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+ GET / INT / Télécom Lille 1, France
{tierny, vandeborre, daoudi}@lifl.fr

(a) Feature points. (b) Invariant quotient function. (c) Skeletal representation of
the high level Reeb graph.

(d) Application to mesh
deformation.

Figure 1. Overview of presented method on an arbitrary mesh.

Abstract
Many applications in computer graphics need high level

shape descriptions, in order to benefit from a global under-
standing of shapes.

Topological approaches enable pertinent surface decom-
positions, providing structural descriptions of 3D polygonal
meshes; but in practice, their use raises several difficulties.

In this paper, we present a novel method for the con-
struction of invariant high level Reeb graphs, topological
entities that give a good overview of the shape structure.
With this aim, we propose an accurate and straightforward
feature point extraction algorithm for the computation of an
invariant and meaningful quotient function. Moreover, we
propose a new graph construction algorithm, based on an
analysis of the connectivity evolutions of discrete level lines.
This algorithm brings a practical solution for the suppres-
sion of non-significant critical points over piecewise contin-
uous functions, providing meaningful Reeb graphs.

Presented method gives accurate results, with satisfac-
tory execution times and without input parameter. The geo-
metrical invariance of resulting graphs and their robustness
to variation in model pose and mesh sampling make them
good candidates for several applications, like shape defor-
mation (experimented in this paper), recognition, compres-
sion, indexing, etc.
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1 Introduction

Polygonal mesh is a widely used representation of 3D
shapes. However, many applications in computer graphics
need a higher level shape description as an input, like its
structure for example.

To solve this problem, several approaches have been de-
veloped, like mesh segmentation [14] or skeleton extraction
[5]. Topological methods, based on Reeb graphs, present
the advantage to preserve the topological properties of the
surface. Unfortunately, in practice, the construction of Reeb
graphs raises several issues, like invariance constraint non-
respect or non-significant critical point identification. This
may come to results of restricted usability and of low se-
mantic interest, as underlined in [12], that we refer as low-
level Reeb graphs.

In this paper, we present a novel method for the construc-
tion of invariant high level Reeb graphs. First, we present
theoretical backgrounds and related works. Secondly, we
introduce a new feature point extraction algorithm (cf. fig-
ure 1(a)), which is used for the computation of a mean-
ingful and invariant quotient function (figure 1(b)), and a
new graph construction algorithm (figure 1(c)) that excludes
non-significant critical points. Finally, we present and com-
ment on experimental results and evoke possible applica-
tions, like mesh deformation (figure 1(d)).



Figure 2. Evolution of the level lines of the
height function on a bi-torus, its critical
points and its Reeb graph.

2 Theoretical background

A Reeb graph [13] is a structure that depicts the evolu-
tions of the level lines of a given scalar function, usually a
Morse function [10], defined over objects of any dimension
(k-manifolds). In this section, we introduce several notions,
restricted to 2−manifolds, used in our approach.

Definition 1 (Level line) Let f be a scalar function defined
on a 2−manifold M , f : M → R. Let L be the set of
points pi, such as ∀pi ∈ L, f(pi) = fL. L is the level line
corresponding to the value fL, noted f−1(fL).

Definition 2 (Reeb graph) Let f : M → R be a scalar
function defined on a 2−manifold M . The Reeb Graph of
f is the quotient space of f in M × R by the equivalence
relation (p1, f(p1)) ∼ (p2, f(p2)), verified if and only if:







f(p1) = f(p2)
p1 and p2 belong to the same connected

component of f−1(f(p1))

Concretely speaking, a Reeb graph is composed of
nodes, which represent f critical points (see illustrations 2
and 3), and of edges, which represent the connected compo-
nents linking f critical points. Most of the Reeb graph con-
struction algorithms first identify the set of f critical points
and secondly build the graph from the connectivity relations
of these points.

Definition 3 (Critical point) Let f be a scalar function de-
fined on a 2−manifold M , f : M → R. A point p ∈ M is a
critical point of f is the gradient of f vanished in p.

Definition 4 (Non-degenerate critical point) A critical
point p of a scalar function f defined on a 2−manifold
is called a non-degenerate critical point if the matrix of
second partials is non-singular in p.

(a) L+=1, L−=0 (b) L+=0, L−=1 (c) L+=2,
L−=2

Figure 3. Non-degenerate critical point clas-
sification.

In the discrete case, given a vertex v of a triangulated sur-
face T , let L+ and L− be respectively the number of con-
nected sets of vertices vi and vj on Lk(v) (v direct neigh-
bors, its link) such as f(vi) > f(v) and f(vj) < f(v).

Vertices corresponding to non-degenerate critical points
can be classified into three categories, according to L+ and
L−, as shown in figure 3: local minima (3(a)), local maxima
(3(b)) and simple saddles (3(c)). We will use figure 3 color
convention in the rest of the paper.

As mentioned by Biasotti et al. [1], continuous func-
tions, and particularly Morse functions [10] (when all the
critical points are non-degenerate), are pertinent choices for
functions f . For clarity purpose, we will refer to candidate
functions as quotient functions in the rest of the paper, to
underline their use in graph construction.

Figure 2 illustrates previous definitions, presenting re-
spectively a scalar function (the height function) computed
on a 2−manifold, its non-degenerate critical points, level
lines of arbitrary range and the corresponding Reeb graph.

3 Related work

Several approaches have been explored by the computer
graphics community in polygonal mesh decomposition.

Topological methods aim to produce structural descrip-
tions of shapes where identified sub-components form con-
nected sets. Morse and Reeb graph theories are two pow-
erful mathematical tools that respectively enable to identify
topological points of interest over the mesh and to capture
their connectivity relations into a graph structure (see fig-
ure 2). Several algorithms [16, 3] have been proposed to
construct Reeb-like graphs in O(n × log(n)) steps (where
n is the number of vertices) from piecewise linear functions
computed over the mesh. Tarasov and Vyalyi [16] propose
local mesh redefinition in order to purge multiple saddles
and to benefit from Morse functions properties [10]. How-
ever, those papers do not address the problem of the quotient
function definition. Lazarus and Verroust [9] introduces a
novel notion of topological structure called Level Set Di-



agram, whose construction is somewhat similar to that of
a Reeb graph. An interesting point of this method is the
use of a quotient function, exploited for the diagram con-
struction, based on the geodesic distance to a source vertex.
Unfortunately, this scalar function suffers from a high insta-
bility [6], due to the non-determinist election of the source
vertex, which excludes its use in applications where sta-
bility is fundamental, like shape retrieval for example. To
overcome this problem, within the framework of shape re-
trieval, Hilaga et al. [6] propose to integrate this function
over the whole mesh. More precisely, they define an ap-
proximation function that introduces geodesic distances to
a set of base vertices, homogeneously spread over the mesh.
Moreover, they propose a new topological structure scheme
called Multiresolutional Reeb Graph. Basically, they pro-
ceed in a succession of mesh partitionings, according to
different value-ranges of their quotient function. This ini-
tiative is of a major interest for 3D shape retrieval but does
not fit other applicative contexts mainly because it will be
difficult to automatically define a proper value-range for an
application or another. For an interesting survey on compu-
tational topology approaches for shape modeling, we defer
the reader to [1].

In short, the first key issue of topological approaches re-
sides in the definition of the quotient function. A non per-
tinent function will present an important number of criti-
cal points, as underlined in [12]. Consequently the result-
ing Reeb graph will present many nodes and edges and will
not afford a global and meaningful description of the shape
(low-level Reeb graphs). Moreover, depending on applica-
tion needs, the quotient function should present stability and
invariance properties [9, 6] but those functions often gener-
ate many critical points from our experience.

The second key issue of topological approaches resides
in the graph construction strategy, which should only use
significant critical points and should not be conditioned by
a user-parameter. In this paper, we present a novel method,
whose objective is to produce high-level, stable, invari-
ant and generically-exploitable Reeb graphs, solving pre-
viously mentioned issues.

4 Invariant high level Reeb graphs

Reeb graphs give a good overview of the structure of
polygonal meshes. Unfortunately, constructing a Reeb
graph from a non pertinent quotient function often leads to
results of low semantic interest – low-level Reeb graphs –
because of the number of identified critical points.

In this paper, we propose to challenge this key issue by
proposing an invariant quotient function combined with a
pertinent critical point selection algorithm, that enables the
construction of high-level Reeb graphs over piecewise con-
tinuous functions.

4.1 Invariant quotient function

Several scalar functions have been proposed by the com-
puter graphics community to construct topological struc-
tures. The choice of this function will directly condition the
stability properties of the topological structure and therefore
its usability in application fields. In this section, we detail
our strategy to compute an invariant and meaningful quo-
tient function: first, we extract mesh feature points and sec-
ondly, for each vertex in the mesh, we compute its geodesic
distance to the closest feature point.

4.1.1 Metric space

Before defining the scalar function itself, a metric space
needs to be defined. We will distinguish two kinds of metric
spaces: on the first hand euclidean ones and on the other
hand Riemannian ones.

Rotation and translation invariance properties can be ob-
tained in both, as long as origins are taken relatively to the
mesh. As an example, with an euclidean metric space, the
euclidean barycenter of the mesh can be chosen.

Scaling invariance property can be obtained in both met-
ric spaces as well, normalizing values in a regard to mesh
global extrema.

In shape modeling, geodesic distances are interesting
Riemannian metrics, because their evaluations are tolerant
to variations in model pose. In metric geometry, a geodesic
is a curve which is everywhere locally a distance minimizer.
More concretely, the geodesic distance between two ver-
tices is the length of the shortest path between them along
the mesh, according to a given metric. As an example, a
geodesic distance from a hand of a humanoid model to its
head will be the same whether its arms are folded or not.
For a formal description of Riemannian geometry, we defer
the reader to [4].

In our approach, to guarantee invariance to rotation,
translation, scaling and model pose, we decide to choose
Riemannian metrics, and particularly geodesic distances.
From an algorithmic point of view, geodesic distances can
be approximated by the Moore-Dijkstra algorithm (distance
minimizing in weighted graphs). In the rest of this paper,
we will refer to δ(v1, v2) as the normalized approximation
of the geodesic distance from vertex v1 to vertex v2.

4.1.2 Feature point extraction

Feature points are mesh vertices located on extremities
of prominent components. From a perceptive point of view,
the set of feature points describes in a meaningful way the
global structure of a shape. From this observation, in a com-
parable way to [2], we propose in our method to use the
set of feature points as origins for geodesic distance evalu-
ations.



Several algorithms have been proposed for feature point
extraction. They find applications in various fields, like
shape metamorphosis, deformation transfer, texture map-
ping, etc. For example, Mortara and Pantanè [11] propose to
select as features points the vertices where gaussian curva-
ture exceeds a given threshold. Unfortunately, this method
can miss feature points because of the threshold parame-
ter and cannot resolve extraction on constant curvature ar-
eas. Katz et al. [7] developed an algorithm based on multi-
dimensional scaling, in quadratic execution complexity.

Here, we propose a quite straightforward algorithm,
based on topological tools. Most of the geodesic based
scalar function local extrema appear at extremities of promi-
nent components (see illustrations 4(a) and 4(b)), mainly
because gradients vanish in those configurations (cf. defini-
tion 3). Therefore, we propose to realize a crossed analysis,
using two geodesic based scalar functions – whose origins
are the mesh most distant vertices – and to intersect the sets
of their local extrema.

Definition 5 (Feature points) Let f1 and f2 be two scalar
functions defined on a connected triangulated surface T as
follows:

f1(v) = δ(v, vs1
) (1)

with:

vs1
∈ T / δ(vs1

, vr) = maxv∈T δ(v, vr) (2)

with vr ∈ T a randomly chosen vertex, and:

f2(v) = δ(v, vs2
) (3)

with:

vs2
∈ T / f1(vs2

) = maxv∈T f1(v) (4)

Let E1 and E2 be the sets of local extrema of f1 and f2.
We define the set of feature points F of T as the intersection
of E1 and E2 :

F = E1 ∩ E2 (5)

Concretely, we perform a crossed analysis in order to
purge non-isolated extrema, as illustrated in figure 4: f1

local extrema are displayed in yellow (figure 4(a)) and f2

extrema in cyan (figure 4(b)). Equation 5 is well illustrated
in figure 4.

In practice, f1 and f2 isolated local extrema do not ap-
pear exactly on the same vertices but in the same geodesic
neighborhood. Therefore, we relax the intersection con-
straint as follows:

v ∈ F ⇐⇒















∃ve1
∈ E1 / δ(v, ve1

) < ε
∃ve2

∈ E2 / δ(v, ve2
) < ε

δ(v, vfi
) > ε ∀vfi

∈ F
ε ∈ [0, 1]

(6)

(a) E1. (b) E2. (c)
E1 ∩ E2.

Figure 4. Feature point extraction overview.

(a) 25 000
vertices.

(b) 5 000
vertices.

(c) 1 000
vertices.

Figure 5. Feature point extraction robustness
against mesh sampling variations.

Local extrema identification is realized according to the
classification presented in figure 3. Moore-Dijkstra’s al-
gorithm is an execution complexity bottleneck. f1 and f2

are computed each in O(n × log(n)) steps, where n is
the number of vertices in the mesh. E1 and E2 relaxed
intersection is performed in O(k × m × log(m)), where
k = mini∈{1,2} |Ei| and m is the number of vertices in
the geodesic neighborhoods.

In our experiments, setting ε = 0.05 gives accurate re-
sults. With this configuration, m never exceeds two percent
of n and k rarely exceeds 30 (depending on the model’s
topological complexity). Therefore E1 and E2 relaxed in-
tersection algorithm’s execution complexity is negligible
compared to f1 and f2 computations.

In this section, we presented a straightforward algorithm
for mesh feature point extraction. This algorithm is based
on geodesic distance evaluations and therefore is stable and
invariant to geometrical transformations and to model pose.
Moreover, in order to select feature points, we observe
geodesic gradient behaviors. Consequently, we can state
that our method is robust against mesh sampling variations,
as illustrated in figure 5.

4.1.3 Quotient function definition

The quotient function definition depends on what is ex-
pected to be revealed. As an example, for terrain modeling,
the height function will present critical points over hills and



(a) 25 000 vertices,
6 features points.

(b) 50 000 vertices, 7 features points.

Figure 6. Evolution of the level lines of fq and
its critical points on arbitrary shapes.

valleys and will afford consequently an appropriate topolog-
ical description. In our approach, we would like to identify
meaningful mesh sub-components.

As underlined in paragraph 4.1.2, the set of feature
points describes in a meaningful way the global structure
of a shape. This set is invariant to geometrical transfor-
mations and variations in model pose and mesh sampling.
From these observations, we propose to compute a mean-
ingful quotient function from geodesic distances to the set
of feature points.

In particular, an interesting objective would be to make
f function level lines cut as precisely as possible the basis
of prominent components, to afford a meaningful decom-
position. With this aim, we use the set of feature points as
origins for distance evaluations and propose the following
quotient function, computed for each vertex v of an input
connected triangulation T , noted fq in the rest of the paper:

fq(v) = 1 − δ̂(v, vc) (7)

with vc the closest feature point from v:

vc ∈ F / δ̂(v, vc) = minvfi
∈F δ(v, vfi

) (8)

Figure 6 presents some computations of fq over arbitrary
shapes, as well as the number of extracted feature points.

In our experiments, we compute the set of geodesic dis-
tances towards feature points within the feature point ex-
traction algorithm. Therefore, the number of iterations of
the Moore-Dijkstra algorithm over the whole mesh is equal
to the number of feature points. The execution complex-
ity of fq computation can be consequently approximated by
O(|F | × n × log(n)), with n the number of vertices in the
mesh.

(a) t = 600. (b) t = 10 000. (c) t = 20 000.

Figure 7. Geodesic propagation overview on
a 25 000 vertex mesh (fq function).

4.2 High level Reeb graph construction

As we can see in figure 6, fq is a piecewise continu-
ous function only. More precisely, discontinuity appears
on areas where geodesic origins change. In figure 6, those
areas can be identified with the rings of local minima and
local saddles (in red and black). From a theoretical point of
view, resulting Reeb graph should present as many nodes as
function critical points and consequently would not afford a
global, or high level, description of the shape.

In this section, we propose to challenge this issue with
a novel critical point election algorithm. With this aim, we
propose to focus on an intuitive description of Reeb graphs:
Reeb graphs are topological structures that depict the con-
nectivity evolution of the level lines of a given scalar func-
tion defined on a 2−manifold.

Consequently, we present a method that does not propose
to construct a Reeb graph from the connectivity relations of
f critical points. Instead, we propose to construct discrete
level lines around f global minimum and to observe their
connectivity relations while f evolves.

Discrete level lines evolution can be modeled as a
geodesic propagation within a metric space based on the
quotient function values. Such a propagation can be ob-
tained with the Moore-Dijkstra algorithm, considering for
each vertex its f value as weight.

Let t be a parametric variable that denotes an iteration of
the geodesic propagation algorithm. Now, we can introduce
the notion of discrete level line:

Definition 6 (Discrete level line) Let f be a scalar func-
tion defined on a connected triangulated surface T , f :
T → R.

Let C(t) be the set of candidate vertices for absorption
at the iteration t of the geodesic propagation algorithm.

Let l1(t), l2(t), ..., lk(t) be the connected subsets of ver-
tices belonging to C(t). We define each connected subset
li(t) as a discrete level line.



(a) (b) (c)

(d) (e) (f)

Figure 8. Bifurcation and junction contexts on
a torus shape (height function).

Figure 7 gives an overview of the geodesic propagation
in the metric space defined by fq. The area depicted in
white denotes the vertices visited by the Moore-Dijkstra al-
gorithm, whereas the red areas correspond to the vertices
belonging to C(t). Moreover, each connected subset of
C(t) (red thin lines) is referred as a discrete level line.

This notion of discrete level line can be compared to the
one of topological ring, presented by Mortara and Pantanè
[11]. However, their graph construction strategy is highly
dependent on their quotient function definition. Moreover,
to benefit from the properties of geodesic distances, their
quotient function computation needs a regular mesh refine-
ment, which increases the overall time complexity of the
approach and decreases its tolerance to mesh sampling vari-
ations.

In our algorithms, we analyze the connectivity evolu-
tions of the discrete level lines at each iteration t of the
geodesic propagation. Moreover, we construct simulta-
neously a dual Reeb graph (where connected components
are represented with nodes and connectivity relations with
edges), according to the following notions of topological
variations: bifurcations, junctions and terminations.

Definition 7 (Bifurcation) Let f be a scalar function de-
fined on a connected triangulated surface T . Let L(t) =
{l1(t), l2(t), ..., lk(t)} be the set of discrete level lines li(t)
at iteration t of f propagation and vt ∈ T the last visited
vertex. A bifurcation happens in vt iff:

|L(t)| > |L(t − 1)| (9)

Figure 8 presents the bifurcation and junction contexts
on a torus with the height function. In 8(a), L(t) is com-
posed of only one discrete level line, which splits in two
in 8(b): a bifurcation is created on the graph (figure 8(e)).
Similarly, we introduce the notion of junction as follows:

Definition 8 (Junction) Let f be a scalar function de-
fined on a connected triangulated surface T . Let L(t) =
{l1(t), l2(t), ..., lk(t)} be the set of discrete level lines li(t)
at iteration t of f propagation and vt ∈ T the last visited
vertex. A junction happens in vt iff:

{

|L(t)| < |L(t − 1)|
∃vn ∈ Lk(vt) / vn ∈ C(t)

(10)

In 8(b), L(t) is composed of two discrete level lines,
which merge in one in 8(c): a junction is created on the
graph (figure 8(f)). Finally, we introduce the notion of ter-
mination:

Definition 9 (Termination) Let f be a scalar function de-
fined on a connected triangulated surface T . Let L(t) =
{l1(t), l2(t), ..., lk(t)} be the set of discrete level lines li(t)
at iteration t of f propagation and vt ∈ T the last visited
vertex. A termination happens in vt iff:

{

|L(t)| < |L(t − 1)|
vn /∈ C(t), ∀vn ∈ Lk(vt)

(11)

At each step t of the geodesic propagation, we recon-
struct L(t) and apply needed topological variations on the
graph (figures 8(e) and 8(f)), according to |L(t)| evolutions
(equations 9, 10 and 11), as illustrated in the next section.

5 Experimental results and comments

In this section, we present and comment on experimen-
tal results obtained with our method and discuss about its
applications. Presented models are connected triangulated
surfaces extracted from the Princeton Shape Benchmark
database [15].

5.1 Time complexity

Let n be the number of vertices in the input mesh. As
mentioned section 4.1.2, the feature point extraction is re-
alized in O(n × log(n)) steps. Moreover, fq is computed
within the feature point extraction. Consequently, the in-
variant quotient function computation time complexity is
bounded by the Moore-Dijkstra algorithm and is realized
in O(|F | × n × log(n)).

As for the graph construction algorithm, we model C(t)
with a binary priority heap, which means that addition and
deletion of vertices are performed in O(log(n)). At a given
iteration t of the geodesic propagation, in order to observe
topological variations defined in 4.2, we re-construct each
discrete level line with a recursive algorithm, in O(n) steps.
Consequently, an iteration t of the geodesic propagation is
realized in O(n+ log(n)) steps. Therefore, as the complete
geodesic propagation takes n iterations, the overall com-
plexity of the graph construction takes O(n2) steps.



(a) (b) (c) (d) (e)

(f) (g) (h)

(i) (j) (k)

Figure 9. High level Reeb graphs of primitive
and complex shapes.

Presented algorithms have been implemented in C lan-
guage under GNU/Linux and experimented on a desktop PC
with a 3GHz P4-CPU and 2 gigabytes of RAM. With this
configuration, the computation of a high level Reeb graph
takes 0.23 seconds for a 2 000 face model, 2 seconds for a
10 000 face model, 17 seconds for a 40 000 face model and
86 seconds for a 100 000 face model.

5.2 Immersion strategies

By definition, a Reeb graph is a graph representation
only. Therefore, for many applications, it is mandatory to
define an R

3 immersion strategy.
In this paper, for illustration purpose, we use the follow-

ing strategy: each node of the high level Reeb graph, cor-
responding to a whole connected component, is placed at
the euclidean barycenter of its related component, as shown
in figure 9. Notice that the root component, with bigger
radius, represents the neighborhood of f global minimum.
This area is isolated when the geodesic wavefront first col-
lapses on itself, at the beginning of the algorithm.

Topological skeletons are a Reeb graph variant that can
be obtained by placing a point at the euclidean barycenter
of each discrete level line, as shown in figure 10(a). Such a
skeleton is a particularly pertinent shape descriptor for au-
tomatic mesh animation. With this aim, since a point of

(a) (b)

Figure 10. Skeletal representation of a high
level Reeb graph (a) and an application to
mesh deformation (b).

the topological skeleton references a discrete level line, it is
possible to move each vertex of the related level line with
a parameterized displacement, so as to get a smooth move-
ment of the whole connected component. In our experi-
ments, we deformed models by applying recursively simple
rotations to components, as shown in figure 10(b), but more
sophisticated strategies can be used, like in [8].

5.3 High level Reeb graph properties

Stability of the high level description First, as illus-
trated in figure 9, both complex and primitive shapes are
well managed by our algorithm. Moreover, it can handle
non-null genus surfaces correctly: in figure 9(b), the hair
of the humanoid model merges with its back which forms
consequently a cycle in the graph. Secondly, we can say
that the high level Reeb graphs of models belonging to the
same class (figure 9(b), 9(c), 9(d) and 9(e)) are quite similar,
which denotes the stability of our algorithm.

Finally, our geodesic propagation within the metric
space defined by the quotient function, combined with our
critical point election strategy, leads to accurate results:
none of the presented graphs reflects the presence of critical
points on discontinuity areas. With traditional Reeb graph
construction algorithms, the graph of the model 9(f) would
have counted about ninety critical points (see critical points
in figure 6(b) for comparison). With our approach, only
meaningful topological variations are encoded.

Affine invariance Thanks to our choice of metric
space (geodesic distances, with origins taken relatively to
the mesh), it is quite obvious that our approach is invari-
ant against geometrical transformations: translation, rota-
tion and uniform scaling.



(a) 25 000
vertices.

(b) 5 000
vertices.

(c) 1 000
vertices.

Figure 11. High level Reeb graph construction
algorithm robustness against mesh sampling
variations.

Robustness to model pose Robustness to model pose
can be observed in figures 9(c) and 9(d): the graphs are
similar whether the arms of the humanoid are folded or not.

Robustness to mesh sampling Thanks to our notion
of discrete level line, no hypothesis about mesh sampling
is required. Therefore, we can state that our Reeb graph
construction algorithm is tolerant against variations in mesh
sampling, as shown in figure 11.

Thanks to those properties, high level Reeb graphs can
be used in applications where invariance is fundamental. In
shape retrieval for example, those graphs can be extended
with geometrical attributes and shape comparison can be
achieved with graph matching algorithms [6].

6 Conclusion and future works

In this paper, we introduced a novel method for the con-
struction of invariant high level Reeb graphs, topological
entities that afford a global understanding of shapes, with
satisfactory execution times and without input parameters.
This method is composed of three main steps. First, we ex-
tract feature points thanks to a robust and straightforward al-
gorithm. Then, we use feature points as geodesic origins for
the computation of an invariant quotient function fq, used
for topological analysis. Finally, we developed a new graph
construction algorithm, based on a geodesic propagation in
the metric space defined by fq. It observes the connectiv-
ity evolutions of discrete level lines and provides meaning-
ful Reeb graphs, which only encode significant topological
variations. We illustrated the utility and the accuracy of our
approach with an application to mesh deformation.

The invariance properties of presented graphs (geometri-
cal transformations, model pose and mesh sampling) make
them good candidates for various applications in computer
graphics, like shape animation, retrieval, compression, etc.

In the future, we would like to refine our mesh decompo-
sition scheme in order to propose high level shape descrip-
tions of higher semantic interest.
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overview on properties and efficacy of topological skeletons
in shape modelling. In Shape Modeling International, pages
245–254, 2003.

[2] G. J. Brostow, I. Essa, D. Steedly, and V. Kwatra. Novel
skeletal representation for articulated creatures. In European
Conference on Computer Vision, pages 66–78, 2004.

[3] H. Carr, J. Snoeylink, and U. Axen. Computing contour
trees in all dimensions. In ACM Symposium on Discrete Al-
gorithms, pages 918–926, 2000.

[4] A. Fomenko and T. Kunii. Topological Modeling for Visual-
ization. Ed. Springer-Verlag, 1997.

[5] N. Gagvani and D. Silver. Parameter controlled volume
thinning. Graphical Models and Image Processing, Volume
61:149–164, 1999.

[6] M. Hilaga, Y. Shinagawa, T. Kohmura, and T. Kunii. Topol-
ogy matching for fully automatic similarity estimation of 3D
shapes. In International Conference on Computer Graph-
ics and Interactive Techniques, SIGGRAPH, pages 203–212,
2001.

[7] S. Katz, G. Leifman, and A. Tal. Mesh segmentation us-
ing feature point and core extraction. The Visual Computer
(Pacific Graphics), Volume 21:865–875, 2005.

[8] S. Katz and A. Tal. Hierarchical mesh decomposition using
fuzzy clustering and cuts. ACM Transactions on Graphics,
SIGGRAPH, Volume 22:954–961, 2003.

[9] F. Lazarus and A. Verroust. Level set diagrams of poly-
hedral objects. Technical Report 3546, Institut National
de Recherche en Informatique et en Automatique (INRIA),
1999.

[10] M. Morse. Relations between the critical points of a real
function of n independant variables. Transactions AM.
Math. Soc., Volume 27:345–396, 1925.
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