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Abstract

Shape skeleton extraction is a fundamental pre-
processing task in shape-based pattern recognition.
This paper presents a new algorithm for fast and precise
extraction of kinematic skeletons of 3D dynamic surface
meshes. Unlike previous approaches, surface motions
are characterized by the mesh edge-length deviation in-
duced by its transformation through time. Then a static
skeleton extraction algorithm based on Reeb graphs ex-
ploits this latter information to extract the kinematic
skeleton. This hybrid static and dynamic shape analysis
enables the precise detection of objects’ articulations as
well as shape topological transitions corresponding to
possibly-articulated immobile objects’ features.

Experiments show that the proposed algorithm is
faster than previous techniques and still achieves bet-
ter accuracy.

1. Introduction

Shape skeleton extraction and segmentation are fun-
damental shape pre-processing tasks in computer vision
and shape-based pattern recognition. They provide an
intrinsic structural shape description, which is useful for
further applications dealing with shape understanding,
like shape recognition or retrieval. With the ongoing
development of 3D technologies, 3D dynamic shapes
(time-varying 3D data) are becoming a media of in-
creasing importance. Such data can be provided by sci-
entific simulations, animation softwares, video games
or security systems and are mostly modeled by constant
connectivity surface meshes with time-varying geome-
try. Like 3D static shapes, 3D dynamic shapes also need
to be pre-processed for their understanding and have re-
cently drawn the shape analysis community’s interest
[6, 3]. However, only few papers have addressed the
3D dynamic surface mesh segmentation [5, 4] or skele-
ton extraction [1, 8, 2] specific problems so far.

While static 3D shape segmentation methods aim at
extracting a meaningful structural representation of the
shape by decomposing it into parts of uniform geome-

try, 3D dynamic shape segmentation methods propose
to exploit the temporal information to decompose the
shape into parts of uniform motion along the sequence.
Indeed, this approach is a faithful hypothesis for ex-
tracting the functional and thus meaningful structure of
an object, revealing its articulation points for example.
Consequently, existing techniques first try to character-
ize the motion uniformity over the surface mesh and
then use clustering techniques to decompose it.

As most of real life objects’ motions can be defined
in terms of local rigid transformations (translations and
local rotations), Mamou et al. [5], in the context of dy-
namic shape compression, propose to locally compute
the optimal rigid transformations along the sequence
frames for small surface neighborhoods using the least
square method. Then, surface neighborhoods affected
by the same rigid transformations are gathered using the
k-means algorithm to produce the final segmentation.
Lee et al. [4] adopt a similar strategy by first computing
the so-called deformation gradient to characterize the
rigid transformation prediction error over the surface
and then employ a clustering-based static mesh segmen-
tation algorithm on this error field. Skeleton-extraction
techniques for 3D dynamic surface meshes [1, 8, 2] also
characterize surface motion with rigid transformation
predictions combined with clustering algorithms.

However, predicting local rigid transformations
turns out to be computationally expensive and from
our experience the computation (especially using least
square methods) can suffer from numerical instabilities.
Moreover, most of the existing techniques only exploit
the temporal information and thus cannot extract immo-
bile shape features which still potentially correspond to
functional parts of the object.

In this paper, we present a novel hybrid technique for
the extraction of 3D dynamic surface mesh kinematic
skeletons, a shape representation that reveals the shape
kinematic characteristics over the time. This work
brings the following contributions. First, we propose
a simple, fast and efficient technique for surface motion
characterization which is not based on rigid transfor-
mation prediction. Then, we present a combined dy-
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Figure 1. Example frames of the horse dy-
namic surface mesh (1(a), 1(b), 1(c)) and
its edge-length deviation (1(d), 1(e)).

namic and static approach that precisely identifies the
articulations of the object through time and which also
distinguishes specifically immobile shape features that
contain possibly articulated parts. The rest of the paper
is structured as follows: we present motion characteri-
zation in section 2, skeleton extraction in section 3, ex-
periments and results (with comparisons to other tech-
niques) in section 4 and finally demonstrate the preci-
sion and the applicative interest of our technique in the
context of animation reverse engineering (section 5).

2. Edge-length deviation analysis

Let M be a constant connectivity closed surface
mesh, whose vertices’ positions vary through time
pt(vi) = (xi, yi, zi)t, ∀vi ∈ M . Surface portions
that exhibit high rigid transformation prediction er-
ror through time correspond to the articulations of the
object (affected by elastic transformations) and thus
should match the boundaries of the final segmentation.

Considered transformations (translations and local
rotations) belong to the group of isometric maps (length
preserving isomorphisms). Thus, length preservation
is also an invariant of rigid transformations. Conse-
quently, we propose to detect surface portions that are
not motioned through rigid transformations by com-
puting the surface repartition of the edge-length devi-
ation along the frames. In particular, we introduce the
quadratic edge-length deviation Ld ∀vi ∈ M , where T
is the number of frames in the sequence, N(vi) is the
set of vertices sharing an edge with vi and d is the eu-
clidean distance:

Ld(vi) =
T−1∑
t=0

∑
vj∈N(vi)

1
|N(vi)|

× [d(pt(vi), pt(vj))

− d(pt+1(vi), pt+1(vj))]2 (1)

Figure 1 shows a dynamic shape and its corresponding
edge-length deviation (reported on the first frame). No-
tice in figures 1(d) and 1(e) that light pink surface por-
tions (low edge-length deviation) have been affected by
local rotations in the sequence and correspond to rigid
portions of the object. Moreover, the articulations of the
legs exhibit a high edge-length deviation (dark red) as
they have been affected by elastic transformations.

(a) (b) (c)

Figure 2. Feature points (in green) and f
level lines for several meshes.

(a) (b) (c)

Figure 3. Motion boundaries: connected
components of f level lines locally maxi-
mizing the edge-length deviation Ld.

3. Surface mesh skeleton extraction

3.1. Segmentation boundary computation

The edge-length deviation provides an information
similar to the deformation gradient [4] or the rigid er-
ror function [8]. Thus, a clustering based segmenta-
tion technique can be applied at this stage. Instead, we
propose to adapt a static skeleton extraction technique
based on Reeb graphs [9] in order to also distinguish
shape topological transitions corresponding to possibly-
articulated parts. This technique first computes auto-
matically the shape feature points (vertices located at
the extremity of prominent components, in green in fig-
ure 2) by intersecting geodesic maps extrema [9]. Then,
in order to have a shape representation robust to pose
change, it computes the following function, where g is
the geodesic distance and vf is the geodesic-closest fea-
ture point from vi: f(vi) = g(vi, vf ) ∀vi ∈ M(t=0).

Then, for each vertex vi ∈ M , the algorithm extracts
an upper-value discrete approximation of f−1(f(vi)),
which follows the edges of M [9]. In particular, let
cf (vi) be the ”contour” of vi (the connected compo-
nent of f−1(f(vi)) approximation containing vi).

As f level lines follow the protrusions of the ob-
ject (see figure 2), their connected components are good
candidates for the definition of the segmentation bound-
aries. To select these boundaries among the collection
of contours, for each contour cf (vi), we compute its av-
erage edge-length deviation (averaging Ld(vj) / vj ∈
cf (vi)). Then, we identify the contours cf which lo-
cally maximize this value (with regard to their adjacent
contours) as motion boundaries (see figure 3).

Finally, in order to extract immobile shape features
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Figure 4. 3D dynamic surface meshes and
their extracted kinematic skeletons.

corresponding to potentially functional parts, f criti-
cal points are extracted at the vertices where contours
merge, split or terminate as f evolves [9]. The con-
tours related to these vertices are denoted as topological
boundaries, which are the boundaries of the Reeb graph
[7] decomposition of M .

3.2. Skeleton embedding

To embed the kinematic skeleton in 3D, we first
place the nodes of the Reeb graph (f critical points,
in blue in figure 4) at the barycenter of the topological
boundaries. Then, the edges of the Reeb graph (linking
f critical points) are subdivided at motion boundaries
to produce the final kinematic skeleton. In particular,
motion nodes (in red in figure 4) have been placed at
the barycenters of the motion boundaries.

4. Experiments and results

Figure 4 shows 3D dynamic meshes and their ex-
tracted kinematic skeletons. Notice that the motion
nodes (in red) are precisely placed at the articulations
of the objects (see the next section for precision evalu-
ation). Moreover, the edges of the kinematic skeleton
(black lines) correspond to rigid parts of the objects.
Thus, motion nodes provides an information about the
object motion, revealing the reference points of rigid
part rotations. Moreover, the shape topology is effi-
ciently captured by the Reeb graph [7]. Thus, the kine-
matic skeletons preserves the object’s topology.

Figure 5 presents a visual comparison of our algo-
rithm with existing techniques. Notice that in figure
5(a) the hooves of the horse dynamic shape are not ex-
tracted as individual rigid parts, while their motion is
different from the rest of the leg. On the contrary, our
method precisely identifies articulations and is compat-
ible with de Aguiar’s algorithm’s decomposition (fig.

(a) (b) (c)

Figure 5. Visual comparison between
Lee’s segmentation [4] (5(a)), de Aguiar’s
skeleton [2] (5(b)) and our method (5(c)).

Dynamic mesh Faces Frames Extraction (s.)
Cat 14410 10 9.6
Dance 14118 201 21.2
Horse 16843 49 12.7
Lion 9996 10 6.0
Snake 18354 134 20.2

Table 1. Computation times of kinematic
skeleton extraction for several dynamic
surface meshes (P4 3GHz CPU).

5(b)). However, thanks to the Reeb graph and the fea-
ture point extractions, our algorithm can also extract
and decompose specifically immobile shape features (in
blue) like the hands of the dancer (fig. 4(i)), or the
mouth and the ears of the horse, which are actually ar-
ticulated parts of these objects in reality.

As motion analysis is not based on rigid transforma-
tion prediction (which requires matrix inversion), our
algorithm runs faster than existing techniques (tables 1
and 2). Edge-length deviation computation runs in lin-
ear time: O(n×T ) steps, with n the number of vertices
in M and T the number of frames in the dynamic shape.
Contour and Reeb graph extractions (boundary compu-
tation) only requires O(n2) steps [9]: as M has con-
stant connectivity, its topology does not evolve; thus,
the Reeb graph is computed only once (here, for Mt=0).

5. Animation reverse engineering

To demonstrate the precision of our algorithm and its
applicative interest, in the following experiment, given
a skeleton-driven animation of a static shape (realized
with an animation software) we propose to retrieve the
kinematic model of the animation by kinematic skele-
ton extraction. Figures 6(a), 6(b), 6(c) and 6(d) show
the original designed skeleton and the resulting anima-
tion. Figure 6(e) shows the edge-length deviation of
this dynamic shape. Notice that the index and the mid-
dle fingers have been slightly articulated but still exhibit
length deviation (fig. 6(f)). Finally, figure 6(g) shows
the extracted kinematic skeleton. Notice that each artic-
ulation of the original skeleton has been extracted as
a motion node of the kinematic skeleton. Moreover,
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Figure 6. Animation reverse engineering: a dynamic surface mesh (6(b), 6(c), 6(d)) is gener-
ated from a predefined skeleton of a static mesh (6(a)). Edge-length deviation (6(e), 6(f)) and
extracted kinematic skeleton (6(g)). Motion node location error: 0.44%.

Algorithms Skeleton extraction (s.)
Our algorithm 12.7
de Aguiar’s [2] 21
Lee’s [4] 806

Table 2. Computation times for the horse
dynamic surface mesh.

(a) (b) (c) (d) (e) (f)

Figure 7. New dynamic surface meshes
generated using the extracted kinematic
skeletons.

the average height (y) difference between the original
and the extracted skeletons’ articulations is only 0.44%
of the height of the object bounding box, which is a
satisfactory precision (against 1.7% in the best case
for [2]). Finally, as skeleton extraction is achieved by
segmenting the mesh at motion and topological bound-
aries, there is a full correspondence between the skele-
ton edges and the related surface segments. Thus, input
dynamic shapes can be re-edited from their kinematic
skeletons by applying local rotations on the edges of
the skeleton, as shown in figure 7.

6. Conclusion and future works

In this paper, we presented a new hybrid algorithm
for fast and precise kinematic skeleton extraction of 3D
dynamic surface meshes based on edge-length deviation
computation and Reeb graph extraction.

Experiments showed the rapidity of this method and
demonstrated its precision. Thanks to this representa-
tion which concisely encodes the dynamic shape motion
characteristics, dynamic shapes can be efficiently mod-
eled and edited. As the edges of the skeleton represent

rigid parts of the object, their motion can be modeled
by simple rotations.

In the future, we would like to use this representation
for 3D dynamic shape comparison (for gesture recog-
nition). Moreover, we would like to adapt the frame-
work to take into account unregistered meshes (which
is a crucial issue) and also to efficiently model surface
intrinsically elastic transformations.
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Comptes-rendus des Séances de l’Académie des Sciences,
222:847–849, 1946.

[8] S. Schaefer and C. Yuksel. Example-based skeleton ex-
traction. In Symposium on Geometry Processing, pages
153–162, 2007.

[9] J. Tierny, J.-P. Vandeborre, and M. Daoudi. Invariant
high level Reeb graphs of 3D polygonal meshes. In IEEE
3DPVT, pages 105–112, 2006.

To be published in the proceedings of the IEEE International Conference on Pattern Recognition (ICPR 2008).
December 8-11, Tampa, Florida, USA. Copyright c©2008 IEEE Computer Society Press.


