needs to be specified (int i = 0). Note
that an iteration variable (here i) can be declared on the fly;
Second, the stopping condition needs to specified (1 < 10);
Last, the iteration condition needs to be specified (1++);
Conditions are separated by ”; .
— while loop:
This control structure enables to repeat some instructions, while a specific
condition is fulfilled, as shown in Figure 9;

10 Julien Tierny

Fig. 9 Example of while loop.

In contrast to for loops, while loops are especially useful when clear
stopping conditions can be specified although the number of iterations is
not known a priori.

5 Functions

e In order to make a C++ source code easier to read and more re-usable, one should
organize code sections into functions;

e Functions are sets of instructions that can be called several times within a pro-
gram;

e Functions can take arguments and return a result. Both arguments and result type
must be specified in the function declaration;

e Figure 10 shows an example of function implementation and usage.

— The specification of the function (return type, name, arguments) happens line
12;

— The instructions related to the function are listed from line 14 to 20;

— Notice the presence of the keyword return, which is meant to return the
result to the calling context;

— Notice the characters { }, which delimit the instruction lines dedicated to the
function;

— Line 29 shows a usage example of the function.

e Note that arguments (in our example two integer variables called basis and
exponent) are local variables, which only live during the execution of the func-
tion. They cannot be reached from outside the function (see the demo).

6 Addressing

e In many scenarios, it may be useful not to manipulate variables, but addresses to
variables;
e For instance, in the example of Figure 10:

A Quick Introduction to C++ Programming 11

{ basis, exponent) {

result =

*targv) {

return
1
I

Fig. 10 Example of function implementation (from line 12 to 21) and usage (line 29).

— The arguments of the function (basis and exponent) are local variables:
they are created when the execution flow enters the function (line 12) and they
are destroyed when it leaves the function (line 21);

— Thus, the variables store copies of the initial values stored in the variables
myBasis and myExponent;

— Sometimes, function arguments can be of a much complex nature than a single
integer and their storage may require a lot of memory;

— To overcome this issue (for instance, when passing arguments to a function),
one can only provide the address in memory of the variable, instead of creating
a full copy of it (which will consequently save a lot of memory);

— Variable addresses can be handled in two ways in C++:

1. with References;
2. with Pointers;

12 Julien Tierny

{ &hasis, Sexponent) {

result =

**argv) {

myBasis H
myExponent =

Fig. 11 Example of Figure 10, but with references for the handling of the arguments of the func-
tion.

6.1 References

References are the simplest way to handle variable addresses in C++;
Figure 11 shows the example of Figure 10, but with references to variables in-
stead of full copies:

— To declare a reference, one needs to add the character & in front of the variable
name (see line 12);

— To use a reference to a variable, one proceeds exactly “as-if** the variable was
a full copy. In other words, using a reference to a variable looks exactly the
same as if one was using the variable itself (see the content of the function
from lines 13 to 21 which has not change).

— Internally, using a reference as shown in Figure 11 will avoid the creation of
new variables and full copies of the content of the arguments.

e In general, unless a more subtle addressing is needed, it is a good practice to only
pass arguments to functions with references.

A Quick Introduction to C++ Programming 13

6.2 Pointers

(*hasis, *exponent) {

result =

arge, *argv) {

return
1
I

Fig. 12 Example of Figure 10, but with pointers for the handling of the arguments of the function.

References are the easiest way to address variables;
However, references have a few restrictions which prevent a more subtle variable
addressing;

e For an advanced addressing, one needs to use Pointers:

— Figure 12 shows the example of Figure 10, but with pointers to variables in-
stead of full copies:

Pointers can be understood as a special type of variable, which stores the
address in memory of another variable of a specific type;
To declare a pointer, one needs to add the character in front of the vari-
able name (see line 12);
To use a pointer to a variable, one needs to add the character * in front of
the variable name, each time, to explicitly refer not the pointer itself, but to
the variable it points to (see lines 16 and 17);

14 Julien Tierny

To make the code more readable, it is often a good practice to use paren-
theses too (see lines 16 and 17);
To assign the address of a variable to a pointer, one needs to use the char-
acter & in front of the variable name:
Line 29, the addresses in memory of the variable myBasis and
myExponent are passed as argument to the function, by using this
extra character.

7 Object Oriented Programming

e Object-oriented programming is the main concept that differentiates the language
C++ from its predecessor C;

e The object-oriented programming paradigm enables developers to create new
types (called classes) which contain both variables and functions altogether;

e The instances of a class (called objects instead of variables) thus contain their
own information, and actions on this information can be triggered by calling the
object’s functions.

e Object-oriented programming also includes many features (such as inheritance
and polymorphism) which enables to design highly re-usable code.

7.1 Header file (*.h)

Each new class must be specified through a specific process;
Usually, it is a good practice to write the specification of each class in a separate
header file (x . h);

e Figure 13 shows an example of class specification:

— A header file should start with the pre-processor instruction #pragma once
(line 8);
— The specification of a class starts with the keyword class, followed by its
name (here Computer, line 13);
— The remainder of the specification is written in between the characters { };
— The specification of a class is divided into 3 sections:
public: This section specifies functions and variables that are accessible
to everyone;
protected: This section specifies functions and variables that are only
accessible to the class itself and other inheriting (derived) classes;
private: This section specifies functions and variables that are only
accessible to the class itself.
— Two special functions should always be implemented:

A Quick Introduction to C++ Programming 15

ilostream
using

class

public:

memory ., cpuFrequency ., hardbDiskCapacity_;

turnedon_;

Fig. 13 Specification of a class in a header file.

The constructor (specified line 18): this is the function that is called by
the system when an object of the class is created. Usually, one sets default
parameters in this function and allocate memory if needed. The name of
the constructor always corresponds to that of the class;
The destructor (specified line 21): this is the function that is called by the
system when an object of the class is destroyed. Usually, one frees the
memory dynamically allocated to the object in this function. The name
of the destructor always corresponds to that of the class, preceded by the
character 7~
— In our example, a few variables are defined (these can be public, protected or
private). A good practice is to name them with a distinctive character (to easily
distinguish them from local variables later on). In this example, the character

EEINT3

_“1is used at the end of the variable name;

16 Julien Tierny

_ return

. return

Fig. 14 Implementation of the class specified in Figure 13.

7.2 Implementation file (*.cpp)

e Classes are implemented in = . cpp files:

— This file contains the implementation of the functions which have been de-
clared in the corresponding * . h file.

e An example of class implementation is given in Figure 14:

— A class implementation file should start with the following pre-processor in-
struction #include <MyClassSpecification.h> (here line 8)in or-
der for the compiler to load the class specification in memory;

— Then, the remainder of the class is meant to implement the functions defined
in the header file:

Each function implementation should be formatted as follows:

A Quick Introduction to C++ Programming 17

Return type (if any);
Class name followed by ”: :”;
Function name;
Parenthesis (with arguments inside, if any);
Brackets (“{” and “}”) with the function instructions in between;
If the function has a return type, then it should return a value with the
keyword return (line 39 for instance).
— Note that neither the constructor nor the destructor have return types.

7.3 Usage

#include Computer,

argc, **argv) {
myComputer;
myComputer. $F

_ return ©;

Fig. 15 Usage example for the class specified and implemented in Figures 13 and 14 respectively.

e An example of class usage is given in Figure 15:

— To use a class, one first needs to indicate to the compiler where this class is
specified (in which header file). This is done with the pre-processor command
#include <MyClassSpecification.h> (line 8 in the example);

— Then, one can declare an object as any other variable (line 12) by specifying
its class (type) and a variable name (here myComputer);

— Finally, to call the functions of the object or access its variables, one needs
to write the name of the object, followed by the “.” character, followed by
the name of the variable or the name of the function (with parenthesis and
arguments if any, line 14).

18

d U

d

public

batteryLevel ;

P=1
a4
5
E

J

Computer.h

: public

(b)

Fig. 16 Examples of classes that specialize the inherited class of Figure 13.

Julien Tierny

A Quick Introduction to C++ Programming 19

7.4 Inheritance

e One of the key-concepts of object-oriented programming is the notion of inheri-
tance;

e This enables to easily define new classes, that are derived from others without
having to re-write all of the common features.

e Figures 16(a) and 16(b) provide examples of classes that inherit from another:

— The key idea of inheritance is that a given class (for instance the Computer
class) can be specialized:
One can derive a new class (here Lapt op) that specializes the description
and behavior of the parent class:
In particular, a laptop is a special type of computer that has a battery
(hence the new private variable batteryLevel.);
Thanks to the mechanism of inheritance, one does not need to re-write
all the features of the parent class (Computer) but only those which are
specific to the child class (here Laptop or Desktop).
— To specify a class that inherits from another, one should proceed as follows
(see Figure 16(a)):
- One needs to include the header file of the parent class (line 9);
In the class definition, one needs to specify the inheritance, for example by
adding the following keywords line 11: “: public Computer”;
Then, one can add new variables (line 28), new functions (line 20) or re-
place functions that already exist in the parent class (line 18).

e Figures 17(a) and 17(b) provide two examples of implementations of the inher-
iting classes specified in Figures 16(a) and 16(b):

— The implementation of an inherited class happens exactly the same way as an
ordinary class;

— Only the new and modified functions need to be implemented. For instance,
the function turnOff () is the same for a laptop or a desktop computer.
Hence, there is no need to re-implement this function in the inherited classes;

— In these examples, the inherited class are specialized as follows:

Laptop:

- A laptop is special computer with specific CPU and memory charac-
teristics (see the constructor, line 10 to 14);
A laptop is equipped with a battery, whose level decreases after usage
(see line 26);
A laptop requires to have a certain level of battery in order to boot
(lines 18 to 24);

Desktop:
A Desktop is a special type of computer which does not have a battery;
Usually, a keyboard is required to be plugged in for the desktop com-
puter to boot (line 25).

20

d U

d

#include

P=1
4
g
=

J

#include

return C;

return ©;

(b)

Fig. 17 Examples of implementation of inherited classes.

Julien Tierny

A Quick Introduction to C++ Programming 21

— Note that, laptops and desktops have specific booting procedures (functions

turnOn ()):

- The laptop checks for the battery level prior to booting;
The desktop checks for the presence of a keyboard prior to booting;
After these verifications, both computers boot the same way. Hence, both
implementations call the turnOn () function of the parent class (Computer).
In C++, calling a parent class’s function is done as follows:
ParentClassName: : function () (see line 23 of Figure 17(a) and
line 26 of Figure 17(b)).

7.5 Polymorphism

]
£l
4
c
P
7

_ return ©;

Fi

[

g. 18 Example of polymorphism usage.

e Another appealing aspect of object-oriented programming is Polymorphism,
which provides additional mechanisms to easily write general-purpose code;
e Figure 18 shows an example of polymorphism example:

— A Desktop and a Laptop object are declared (line 14 and 15);

— Then Computer pointers are declared and initialized on the addresses of the
laptop and of the desktop (lines 17 and 18);

— Thanks to polymorphism, when calling the function turnOn () on these
two Computer objects, the system will automatically trigger the appropriate
functions:

22 Julien Tierny

line 20: the function Desktop: : turnOn () will be automatically called;
line 21: the function Laptop: : turnOn () will be automatically called;

— Polymorphism is extremely useful in the development of large software, since
it enables to process in a consistent manner several types of objects derived
from a common class, while still automatically handling the specificities of
the classes (here the booting procedure);

— Note that to trigger this polymorphic behavior on the function turnOn (),
it has to be declared as a virtual function in the parent class (line 23 of
Figure 13). This means that the implementation of this function might be spe-
cialized in the children classes.

8 Standard Template Library

AL ESATN]

#include

mput

i return ©;

Fig. 19 Example of usage of a vector container for the example given in Figure 18.

e The Standard Template Library (STL) is a standard C++ library which provides
many interesting features on top of the original C++ language;
It provides ready-to-use generic basic classes that are extremely useful;
Among its key features, the STL provides many basic algorithms (for instance,
the sorting of a list of values) as well as containers;

A Quick Introduction to C++ Programming 23

e Containers are very useful classes that are simply meant to contain other classes;
e Figure 19 provides an example of usage of such a container:

— In particular, the vector container is used:
A vector is simply a dynamic array of objects;
To use the vector container, one first needs to include its corresponding
header file (line 8);
To define a vector, one needs to use the following syntax:
vector<MyClass> myVector;
Then, one can add elements to this array. For instance with the function
push_back () which adds an item to the end of the array;
In this example, we are building an array of pointers to computers;
Then, one can simply iterate over the array to boot each of these computers.
This is done with a for loop (line 24), by iterating from O to the size of
the array (which is given by the function size ());
To access the i"” element of a vector, one proceeds as follows: myVector [i]
(by using the “[” and “] “ characters);

e Other examples of containers provided by the STL include:

— padir: for pairs only of objects;

— queue: for priority queues of objects;

— set: for dynamically sorted lists of objects;

— map: for an efficient implementation of a mapping from one set of objects to
another;

— eftc.

e The STL library is extremely well documented, so do not hesitate to check its
documentation online, both to have a view of the list of classes it provides and to
understand how to use their functions:

— http://www.cplusplus.com/reference/

9 Input/Output Streams

e The reading of information from the hard drive disk and the writing to the disk is
achieved in C++ with the notion of stream;
A stream is special class of object that can receive (or generate) a flow of data;
Two specific examples of streams have been used so far in the examples of this
document:

— cout: this symbolic stream represents the console output of the program.
It has been used in our examples to print a message in the console (as off
Figure 1);

— cerr: this symbolic stream represents the errors sent to the calling console
(used in Figure 17(a) line 19 for instance);

http://www.cplusplus.com/reference/

24 Julien Tierny

— To use these specific streams, one needs to include the header iostream
(see Figure 1, top).

e To receive data from a stream and to store it into a variable, one needs to use the
operator >>;
e To send data from a variable to a stream, one needs to use the operator <<.

9.1 ASCII file streams

file cpuFrequen
file :

file hard
file

file.

~ return 0;

Fig. 20 Example of usage of output file streams to store information into a text file.

e To use input/output file streams, one needs to include the corresponding header:
#include <fstream>;

e Figure 20 shows an example that makes use of file streams to store some infor-
mation into a text file (ASCII, that can be read with any text editor):

— In this example, a new function (writeAsciiConfiguration) has been
added to the class Computer;
— This function saves the configuration of the computer (CPU frequency, RAM
memory and HDD capacity) to a text file, as follows:
One first needs to declare an object of the class of st ream (Coutput file
stream®, line 75). This declaration must be initialized with the following
arguments:
Path to the file to write (fileName.data ());
Access mode (here writing in ASCII: ios: :out).
Then from lines 77 to 84, the content of the variables of the Computer
class are sent to the stream with the operator <<;
Note that the end of line character (endl) is also sent to delimit each
variable in the output text file;

A Quick Introduction to C++ Programming 25

Finally, the stream needs to be closed (line 86).

(string &fileName){
ifstream file(fileName. (), los::in);
file
file
file

file.

_ return ©O;

Fig. 21 Example of usage of the input file streams to read information from a text file.

e Figure 21 shows an example that makes use of file streams to read some infor-
mation from a text file:

— In this example, a new function (readAsciiConfiguration) has been
added to the class Computer;
— This function loads the configuration of the computer from a text file, as fol-
lows:
One first needs to declare an object of the class ifstream (Vinput file
stream®, line 26). This declaration must be initialized with the following
arguments:
Path to the file to read (fileName.data ());
Access mode (here reading in ASCII: 1os: :in).
Then, from line 28 to 32, the content of the file is read and stored into the
corresponding variables with the operator >>;
Finally, the stream needs to be closed (line 34).

9.2 Binary file streams

e One can also use these file streams to handle binary files. In contrast to ASCII
files, which can only support text information (thus requiring an implicit conver-
sion, and possibly lack of precision), binary files enable to store the exact content
of the variable (as it is represented in memory) to a file;

The usage of binary file streams is highly similar to that of ASCII file streams;
The following differences should be noted:

— One should initialize the file streams in binary mode by adding the keywords
”| ios::binary* to the access mode parameter (line 93 of Figure22(a)
and line 41 of Figure22(b));

26 Julien Tierny

ream file(f

return 0;

{string &fileNa
ifstream file(fileName, (), ios::in | ios::binary);
file.
fi

file.

return 0;

(b)

Fig. 22 Example of usage of binary file streams for the examples shown in Figures 20 and 21.

— It is preferable to use specific functions for the reading/writing of binary in-
formation:
write (line 95 to 97 of Figure 22(a)): this function takes the following
arguments:
A pointer to the variable which will send the information;
The number of bytes that should be written to file. In our example, we
write variables one by one. Thus each call to the function writes the
size of a double (which is given by sizeof (double)).
read (line 43 to 45 of Figure 22(b)): this function takes the same argu-
ments as the function write.

References

1. B. Stroustrup. The C++ Programming Language, 4th Edition. Addison-Wesley, 2013.

	A Quick Introduction to C++ Programming
	Julien Tierny
	Basics
	Programming
	The C++ language
	My First C++ program

	Setting up a C++ program
	Compilation
	Libraries
	Building Instructions
	Integrated Development Environment

	Basic Types and Operators
	Variables
	Operators

	Control Structures
	Conditions
	Iterations

	Functions
	Addressing
	References
	Pointers

	Object Oriented Programming
	Header file (*.h)
	Implementation file (*.cpp)
	Usage
	Inheritance
	Polymorphism

	Standard Template Library
	Input/Output Streams
	ASCII file streams
	Binary file streams

	References

