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Figure 1. Main steps of presented method on a standard model.

Abstract 1. Introduction

] ) -~ Polygonal mesh is a widely used representation of 3D

This paper descrlb_es a novgl ar_u_j ur_uﬂed approach for shapes, mainly for exchange and display purposes. How-
Re_et? graph constru_ctlon and simplification as well as con- ever, many applications in computer graphics need higher
striction approximation on 3D polygonal meshes. The key |gye| shape descriptions as an input. Topological sketeton
idea of our algorithm is thadliscrete contours curves car- - paye shown to be interesting shape descriptions [2]. They
ried by the edges of the mesh and approximating the con-penefit diverse fields like shape metamorphosis, deforma-
tinuous contours of a mapping function — encode both topo- i [13], retrieval [10], texture mapping, etc.
logical and geometrical shape characteristics. Many topological approaches study the properties of real

Firstly, mesh feature points are computed. Then they are Valued functions computed over triangulated surfaces tMos
used as geodesic origins for the computation of an invari- of the time, those functions are provided by the application

ant mapping function that reveals the shape most significantc®Ntext, such as scientific data analysis [4]. When deal-
features. Secondly, for each vertex in the mestuigsrete N9 With topological skeletons, it is necessary to define an
contouris computed. As the set dfscrete contoursecov-  Invariant and visually interesting mapping function, whic
ers the whole surface, each of them can be analyzed, botff€Mains an openissue [2]. .

to detect topological changes or constrictions. Consiitt Moreover, traditional topological graph construction al-
approximations enable Reeb graphs refinement into moregorithms assume that all the information brought by the

visually meaningful skeletons, that we refer eshanced mapping function is pertinent, while in practice, this can
topological skeletons lead to large graphs [18, 5], encoding noisy details.

Finally, topological approaches cannot discriminate vi-
Without pre-processing stages and without input pa- sually interesting sub-parts of identified connected compo
rameters, our method provides nice-looking and affine- nents, like the phalanxes of a finger. This is detrimental to
invariant skeletons, with satisfactory execution timelsisT  certain applications, such as mesh deformation.
makes enhanced topological skeletons good candidates for |n this paper, we propose a novel and unified method
applications needing high level shape representatiorsh su  which addresses the above issues. Given a connected tri-
as mesh deformation (experimented in this paper), rettieva angulated surfac®, feature points are firstly extracted (fig.
compression, metamorphosis, etc. 1(a)) in order to compute an invariant mapping function,
notedf,, (fig. 1(b)), which reveals the shape most signifi-



cant parts. Secondly, for each vertex in the mesh, we com-description that highlights visually significant surfac#s
pute itsdiscrete contoura connected curve traversing itand components.
locally minimizing f,,, gradient. We show that a topological Lazarus and Verroust [12] introduced such a function,
analysis of thosdiscrete contourenables a pertinent Reeb  defined by thegeodesic distancé&he length of the short-
graph construction and simplification (fig. 1(c)), without est path between vertices) from a source vertex to any other
any input parameter. Finally, we show that a geometrical vertex in the mesh. It leads to visually interesting resioits
analysis ofdiscrete contoursan approximate constrictions natural objects because it is invariant to geometricalstran
on prominent components (fig. 1(d)), enabling the refine- formations and it is robust against variations in model pose
ment of Reeb graphs into enhanced topological skeletong11]. Due to a lack of stability, within the framework of
(fig. 1(e)). shape retrieval, Hilaga et al. [10] proposed to integraite th
This paper is structured as follows. Firstly, we introduce function all over the mesh. Unfortunately, from our experi-
topological skeleton related work. Secondly, we define our ence, that function generates an important amount of criti-
mapping functiory,,. Thirdly, we present our algorithm for  cal points, configurations where the gradient of the fumctio
discrete contourcomputation, which is used both for the vanishes, which makes the construction of visually mean-
Reeb graph construction and simplification as well as the ingful graphs more complex.

constriction approximation. Finally, we comment on exper-  In our method, to reveal the shape most significant fea-
imental results and discuss about possible applicatides, | tures, we focus on feature points. Feature points are mesh
mesh deformation (fig. 1(f)). vertices located on extremities of prominent components

[11]. Mortara and Patane [17] proposed to select as fea-
2 Related work tgre points the vertices_where Gaussian curvatu_re exceeds a
given threshold, but this cannot resolve extraction on con-
Several approaches have been explored for the de-stant curvature areas. Katz et al. [11] developed an algo-
composition of polygonal meshes into meaningful sub- rithm based on multi-dimensional scaling in quadratic exe-
components, to extract skeletal representations of shapes cution complexity. In this paper, we propose a robust and
In comparison to mesh segmentation [20] and traditional straightforward algorithm for feature point extractiorg(fi
skeleton extraction [3, 24], topological approaches, thase 1(&)). Moreover, we use them as geodesic origins for the
on Morse and Reeb graph theories [16, 19, 15], presentdefinition of our mapping function (fig. 1(b)). Such a func-
the advantage to preserve the topological properties of thetion well reveals the most visually significant parts of the
shape [2] (number of loops, number and relations betweenmesh, generating manageable critical point sets.
components, etc.). However, with regard to shape skele-
tons, we identify three main drawbacks in topological ap-
proaches, successively addressed in this paper. A Reeb graph [19] is a topological structure that encodes
Firstly, it is difficult to define an invariant and visually the connectivity relations of the critical points of a scala
interesting mapping function. Secondly, constructing and function defined on an input surface. More formally, Reeb
transforming a topological graph into a manageable skele-graphs are defined as follows:

ton is not a trivial problem. Finally, topological appro@sh  pafinition 1 (Reeb graph) Let f : M — R be a scalar

decompose a surface into connected sub-components only,,, ction defined on a compact manifdifl. The Reeb graph

This means that visually interesting sub-parts of idemtifie of f is the quotient space gfin M x R by the equivalence
connected components will not be discriminated: for exam- 4 5tion (91, f(p1)) ~ (p2, f(p2)), if and only if:

ple, a finger of a hand model will not be decomposed into

2.2. Graph construction and simplification

phalanxes. f(p1) = f(p2)
) ) p1 andps belong to the same connected
2.1. Mapping functions component of ~(f(p1))

Differential topology based approaches study the proper-  Figure 2 gives an example of a Reeb graph computed
ties of real valued functions, that we referraapping func-  on a bi-torus with regard to the height function and well
tions defined on input surfaces, either to construct Reebillustrates the fact that Reeb graphs can be used as skeleton
graphs [22, 6], contour trees [5], level set diagrams [12] or  Constructing a Reeb graph from a scalar funcfi@om-
Morse complexes [18, 4]. Those functions are often broughtputed on a triangulated surface first requires to identify
by the application context: terrain modeling [22], MRl anal the set of vertices corresponding to critical points. With
ysis [5], molecular analysis [4], etc. this aim, several formulations have been proposed [7, 23]

When dealing with topological skeletons, it is necessary to identify local maxima, minima and saddles, observ-
to define a scalar function which satisfies invariance anding for each vertex the evolution gf at its direct neigh-
stability constraints, and which also affords a topologica bors. Several algorithms have been developed to construct
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Figure 2. Evolution of the level lines of the
height function on a bi-torus, its critical
points and its Reeb graph.

Reeb graphs from the connectivity relations of these alitic
points [6, 5], most of them i (n x log(n)) steps, with

n the number of vertices in the mesh. However, they as-
sume that all the information brought by the scalar function
f is relevant [18, 5]. Consequently, they assume that all
the identified critical points are meaningful, while in prac

The algorithm proceeds in three stages. Firstly, mesh
feature points are extracted (fig. 1(a)) in order to compute
an invariant and visually interesting mapping function.(fig
1(b)), denotedf,, in the rest of the paper. Secondly, for
each vertex in the mesh, we computediscrete contoura
curve traversing it and approximatirfy, continuous con-
tour. Finally, as the set aliscrete contoursecovers the
entire mesh, it is possible to analyze each contour charac-
teristics, either to detect topological changes (fig. 1¢c))
to detect curvature transitions (fig. 1(d)).

Our scientific contribution resides in three point§)

We propose an original and straightforward algorithm for
feature point extraction. It can resolve extraction on con-
stant curvature areas — such as spheres — and it is robust
against variations in mesh sampling and model pqgg.

We show that aliscrete contouformulation enables, with-

out re-meshing and without any input parameter, a perti-
nent Reeb graph construction, providing visually meaning-
ful graphs, affine-invariant and robust to variations in mes
sampling. (iii) We show that the geometrical information

tice, this hypothesis can lead to unmanageably large ReEtbrought bydiscrete contourgnables the approximation of

graphs. To overcome this issue, Ni et al. [18] developed a

user-controlled simplification algorithm. Bremer et al] [4
proposed an interesting critical point cancellation teghe
based on persistencehreshold. Attene et al. [1] proposed

constrictions on prominent components and consequently
Reeb graph refinement.

a seducing approach, unifying the graph construction and4. Mapping function

simplification, but it is conditioned by slicing parameter.

In this paper, we propose a discrete formulation of con-
tours, connected subsets of level lines, which enablel; wit
out any input parameter, the construction of visually mean-
ingful Reeb graphs (fig. 1(c)).

2.3. Constriction computation

Hétroy and Attali [9] define constrictions as simple
closed curves, whose length is locally minimal. Con-
strictions are located on the narrowest parts of a surface
This notion is of major interest for segmenting individ-

ual subcomponents identified with standard topological ap-

proaches into more significant parts, for deformation pur-
pose for example. Recently, Hétroy [8] showed that con-

striction detection could be achieved by analyzing surface

curvature.

In this paper, we propose to analyze the geometrical
characteristics of discrete contours, and particulargirth
concavity, to approximate constrictions (fig. 1(d)), inerd

0

To compute visually meaningful topological skeletons,
we first have to define a mapping function that will high-
light the most significant parts of the mesh. In order to fit
application constraints, this function has to presentikiab
and invariance properties. Geodesic distances are affine-
invariant and robust to variations in model pose. From
an algorithmic point of view, they can be approximated
by the Moore-Dijkstra algorithm (distance minimizing in
weighted graphs). In the rest of this paper, we will refer to
(v1,v2) as the normalized approximation of the geodesic
distance from vertey, to vertexvs, normalized with regard
to mesh global extrema.

4.1. Feature point extraction

Feature points are mesh vertices located on extremities
of prominent components. As they highlight the most sig-
nificant features of the shape, they are used in our mapping
function computation as origins for geodesic distance-eval

to decompose previously identified components into more uation. To extract them, we propose a quite straightforward

visually interesting parts (fig. 1(e)).

3. Method overview

Given a connected triangulated surfad€ewe propose
in this paper a unified method to decompdsénto visu-
ally meaningful sub-parts, considering the topological an
geometrical characteristics discrete contours

algorithm, based on topological tools. Most of the geodesic
based mapping function local extrema appear at extremities
of prominent components (figs. 3(a) and 3(b)), mainly be-
cause gradient vanishes in those configurations. Therefore
we propose to realize a crossed analysis, using two geodesic
based mapping functions —whose origins are the mesh most
distant vertices — and to intersect the sets of their local ex
trema.
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Figure 3. Feature point extraction overview. . . )
o _ Figure 4. Feature point extraction robustness
Letwvs, andv,, be the most geodesic distant vertices of  against mesh sampling variations.

a connected triangulated surfé€ecomputed with the Tree
Diameter algorithm [12]. In figure 3y, is located at the
extremity of the wrist (fig. 3(a)) whiley, is located at the
extremity of the middle finger (fig. 3(b)).

Let f,, andf,, be two scalar functions defined on each
vertexv of T', as follows:

to variations in model pose. Furthermore, in order to select
feature points, the mapping function gradient is analyzed.
No hypothesis is required about mesh sampling. Conse-
guently, this algorithm is robust against variations in mes
sampling, as illustrated in figure 4: feature points arelgimi

Fo (0) = 8(v,0s,) ) when the resolution decreases. Moreover, it achieves cor-
9 e rect extraction on constant curvature areas, such as sphere
fo:(v) = 0(v, vs,) (2) as shown in fig. 5(a).

Basing on the critical point classification proposed in [6], _ _ )
alocal minimurris defined as a vertex such that all its direct 4.2. Mapping function computation

neighbors have an upper function value. Reciprocally, we  \yhen dealing with topological skeletons, it is necessary
define alocal maximumas a vertex such that all its direct g gefine an invariant and visually interesting mapping func
neighbors have a lower function value. LBt be the set  tjon which reveals the most significant parts of the mesh.
of local extrema (minima and maxima) ¢f, (in yellow  \joreover, the mapping function should not generate an un-
in fig. 3(a)) andE; be the set of local extrema g, (in manageable set of critical points, in order to make the graph
cyan in fig. 3(b)). Extremities of prominent components simpljification easier. From our experience, this is not the
are configurations wherg,, and f,, tend to an extremum  ase of the function presented in [10].
(figs. 3(a) and 3(b)). Consequently, the set of feature point  Firstly, to guarantee invariance to geometrical transfor-
is both included in&; and E,. Therefore, we define the set  mations and robustness against variations in model pose,
of feature point¢” of 7' (fig. 3(c)) as follows: geodesic distances are used. Secondly, to define a visu-
F=FE NE, (3) ally interesting mapping function, feature points are take
In practice,f,, andf,, local extrema which correspond @S origins for geodgsic distance evalu_ations. The_refoee, w
to feature points do not appear exactly on the same verticef?ropose the following mapping function, notgg in the
but in the sam@eodesic neighborhood herefore, the in-  rest of the paper, which computes in each vertet T the

tersection constraint is relaxed as follows, witke [0, 1] geodesic distance to the closest feature point:
the radius of thgeodesic neighborhoggeodesic distance fe(v) — minger fe(v) 5
are normalized); fm(v) = mazyer fo(v) — minger fo(v) (5)

Fue, € E1 [/ 6(v,0e,) <€
e, € E2 [ 0(v,0e,) < € ) fm is anormalized version of the functigfiy, defined as
O(v,v5,) >€ Yoy, € F follows (f.(v) > 0,Vv € T):

From our expeii:n[(?élzjsing only two geodesic mapping folv) =1 =8 (v,ue) ©)
functions (f,, and f,,) and settinge = 0.05 give accurate with v, the ClolseSt feature .pomt from
results. Moore-Dijkstra’s algorithm is a time complexity ve € F [ 0'(v,0e) = mingger 8(v,vy) (7)
bottleneck.f,, andf,, are computed each {fi(n xlog(n)) Notice thatf,, is invariant to uniform scaling (thanks to
steps, withn the number of vertices iff. the normalization), rotation and translation (thanks te th

In this paragraph, we presented a straightforward algo-use of geodesic distances). Figure 5 presents some compu-
rithm for mesh feature point extraction, (n x log(n)) tations off,,, over arbitrary shapes, the number of extracted
steps, withn the number of vertices ifi. This algorithmis  feature points|F|) and the number of critical point$(|,
based on geodesic distance evaluations. Therefore it-is staidentified according to the classification proposed in [6]).
ble and invariant to geometrical transformations and rbbus f,, has been defined so as it tends to maxima (in green) at

vEF<—
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@F] =2, (b) | F| =6, ©[F|=17,|C| =92.
|C| = 326. ICl = 94. (@) T'(ve00), (b) T'(v10 000), (€) T'(v20 000),
. . . 2 contours. 4 contours. 6 contours.
Figure 5. f,, mapping function computed on _ ) _
arbitrary shapes. Figure 7. Example of discrete level lines on a
25 000 vertex mesh ( f,,, function).

crete case, we define thiiscrete level linel'(v) associ-

ated to the vertex as a curve computed along the edges of

T which approximates by upper value the continuous level

line f=1(f(v)). Figure 6 showsliscrete level linesravers-

ing an arbitrary triangulation, with regard to the heighidu

tion. Moreover, each connected subset dfiscrete level

line is referred as discrete contour In particular, we de-

fine thediscrete contoury(v) associated to the vertexas

the connected subset Bfv) containingv. Notice that the

moreT" will be dense, the mordiscrete contoursvill tend

feature points and it tends to minima (in red) at the center to continuous contours.

of the object. Discrete contourgan be computed for the whole mesh
As shown in figure 5,, generates an important num- Using a step by step gradient ascent process, described in

ber of critical points. Consequently, standard Reeb graphalgorithm 1. It handles two heaps, respectively the set of

construction algorithms would create large graphs, count-Visited verticed/t and the set of candidate vertices for visit

ing as many nodes as critical points, which is a major issueCd. At each step(’'d surrounds/¢ by upper value.

for topological skeleton extraction. In the next sectioe, w

present a formulation afiscrete contourswhich enables a

@)T'(va). (b) I'(we).
Figure 6. Example of continuous (red) and
discrete (green) level lines (height function).

Algorithm 1 Discrete contour computation.

unified graph construction and simplification process. Vi=1 )
Cd — {argmingcrf(v')}
. _ _ while Cd # ) do
5. Discrete contours of a mapping function v — argmingccaf (V')
5. T(v) — Cd

In this section, we propose to construdiscrete con-
tours In the next sections, thoshscrete contoursvill be
used either to detect topological changes or to detect eurva
ture transitions, providing enhanced topological skelsto
without re-meshing and without any input parameter.

Defining contours of a real functiofi computed on a
triangulated surfac@’ is not a simple problem. In the con- A discrete level lindocally minimizes itsdifferencewith
tinuous case, two poings andp, belong to the same level the continuous level line it approximates. This difference
line f=1(f(p1)) if f(p2) — f(p1) = 0. Moreover,p; and can be expressed as follows:
p2 belong to the sameontourif they belong to the same

~(v) « connected subset 6fd, containingv
Removev from Cd
Cd — Cd U {v neighbors, which are not Wt}
Addvto Vit

10: end while

connected component ¢f-(f(p1)). Z (fvi) = f(v) / [flvi) = f(v),Vv; € (v) (8)
In the discrete case, for a given vertex 7', depending v €l(v)
on T sampling, f~1(f(v)) is often reduced to the vertex In expression 85 (v) is a constant term. Consequently,

v itself. With regard to definition 1, a correct Reeb graph minimizing this expression is equivalent to minimizing
could not be constructed from this formulation of discrete f(v;) which is actually performed at each iteration of al-
contours, because the conditions of the equivalenceoalati gorithm 1. Cd always surround¥’¢t by upper value and
would rarely be satisfied. minimizes expression 8, thus it is equivaleni).

To preserve contour topological properties in the dis- In figure 7, examples of discrete level lin€%v;) are
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(@1 (b) 2 (c) 1 contour.
contour. contours.
Figure 8. Bifurcation and junction contexts
on a torus shape (height function).

(a) 25000 (b) 5000 (c) 1 000
vertices. vertices. vertices.
Figure 10. Algorithm robustness against
mesh sampling variations.

3. terminations when Nr(,,) decreases fromto ¢ + 1,
o without discrete contour merge.

! Figure 9 shows several dual Reeb graphs obtained with
this strategy, with regard tf},,. Connected components are
represented by the nodes located at their barycenter.

The main contribution of our algorithm is that graph con-
struction and simplification are performed at the same time.

@ (b) (c) If we compare figures 9 and 5, we notice that the dual Reeb
Figure 9. Dual Reeb graphs of primitive and graphs do not reflect the presence of noisy critical points
complex shapes ( f,, function). (points in red in figure 5), because discrete level lines do no

disconnect in those configurations. Standard Reeb graph al-
shown, at different iterations of the algorithm. V¢ ver- gorithms would have generated graphs counting as many
tex set is displayed in white anid(v) is displayed in red.  podes as critical points — 94 nodes for the hand model and
Visiting in a recursive fashion each vertexlofv) enables 92 nodes for the horse model — while in our approach only
the identification of each of its connected subsets, and pareaningful topological variations are encoded in the graph
ticularly (v). In comparison to [1, 10], no re-meshing and no input

parameter, such assdicing parameter, are required. Con-
6. Topological analysis of discrete contours sequently, as no assumption is made aliBusampling,

Standard Reeb graph construction algorithms need sim-hiS algorithm is robust against variations in mesh sam-

plification in order to remove noisy details. In this section Pling, s shown in fig. 10. Furthermore, A is based on
we propose a unified algorithm for graph construction and "ormalized geodesic distance evaluations, presentedgrap
simplification, based on the topological analysis of digere  are also invariant to geometrical transformations (rotati

contours. Following the definition 1 of a Reeb graph in the ransiation and uniformscaling). _
continuous case, we can state an analog equivalence rela- In this section, we presented a unified graph construction

tion in the discrete case between two verticess, € 7, and simplification algorithm, based on the topological anal
based on our notion of discrete contour: ysis ofdiscrete contoursAs contours do not disconnect in
vs € T(vy) fT”_ noisy parts, resulting graphs_, reveal thg shape mpst sig-
(v1, f(v1)) ~ (va, f(v2)) <= { vs € (v1) (9) nificant features. However, a strict topological analysis-c

not discriminate visually meaningful sub-parts of a given
vy and v, belong to the same connected component if connected component. To overcome this issue, we propose
they satisfy the above conditions. Therefore, at each-itera jn the next section to analyze the geometrical charadiesist
tion of the contour computation algorithm, each individual of discrete contourso detect constrictions.
connected component @f, traversed by'(v), can be iden-
tified. Thus, topological changes can be detected observing7, Geometrical analysis of discrete contours
the numbeVr(,,) of connected subset b{v), asf evolves.
We define three types of topological changes:
1. bifurcations when Ny, increases from iterationto
iterationt + 1 (I'(v) splits in two contours from 8(a) to
8(b)),

Constriction approximations enable the subdivision of
the branches of topological skeletons into more visualy in
teresting parts. In this section, we propose an algorithm
for constriction approximation, based on the analysis ef th
2. junctions when Ny, decreases fromto ¢ + 1 and curvature ofdiscrete contours For eachdiscrete contour

when several discrete contours merge (two contours!dentified in the previous stage, we compute its Gaussian
merge in one from 8(b) to 8(c)) curvature and we identify local minima as constrictions.
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[ Model [f-=3]f=5[fr=10]f =15]

Humanoid| 4 8 9 12 rer Tt
Horse 1 11 11 11 12 e
Hand 1 5 8 11 12 ~1000
Hand 2 6 9 11 11 %-1500
Horse 2 9 14 19 19 :
—2000
Table 1. Number of constrictions with differ- ~z500
ent concavity curve cutoff frequencies ( f;). oo

] 500 1000 1500 2000 2500 3000 2500 4000 4500
Discrete Contours

7.1. Topological constraint
Since constrictions are defined as closed curves, the anal- (a) Unfiltered curve.
ysis has to be restricted arloseddiscrete contours only.
Considering each contouy(v) as a connected and non- w0
directed planar grapy, v(v) is a cycle, and consequently
a closed curve, if the degree of all its vertices equals two.
Therefore for each discrete contour’Bfreduced to a pla-
nar graphG, the degree of each of its vertex is computed
and we only consider in the rest of our algorithms contours

Filtered —

=500

-1000

Concavity

that satisfy the above property. 2000
7.2. Concavity curves =
3000
In our experiments, the average curvatgfe(v)) of e e T e
eachdiscrete contoury(v) is estimated by computing the
Discrete Gaussian Curvature [14] in each of its vertex. If (b) Filtered curve f; = 10).
¢(v(v)) is positive,y(v) neighborhood is globally convex, Figure 11. Concavity curves for the neck of

otherwise itis concave. Constrictions appear on the NaITOW  the horse model (unfiltered and filtered).

est, or the most concave, parts of a surface. Consequently, i _ o _ _

order to only consider concave discrete contours, we com-Set is a trivial signal-processing problem. This can be
pute¢’(y(v)) as follows: achieved by applying an ideal low-pass filter of cutoff fre-

. guencyf,, defined by the following transfer function:
m(v)){ () I CHE) <0 g

0 it C(y(v)) >0 o _ { Lt fyw < fr 1
During the discrete contour computation, each contour is () 0 if fiw>fr (1)
stored in the related node of the dual Reeb graph. As this A fitered version of¢’(v(v)) is given by the following

algorithm visitsT” from the lowest to the highegt,, values,  gypression, wher&'T stands for the Fourier Transform:
for a given node of the graph, contours are automatically .

sorted byf,, values. Computing’(v(v)) sequentially for ((v(v)) = FT7HH (fy) x FT(('(4(v))))  (12)
each of these sorted contours gives, for a given nodena
cavity curve an overview of the concavity evolution s,
evolves.

Curves shown in figure 11 give examples of such evolu-
tions, computed on the neck of the horse model (fig. 12(j)).
The left values of theseoncavity curvesorrespond to the
concavity estimations of the discrete contours locatedeat t
basis of the neck. The right values correspond to the con-
cavity estimations of the discrete contours located atiige e

As shown in figure 11(b), low-pass filtering enables
the discrimination of strongly concave contours. Conse-
guently, for each node of the topological skeleton, we iden-
tify as constriction approximations the discrete contours
that strongly minimizef’(y(v)). Then, the dual Reeb graph
is refined, subdividing each node using its constrictions as
boundaries between sub-parts.

of the neck (basis of the head sub-part). 8. Experiments and results
o . . In this section, we present and comment on experimen-
7.3. Constriction approximation tal results obtained with our method and we discuss about

Curvature is a well-known noise sensitive entity. Con- its applications, particularly mesh deformation. Presédnt
sequently, to compute nice-looking approximations of con- models are connected triangulated surfaces extracted from
strictions, we have to reduce high frequency noise in con-thePrinceton Shape Benchmadiatabase [21].
cavity curves. Reducing noise on a one-dimensional data
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Figure 12. Feature points, constriction approximations an d enhanced topological skeletons of stan-

J A
® @
B 5 A
() 0]
dard models.
Model | Faces| Feature pts] Constrict.| Time |
Humanoid| 1900 19 9 0.5s.
Horse 1 | 20 000 10 11 12s.
Hand 1 | 50000 6 11 75 s.
Hand 2 | 50000 6 11 100 s.
Horse 2 | 40 000 7 19 35s.

Table 2. Computation times.

8.1. Discussion

Figure 12 presents intermediary results and enhanced
topological skeletons of standard models.

Firstly, we can notice that our feature point extraction
algorithm achieves correct extractions, even on complex ar
eas, such as the hair of the humanoid model.

Secondly, our constriction approximation algorithm
computes nice-looking constrictions (in red in fig. 12) even
for coarsely designed objects (figs. 12(f) and 12(g)). It au-
tomatically adjusts its detection criterion to the conedct
component it is processing, enabling the identification of
constrictions even on strongly tubular mesh sub-parte (lik
the legs of the horse models).

Table 1 shows that the number of identified constrictions
is quite stable whetfi, varies. The most visually interesting
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(a) Input mesh. (b) Enhanced topological skeleton. (c) Deformed skeleton. (d) Deformed mesh.

Figure 13. Application to mesh deformation.

results have been obtained settjfig= 10. This setting has  O(n) steps. Their smoothing is realizeddnn x log(n)),
been chosen for each model in fig. 12. using the Fast Fourier Transform algorithm. Consequently,
However, constrictions are approximated assuming theywe can state that the overall complexity of our method is
appear along identified discrete contours only. This is a bounded by the discrete contour computation, which takes
strong hypothesis. As shown in figure 12, thanks to our O(n?) steps.
mapping function definition, this limitation is not detrime Presented algorithms have been implemented in C lan-
tal when dealing with natural objects because some con-guage under GNU/Linux and experimented on a desktop
tours are actually identified on the articulations of promi- PC with a 3 GHz P4-CPU and 2 gigabytes of RAM. Table
nent components. 2 shows the computation times corresponding to the mod-
Constriction approximation leads to the subdivision of els presented in fig. 12. Notice that our overall method
the branches of the topological skeleton into more visually has a significantly lower running time than latest constric-
interesting parts: such as the decomposition of fingers intotion detection [8] or skeleton extraction [24] methods, for
phalanxes (figs. 12(m) and 12(n)) or the decomposition equivalently sampled meshes.
of legs into thighs, calves and feet (figs. 12(k), 12(l) and

12(0)). 8.3. Example of application: mesh deformation
Thanks tof,, invariance properties, those skeletons are
invariant to geometrical transformations: translatianar Topological skeletons have shown to benefit various ap-

tion and uniform scaling. Furthermore, as shown _section _6,plications in computer graphics [2]. For example, within
thanks to our graph construction strategy, no noisy detailsthe framework of shape retrieval, thanks to their invar&anc

are encoded in the skeletons. properties, enhanced topological skeletons can be used for
_ _ shape similarity estimation. They are also good supports fo
8.2. Time complexity shape compression, metamorphosis, texture mapping, etc.

In this paper, to show the usability of our approach, we
Given an input connected triangulated surfate let focus on mesh deformation. Each node of the enhanced
n be the number of vertices ii. Feature point extrac- topological skeletons references each vertex of the elate

tion is performed inO(n x log(n)) steps. f, is com- mesh sub-component. Thus, a novice user can easily apply
puted inO(|F| x n x log(n)) steps with|F'| the number  deformations on selected parts of the object.
of identified feature points. Notice th&t, has a lower Since mesh deformation is not in the scope of this paper,

computational cost than the function proposed in [18)](  in our experiments, models are deformed by applying sim-
rarely exceeds 20). Each discrete contour computatioss take ple rotations to components, but more sophisticated strate
O(log(n) + n). Therefore, as contours are computed for gies can be used [13]. Given an angle and an axis of ro-
each vertex inT, the overall discrete contour computa- tation, a rotation matrix is computed. Then it is applied to

tion takesO(n?) steps. Topological and geometrical anal- each vertex of the selected node, providing nice-lookinrg de

yses are more straightforward. Topological analysis is per formations, as shown in figures 1(f) and 13.

formed inO(n) steps. Concavity curves are computed in
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9. Conclusion and future works

In this paper, we presented a fully automatic algorithm
for the extraction of affine-invariant enhanced topolobica

(6]

skeletons. It first computes a dual Reeb graph. Then it re- [7]
fines it using constrictions as boundaries between mesh sub-

parts. To our knowledge, this is the first approach which

unifies Reeb graph and constriction computations.

Our scientific contribution resides in three points. Fystl
we proposed a robust and straightforward feature point ex- [
traction algorithm. It enables the computation of an invari
ant mapping function which reveals well the shape most 1

(8]
9

significant features. Secondly, we presented an algorithm

for discrete contoursomputation. We showed that a topo-

logical analysis of thesdiscrete contourgnables a unified

Reeb graph construction and simplification process. Result

[11]

ing graphs do not encode noisy details and they are robust

against variations in mesh sampling and invariant to geo-
metrical transformations. Finally, we showed that a geemet

rical analysis of thaiscrete contourprovides nice-looking

[12]

constriction approximations on prominent components, en- [13]

abling the refinement of dual Reeb graphs into more visu-

ally meaningful skeletons.

Our algorithm computes skeletons with satisfactory exe- [14]

cution times, without any input parameter or pre-processin

stage. Consequently, it is a good candidate for various ap-

plications in computer graphics, like shape deformatian (e

[15]

perimented in this paper), retrieval, metamorphosis, com- [16]

pression, texture mapping, etc.

In the future, we would like to experiment more robust

geometrical analyses and constriction sliding algorithims

order to provide more visually interesting skeletons. More

over, forcing the position of the skeleton inside the object
and preserving shape symmetry are enhancements whic
benefit certain applications and which are currently under

investigation.
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