Inspired Quadrangulation - Appendix

Julien Tierny ${ }^{1}$ Joel Daniels II ${ }^{2}$ Luis G. Nonato ${ }^{3}$ Valerio Pascucci ${ }^{2}$ Claudio T. Silva ${ }^{2,4}$

Appendix A. 2D ARAP MLS transformation gradient

$$
\begin{equation*}
\widehat{\psi}_{R}(x)=q_{*}+\frac{\sum_{i} \hat{q}_{i} A_{i}}{\mu_{R}} \tag{A.3}
\end{equation*}
$$

We provide an analytic expression of the gradient of as-rigid-as-possible planar maps, for a given constraint q_{k}. A closedform formula for planar similarities is provided in [1]. For some given constraints p_{i} and their mapping $q_{i}=\widehat{\psi}_{S}\left(p_{i}\right)$, for each $x \in \mathcal{D}$ with (u, v) coordinate, the similarity transformation, noted $\widehat{\psi}_{S}$, is given by:

$$
\widehat{\psi}_{S}(x)=q_{*}+\frac{\sum_{i} w_{i} \hat{q}_{i}\binom{\hat{p}_{i}}{-\hat{p}_{i}}\binom{x-p_{*}}{-\left(x-p_{*}\right)^{\perp}}^{T}}{\mu_{S}}
$$

where $w_{i}=\frac{1}{\left(p_{i}-x\right)^{2}}, p_{*}=\frac{\sum_{i} w_{i} p_{i}}{\sum_{i} w_{i}}, q_{*}=\frac{\sum_{i} w_{i} q_{i}}{\sum_{i} w_{i}}, \hat{p}_{i}=$ $p_{i}-p_{*}$ and $\hat{q}_{i}=q_{i}-q_{*},{ }^{T}$ denotes the transpose and $(u, v)^{\perp}=$ $(-v, u)$ and $\mu_{S}=\sum_{i} w_{i} \hat{p}_{i} \hat{p}_{i}^{T}$

A theorem is provided in [1], noticing that if locally the similarity can be re-written as a rotation matrix, it minimizes the energy functional of rigid transformations (see theorem 2.1). Then, the closed-form formula for planar ARAP transformations $\widehat{\psi}_{R}$ is the same as Eq. A.1, except that μ_{S} is switched for μ_{R} :

$$
\begin{equation*}
\mu_{R}=\sqrt{\left(\sum_{i} w_{i} \hat{q}_{i} \hat{p}_{i}^{T}\right)^{2}+\left(\sum_{i} w_{i} \hat{q}_{i} \hat{p}_{i}^{\perp T}\right)^{2}} \tag{A.2}
\end{equation*}
$$

For clarity, we derive the first component (u) of $\widehat{\psi}_{R}$, wrt $u(i)$, then wrt v (ii). The derivation of the second component (noted v) of the gradient is obtained similarly and will be omitted. $\widehat{\psi}_{R}$ can be re-written in the form:

[^0]where $A_{i}=w_{i}\binom{\hat{p}_{i}}{-\hat{p}_{i}{ }^{\perp}}\binom{x-p_{*}}{-\left(x-p_{*}\right)^{\perp}}^{T}=\left(\begin{array}{cc}a_{0}^{i} & a_{2}^{i} \\ a_{1}^{i} & a_{3}^{i}\end{array}\right)$ is an expression independent of q_{i} which can be pre-computed. Then, the u-component of $\nabla^{k}\left(\widehat{\psi}_{R}(x)\right)_{u}$, noted $\nabla_{u}^{k}\left(\widehat{\psi}_{R}(x)\right)_{u}$ is given by:

$$
\begin{aligned}
& \nabla_{u}^{k}\left(\widehat{\psi}_{R}(x)\right)_{u}=\nabla_{u}^{k} q_{u *} \\
& +\frac{\mu_{R} \nabla_{u}^{k}\left(\sum_{i} \hat{q}_{i} A_{i}\right)_{u}-\left(\sum_{i} \hat{q}_{i} A_{i}\right)_{u} \nabla_{u}^{k} \mu_{R}}{\mu_{R}^{2}}
\end{aligned}
$$

(A.4)

Notice μ_{R} is a scalar and ()$_{u}$ denotes the u-component of a vector. The derivation of $q_{u} *$ is straightforward (an infinitely small variation in $\left(q_{k}\right)_{u}$ will be multiplied by $\frac{w_{k}}{\sum_{i} w_{i}}$ while the v component remains unchanged):

$$
\begin{gather*}
\nabla^{k} q_{u *}=\left(\frac{w_{k}}{\sum_{i} w_{i}} 0\right) \tag{A.5}\\
\left(\sum_{i} \hat{q}_{i} A_{i}\right)_{u}=\sum_{i}\left(\left(\hat{q}_{i}\right)_{u} a_{0}^{i}+\left(\hat{q}_{i}\right)_{v} a_{1}^{i}\right) \tag{A.6}\\
\nabla_{u}^{k}\left(\sum_{i} \hat{q}_{i} A_{i}\right)_{u}=a_{0}^{k}-w_{k} \sum_{i} \frac{a_{0}^{i}}{\sum_{i} w_{i}} \tag{A.7}
\end{gather*}
$$

If we re-write μ_{R} as $\mu_{R}=\sqrt{\left(\mu_{0}^{2}+\mu_{1}^{2}\right)}$, then we have:

$$
\begin{array}{r}
\nabla_{u}^{k} \mu_{R}=\frac{1}{2}\left(\mu_{0}^{2}+\mu_{1}^{2}\right)^{-\frac{1}{2}}\left(2 \mu_{0} \nabla_{u}^{k} \mu_{0}+2 \mu_{1} \nabla_{u}^{k} \mu_{1}\right) \\
\mu_{0}=\sum_{i}\left(\left(\hat{q}_{i}\right)_{u}\left(\hat{p}_{i}\right)_{u}+\left(\hat{q}_{i}\right)_{v}\left(\hat{p}_{i}\right)_{v}\right) \\
\mu_{1}=\sum_{i}\left(\left(\hat{q_{i}}\right)_{u}\left(\hat{p}_{i}^{\perp}\right)_{u}+\left(\hat{q}_{i}\right)_{v}\left(\hat{p}_{i}^{\perp}\right)_{v}\right) \\
\nabla_{u}^{k} \mu_{0}=w_{k}\left(\hat{p_{k}}\right)_{u}-w_{k} \sum_{i} \frac{w_{i}\left(\hat{p_{i}}\right)_{u}}{\sum_{i} w_{i}}(\\
\nabla_{u}^{k} \mu_{1}=w_{k}\left(\hat{p}_{k}^{\perp}\right)_{u}-w_{k} \sum_{i} \frac{w_{i}\left(\hat{p}_{i}\right)_{u}}{\sum_{i} w_{i}}(\tag{A.12}
\end{array}
$$

Thus (i), $\nabla_{u}^{k}\left(\widehat{\psi}_{R}(x)\right)_{u}$ (Eq. A.4) can be computed by combining the equations A.5, A.7, A. 11 and A.12. Now, we need to derive again the u component of $\widehat{\psi}_{R}(x)$, but wrt v :

$$
\begin{align*}
& \nabla_{v}^{k}\left(\widehat{\psi}_{R}(x)\right)_{u}=\nabla_{v}^{k} q_{u *} \\
& +\frac{\mu_{R} \nabla_{v}^{k}\left(\sum_{i} \hat{q}_{i} A_{i}\right)_{u}-\left(\sum_{i} \hat{q}_{i} A_{i}\right)_{u} \nabla_{v}^{k} \mu_{R}}{\mu_{R}^{2}} \tag{A.13}
\end{align*}
$$

$$
\begin{gather*}
\nabla_{v}^{k}\left(\sum_{i} \hat{q}_{i} A_{i}\right)_{u}=a_{1}^{k}-w_{k} \sum_{i} \frac{a_{1}^{i}}{\sum_{i} w_{i}} \tag{A.14}\\
\nabla_{v}^{k} \mu_{0}=w_{k}\left(\hat{p_{k}}\right)_{v}-w_{k} \sum_{i} \frac{w_{i}\left(\hat{p_{i}}\right)_{v}}{\sum_{i} w_{i}} \tag{A.15}\\
\nabla_{v}^{k} \mu_{1}=w_{k}\left(\hat{p}_{k}^{\perp}\right)_{v}-w_{k} \sum_{i} \frac{w_{i}\left(\hat{p}_{i}^{\perp}\right)_{v}}{\sum_{i} w_{i}} \tag{A.16}
\end{gather*}
$$

Then (ii), $\nabla_{v}^{k}\left(\widehat{\psi}_{R}(x)\right)_{u}$ can be computed by combining the equations A.5, A.14, A. 15 and A. 16 into the equation A. 13. Finally, to complete the gradient computation, the v component of $\widehat{\psi}_{R}$ needs to be derived twice in the same manner: (i) with a small variation of q_{k} in u, (ii) with a small variation of q_{k} in v. We do not detail this derivation since it is highly similar to the derivations detailed above (a noticeable difference is that a_{0}^{i} and a_{1}^{i} need respectively to be switched for a_{2}^{i} and a_{3}^{i}, while the derivations of μ_{0} and μ_{1} do not change).
The computation of $\nabla \widehat{\psi}_{R}$ is very efficient. The following terms are computed offline (before the optimization), as soon as the p_{i} set is known: $w_{i}, \sum_{i} w_{i}, A_{i}, \hat{p_{i}}$ and $\hat{p}_{i}{ }^{\perp}$. The following terms are computed during the online reconstruction of $\widehat{\psi}_{R}: q_{i}$, μ_{R}, μ_{0} and μ_{1}. Thus, for a given constraint q_{k}, the gradient computation algorithm only needs to directly evaluate the right hand side of equations A.5, A.7, A.11, A.12, A.14, A. 15 A.16, and A. 8 (plus the same operations for the derivation of the v component of $\widehat{\psi}_{R}$). In practice, this is achieved in twice the time necessary to reconstruct the map online.

References

[1] S. Schaefer, T. McPhail, J. Warren, Image deformation using moving least squares, ACM Trans. Graph. (SIGGRAPH) 25 (2006) 533-540.

[^0]: Email addresses: tierny@telecom-paristech.fr (Julien Tierny), jdaniels@sci.utah.edu (Joel Daniels II), gnonato@icmc.usp.br (Luis G. Nonato), pascucci@sci.utah.edu (Valerio Pascucci), csilva@nyu.edu (Claudio T. Silva).
 ${ }^{1}$ CNRS - LTCI - Telecom ParisTech
 ${ }^{2}$ SCI Institute - University of Utah
 ${ }^{3}$ ICMC - Universidade de Sao Paulo
 ${ }^{4}$ NYU-Poly

