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Fig. 1. All components of our proposed approach, shown for the “Les Misérables” co-occurrence network, which we analyze in
Section 4.1. If the size of the graph permits it, we show a force-directed graph layout of the network (a), where each vertex is colored
according to the maximum degree of their associated clique community. A 2D histogram (b) of the maximum number of individual clique
communities for all edge weights and all clique degrees helps in finding relevant edge weight thresholds. The persistence diagram (c)
gives an overview of all clique communities and their merging behavior. The nested graph (d) shows how individual clique communities
merge when the edge weight of the network increases. Furthermore, it permits tracking the evolution of a single community.

Abstract—Complex networks require effective tools and visualizations for their analysis and comparison. Clique communities have
been recognized as a powerful concept for describing cohesive structures in networks. We propose an approach that extends the
computation of clique communities by considering persistent homology, a topological paradigm originally introduced to characterize
and compare the global structure of shapes. Our persistence-based algorithm is able to detect clique communities and to keep track
of their evolution according to different edge weight thresholds. We use this information to define comparison metrics and a new
centrality measure, both reflecting the relevance of the clique communities inherent to the network. Moreover, we propose an interactive
visualization tool based on nested graphs that is capable of compactly representing the evolving relationships between communities for
different thresholds and clique degrees. We demonstrate the effectiveness of our approach on various network types.

Index Terms—Persistent homology, topological persistence, cliques, complex networks, visual analysis.

1 INTRODUCTION

Complex network analysis [35, 42, 47] is an active research topic with
applications in multiple fields of interest, such as sociology, physics,
electrical engineering, biology, and economics. Generally, complex
networks are used to represent different kinds of systems that consist of
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individuals interacting with each other. A local analysis often focuses
on the connections of a single node and its local relevance. Centrality
measures such as betweenness or closeness help identify key nodes. A
study of structural properties of the entire network, by contrast, concen-
trates on groups of nodes and their connections. The connectivity of a
network can be measured using a large variety of attributes and descrip-
tors such as density, cohesion, diameter, and small-worldness. For this
kind of analysis, it is necessary to study communities or clusters [16].
Although a concrete definition depends on the application context, a
community is usually considered to be a highly-connected group of
nodes of the network. All of these concepts augment the description of
the local and the global structure of a network. Moreover, they can be
used to compare different networks. However, despite the effectiveness
of these concepts for evaluating similarities between networks, a tool



for systematically comparing the global and the community structure
of two networks is still missing in the literature.

A common approach for identifying communities in networks em-
ploys the detection of clique communities, e.g., via the clique perco-
lation method [37]. As we formally describe later in Section 3.1, a
k-clique community of a network consists of a collection of densely
interconnected groups of k individuals. Although these communities
are generally hard to calculate for high values of k, their use for identi-
fying the global structure of (edge-weighted) networks leads to several
advantages: (i) Different from other clustering techniques, clique per-
colation permits the existence of overlapping communities. This is
consistent with real-world networks, which often contain overlaps be-
tween different communities, so that an actual partition would result in
an unrealistic decomposition. (ii) A community-centered view permits
a simplified assessment of the relevance of individual nodes based on
the number of different communities they belong to. (iii) Unlike other
techniques (e.g., clustering) that strongly depend on parameters set by
the user, the decomposition in k-clique communities is parameter-free:
there are only finitely many cliques and finding a k-clique automatically
entails finding k cliques of degree k−1 because cliques are nested. In
most of the data sets presented in Section 4, we are thus able to fully
enumerate the community structure. Thanks to all these desirable prop-
erties, the use of clique communities has been recognized as a relevant
and effective tool in a large number of application domains [16]. How-
ever, some issues affect clique percolation. In most applications, the
clique degree k and the edge weight threshold w with which to perform
the network decomposition are not properly set up but just established
according to somewhat arbitrary criteria. Furthermore, the literature is
lacking (i) effective visualization tools able to manage different values
for k and w in a single view (ii) a theoretical framework for comparing
networks according to their clique community structure.

The main contribution of this paper faces these issues by developing
a tool for detecting and tracking the evolution of the clique communi-
ties of a network as both k and w vary. This has been made possible
by extending the notion of persistent homology, a topology-based
tool aimed at the characterization and the comparison of the global
structure of discretized topological spaces [12], to the framework of
clique communities of a network. This paper addresses a threefold
task: (i) to compute clique communities for different values of k and
w through a persistence-based algorithm, (ii) to visualize through an
interactive tool the clique communities of a network and their evo-
lution, (iii) to analyze the retrieved information using centrality and
comparison measures. Specifically, we propose a new algorithm for
clique community detection based on persistent homology that is able
to retrieve and track communities for any value of k and w. We define
new descriptors for comparing global structures of weighted networks.
Furthermore, we develop an interactive visualization tool by combining
several persistence-based feature detectors with the notion of nested
graphs [34]. Figure 1 depicts an instance of this tool for the well-
known character co-occurrence network of the historical novel “Les
Misérables” by Victor Hugo; please refer to Section 4.1 for more details.
Finally, we exploit the connection with persistent homology in order
to define a new centrality measure for the individuals of the network
based on the persistence of clique communities.

2 RELATED WORK

This section surveys related work in clique community detection, visu-
alization techniques for graphs, and persistent homology.

2.1 Detection of clique communities
The notion of clique communities has proven to be an effective tool
for analyzing a network with respect to its cohesive substructures.
The detection of such communities has led to fruitful applications in
numerous scientific areas such as biology [25,26], economics [22], and
social network analysis [19, 30, 36, 45]. Several methods are known
for computing these communities. The first approach is due to Palla
et al. [37], whose algorithm exploits the Bron–Kerbosch algorithm [3]
in order to enumerate all maximal cliques in the network. Next, a
clique-clique overlap matrix is built and used to easily retrieve clique

communities for any value of k. This approach constitutes the de facto
standard in clique community detection. Based on this method, the free
software CFinder has been released [1]. Various improvements to this
approach have been proposed in the literature [5, 20, 21, 29, 39].

2.2 Visual analysis of networks
Analyzing graphs and networks requires a complex interplay of visual-
ization algorithms and filtering/aggregation techniques [46]. The two
most common visualization techniques are (i) the matrix representa-
tion, in which the adjacency matrix of the network is displayed while
any edge attributes are encoded as the entries of the matrix, (ii) the
node–link diagram, in which nodes and links are shown in a planar
diagram while their positions are calculated using a variety of layout
algorithms. For generic undirected networks, node–link diagrams with
force-directed layout algorithms are shown to outperform other layout
strategies [46]. The scalability of these direct visualizations is not
always guaranteed even for static networks, which we consider in this
paper. Often, filtering or aggregation techniques are required [24]. In
this paper, we focus on topological, i.e, structural, properties of a graph.
Such properties are used in graph layout algorithms [2] or to guide user
interactions [18]. Our approach here is different in that we represent
our features in a more abstract manner. At the same time, this level of
abstraction permits us to compare networks based on their structural
similarity. In contrast to the few existing methods for this purpose, such
as ManyNets [17], our tool uses a single property of the network—the
connectivity of its clique communities—but is able to compare them
both visually and numerically (using a well-defined distance measure).

2.3 Persistent homology in network analysis
Persistent homology, the main paradigm that we employ in this pa-
per, is not a tool that was originally developed for complex network
analysis. Nonetheless, it started being frequently adopted for analyz-
ing the topological structure of a network. Specifically, applications
involve networks of various types, including collaborative [7, 48], so-
cial [27, 38, 40], sensor [11], brain [32, 33], and random [23] networks.
In all of these works, however, the analysis merely takes into account
the evolution of the connected components and cycles of a graph—to
the best of our knowledge, our work is the first to combine clique
analysis and persistent homology. Note that while persistent homology
can be used to retrieve higher-dimensional topological information, it
is not yet fully clear how to meaningfully interpret the resulting homol-
ogy classes. Despite this apparent limitation, persistent homology has
proven to be an effective tool to compare and discriminate the general
structure of complex networks or multivariate data.

3 METHODS

In this section, we define required terms, give a brief overview of
topological data analysis, and describe our algorithms.

3.1 Complex networks and clique communities
Complex network analysis concerns the study of systems representing
connections between distinct elements or actors [35, 42, 47]. Networks
have become a useful tool for representing systems from a wide variety
of research fields. Commonly, they are modeled as a graph G = (V,E),
with a set of vertices V and a set of edges E ⊆V ×V , whose elements
describe the relationships between vertices. In many applications,
vertices and edges contain additional attributes, e.g., labels and weights.

An integral part of network analysis involves the detection—and sub-
sequent analysis—of cohesive substructures of a complex network. As
previously outlined, the notions of k-cliques and k-clique communities
have proven very successful for this purpose.

Definition 1 (k-clique) We call a subset of cardinality k of V , whose
induced graph is the complete graph on k vertices, a k-clique. For
example, three vertices form a 3-clique if each one of them is connected
to the remaining two.

A clique thus describes a subset of vertices that are more closely con-
nected than their neighbors. We first define an adjacency relation
between cliques.
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Fig. 2. 3-cliques and 4-cliques in an undirected, unweighted graph.
Cliques are drawn semi-opaquely in order to show their overlap. Cliques
that are in the same community have the same color.

Definition 2 (k-clique adjacency) Two k-cliques σ and σ ′ are adja-
cent if their intersection is a (k− 1)-clique, i.e., if they share k− 1
vertices. For example, in order for two triangles (3-cliques) to be
considered connected, they must share a common edge (2-clique).

The adjacency relation permits a natural extension by considering
sequences of connected k-cliques.

Definition 3 (k-clique connectivity) We call two k-cliques σ and σ ′

connected if there exists a sequence of k-cliques of G such that any two
consecutive k-cliques are adjacent as defined above.

Finally, we extend this connectivity relation in order to be able to de-
scribe cliques that are “maximally connected”. This is akin to connected
components in a graph.

Definition 4 (k-clique community) A k-clique community of G is a
maximal union of k-cliques that are pairwise connected.

Figure 2 illustrates the notions of cliques and clique communities for an
undirected, unweighted graph. We can see that vertices {A,B,C,D,E},
for example, are part of the same clique community: all their 3-cliques
(triangles) are connected by a 2-clique, i.e., an edge. The remaining
vertices form a 3-clique community on their own because there is no
shared edge between the two communities. Note that the vertices
{E,F,G,H, I} form a 5-clique; we do not visualize it because it over-
laps with some of the 4-cliques. In general, given a graph G = (V,E)
and a fixed value k, the k-clique communities do not partition the
vertices of G . For example, vertex E in Figure 2 belongs to multiple 3-
clique communities and to multiple 4-clique communities. Note that as
a consequence of the adjacency definition, (k+1)-clique communities
are nested in exactly one k-clique community.

3.2 0-dimensional persistent homology
Persistent homology [12] is a fundamental tool in topological data
analysis that permits a multi-scale description of shapes. Roughly
speaking, given a shape Σ, its kth homology group reveals the presence
of k-dimensional holes in the shape. These holes permit an intuitive
description in lower dimensions: for k = 0, they correspond to the
connected components of Σ, for k = 1 to its tunnels, and for k = 2 to its
voids or cavities. This process may be generalized to higher dimensions
as well. Persistent homology is an extension of the concept of (sim-
plicial) homology. It describes the changes in homology that occur
to an object that evolves with respect to a parameter, such as a scale.
Both homology and persistent homology have been defined within a
generic framework of simplicial complexes and permit the retrieval
of k-dimensional holes for any value of k up to the dimension of the
analyzed shape. However, in this work, we focus on the 0-dimensional
persistent homology of graphs, for two reasons: First, it is still unclear
how to interpret high-dimensional holes, whereas connected compo-
nents afford an intuitive description. Second, 0-dimensional persistent
homology affords a highly-efficient computation and is still sufficiently
expressive for our purposes.

We now give a brief mathematical explanation of persistent homol-
ogy for weighted graphs. This requires a graph G = (V,E) with n
vertices and a weight function w: V →R defined on its vertices. w(·)

only assumes finitely many values, which we bring into non-decreasing
order, i.e., w1≤w2≤ ·· · ≤wn. A filtration of G is defined as a growing
sequence of graphs,

/0⊆ G0 ⊆ G1 ⊆ ·· · ⊆ Gn−1 ⊆ Gn = G , (1)

where Gi = (Vi,Ei) is the graph consisting of the vertices in V and
edges in E with weight less than or equal to wi, i.e.,

Vi := {v ∈V | w(v)≤ wi}, (2)

and

Ei :=
{

e = {u,v} ∈ E | w(e) := max
(

w(u),w(v)
)
≤ wi

}
. (3)

For c,d ∈ {1, . . .n} such that c ≤ d, the (c,d)-persistent zero-
dimensional homology group of G is defined as the image of the inclu-
sion map of the connected components of Gc into Gd .

The previous description follows a simple intuition: as we traverse
the individual graphs of the filtration, new components can be created
or existing connected components can merge. At such a merge, we con-
sider the component with the larger weight (i.e., the one that appeared
later in the filtration) to be merged into the component with the lower
weight. We denote such a merge by a persistence pair (c,d) ∈ R2,
where c denotes the weight at which a connected component was cre-
ated and d denotes the weight at which it was destroyed. Connected
components that are never destroyed thus have a persistence pair of the
form (c,∞). The value pers(c,d) := |d− c| is called the persistence of
(c,d). It denotes the “lifespan” of the connected component. A high
persistence is usually considered to indicate that a connected compo-
nent (or, equivalently, a topological feature in higher dimensions) is
relevant [13].

Persistence pairs are commonly visualized as points in the plane,
forming the persistence diagram D . Persistence diagrams are a popular
way of obtaining a topological summary of data: they have well-known
stability properties [8, 9], meaning that the points in a persistence
diagram are a continuous function of the weight function on the input
data. All points in the persistence diagram are situated above the
diagonal of the first quadrant, and the lifespan of a point (c,d) is
indicated by its distance to the diagonal with respect to the L∞-norm.
Persistence pairs of the form (c,∞) are usually drawn in the upper part
of the first quadrant.

We now briefly discuss how to calculate a 0-dimensional persistence
diagram from a graph G because it is a central part of our method. Using
a Union–Find data structure [10, pp. 561–568], we keep track of how
connected components change during the filtration: we traverse vertices
and edges in ascending order of their weight, letting vertices precede
edges if their weight coincides. Whenever we process an edge e with
associated weight we, it potentially merges two connected components
with corresponding weights w1, w2. Without loss of generality, we
assume that w1 ≤ w2. We refer to the connected component belonging
to w1 as the “older” connected component. Following the elder rule [12,
p. 150] in computational topology, we merge the “younger” component
into the “older” connected component. We summarize each of these
merges by the tuple (w2,we), indicating that a connected component
was created at weight w2 and destroyed at weight we. Together, these
tuples form the 0-dimensional persistence diagram of G . Algorithm 1
gives a pseudo-code description of this procedure. It is highly efficient
and has a complexity of O(nα−1(n)), where n denotes the number of
edges of G and α−1(·) is the extremely slow-growing inverse of the
Ackermann function.

3.3 Persistent homology for clique communities
In this section, we extend the previously-described algorithm to clique
communities. We assume that we are given a graph G = (V,E) and a
weight function w: V →R defined on its vertices. Similarly, we also
permit w(·) to be defined on the edges of G only, and set w(v) := 0
for every vertex. We then extract all cliques of G , using one of the
numerous algorithms available to obtain them; see, e.g., Fortunato [16]



Algorithm 1 0-dimensional persistent homology calculation
Require: A weighted graph G

1: UF← /0 . Initialize an empty Union–Find structure
2: D ← /0 . Initialize an empty persistence diagram
3: for every edge (u,v) ∈ G in ascending order of its weight do
4: c← UF.Find(u)
5: c′← UF.Find(v)
6: if w(c)< w(c′) then . c is the older component; merge c′ into it
7: UF.Union(c′, c)
8: D ←D ∪

(
w(c′),w(u,v)

)
9: else . c′ is the older component; merge c into it

10: UF.Union(c, c′)
11: D ←D ∪

(
w(c),w(u,v)

)
12: end if
13: end for
14: return D
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Fig. 3. An illustration of persistent 3-cliques. For ε = 1.0, a new 3-clique
community is being created. It is not connected to the 3-clique community
that appears for ε = 2.0. For ε = 3.0, the second 3-clique community
merges into the first one.

for a survey. A crucial aspect of the detection process is the extension
of the weight function w(·) to an arbitrary clique σ ,

w(σ) := max
τ⊆σ

w(τ), (4)

i.e., the maximum weight of its subsets. Once the clique communities
have been detected, we can extract the k-clique connectivity graph
G k = (V k,Ek). This graph has a vertex for every k-clique of G . Its
edges are defined by

Ek :=
{
{σ ,σ ′} ∈V k×V k | σ and σ

′ are adjacent
}
, (5)

i.e., G k has an edge between two k-cliques σ , σ ′ if and only if they
intersect in a (k− 1)-clique. This is equivalent to saying that σ and
σ ′ share k− 1 vertices, hence σ and σ ′ are adjacent in the sense of
Definition 3. A similar set of graphs is also used by the clique percola-
tion method [37], which is the de facto standard in clique analysis. We
again extend the weight function w(·) to edges of Gk by setting

w(σ ,σ ′) := max
(

w(σ),w(σ ′)
)
. (6)

So far, we offered another description of clique connectivity analysis
in terms of clique connectivity graphs. The crucial difference to other
methods is that this setup permits us to calculate the 0-dimensional
persistent homology of G k using Algorithm 1. We thus obtain a persis-
tence diagram that describes the “evolution” of k-clique communities.
This diagram enables the analysis of changes in clique community con-
nectivity with respect to a weight parameter. In particular, we are able
to detect all merges between clique communities, whereas previous
approaches are only capable of depicting clique communities at a single
“snapshot” of the graph. As a consequence, our method is capable of
detecting and summarizing clique community behavior at a much more
granular level.

Figure 3 demonstrates the advantages of our approach on a simple
graph. We insert edges according to their increasing weights (letting ε

refer to the current weight threshold in the filtration) and mark those
edges in red. For ε = 1.0, two new 3-cliques {A,B,C} and {B,C,D}
are being created. Since they are connected by a 2-clique, i.e., the

{A,B,C}
{B,C,D}

{E,F,G}

(a) ε = 1.0

{A,B,C}
{B,C,D}

{A,C,E}

{E,F,G}

(b) ε = 2.0

{A,B,C}
{B,C,D}

{A,C,E}

{E,F,G}

{A,E,F}

(c) ε = 3.0

Fig. 4. Evolution of the 3-clique connectivity graph. New vertices and
edges are marked red. The persistent homology of this graph encodes
their merging behavior.

shared edge {B,C}, they form a 3-clique community. For ε = 2.0, a
new 3-clique {E,F,G} appears. It is not connected to the other clique
community, so it forms a new community. Moreover, the first commu-
nity continues to grow. It now contains the 3-clique {A,C,E}, as well.
Last, at ε = 3.0, the addition of the edge {A,F} creates a new 3-clique
{A,E,F}, which finally connects the two clique communities. Fol-
lowing the elder rule in persistent homology [12, p. 150], we consider
the clique community {E,F,G} to be destroyed by the merge, while
the other community persists. Figure 4 depicts the evolution of G 3,
the 3-clique connectivity graph, for this example. Traditional clique
community analysis methods fail to detect the creation and destruction
of the clique community because they do not take the “evolution” of the
graph into account—they will only detect a single 3-clique community
in the graph. The persistence diagram, on the other hand, contains the
persistence pairs (2,3) (indicating that a merge between the communi-
ties happened) and (1,∞).

Note that the detected cliques depend on the weight function defined
on the data. In this paper, we assume that weights are defined by the
application. Persistence diagrams are known to be stable with respect
to perturbations of weights [8,9]. Users need to ensure that the weights
of different networks are “compatible”, e.g., by normalizing them.

3.4 Persistence indicator functions
A common task in complex network analysis involves detecting suit-
able weight thresholds for extraction, comparison, and analysis [6, 15].
Usually, various indices such as the clustering coefficient are then eval-
uated on each subgraph, leading to a response curve that is used as a
fingerprint. In our setting, we can achieve similar results by analyzing
the persistence diagrams. We associate a summarizing function, the
persistence indicator function, to a persistence diagram D . It is defined
as

1D : R−→N
ε 7−→ card

{
(c,d) ∈D | ε ∈ (c,d)

} (7)

and measures the number of connected components (or topological
features) that are “active” for a given value of the threshold parameter ε .
In general, 1D is not injective, meaning different persistence diagrams
may be assigned the same persistence indicator function. Nonetheless,
it remains a useful summarizing function because it permits fast dis-
similarity calculations: 1D is a step function, hence its integral is a
piecewise linear function. As a consequence, we can use an Lp distance
to quantify the dissimilarity between persistence indicator functions,
i.e.,

dist(1D1 ,1D2) :=
(∫
R
|1D1(x)−1D2(x)|

pdx
) 1

p
, (8)

where usually p = 2. The Lp distance can be calculated much more
easily than the bottleneck distance [8] or the Wasserstein distance [9].
Another advantage of 1D is that it permits the calculation of a mean
persistence indicator functions for ensembles of weighted networks.
Figure 5 shows the persistence indicator function for a simple example.

Since we have a persistence indicator function for every value of
k, but we are only interested in the amount of activity—measured in
the form of active topological features, i.e, clique communities, at
a given threshold—we also require a condensed glyph: to this end,
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Fig. 5. A persistence diagram (a) and its corresponding persistence
indicator function (b).

(a)

k

(b)

Fig. 6. Persistence indicator functions (a) and their histogram (b) for the
“Les Misérables” co-occurrence network.

we first discretize the domain of the functions into uniformly-spaced
bins. For each k and each bin, we now calculate max1D , i.e., the
maximum amount of active topological features in the bin. This results
in a “band” in which the color indicates the maximum value of 1D . By
stacking these histograms, we obtain a visual summary of the clique
community activity of a weighted network. Figure 6 demonstrates
this for a set of persistence indicator functions of the “Les Misérables”
co-occurrence network. The glyph is also included in our interactive
tool (see Figure 1 or the accompanying video) in order to provide an
overview of interesting thresholds. The glyph shows that most of the
activity concentrates on very high thresholds, i.e., ε ∈ [24,32], in the
network. Only the 2-cliques, depicted in the lowest band of the glyph,
exhibit a non-zero number of clique communities for lower thresholds.

3.5 Clique community centrality
Another important issue in the analysis of complex networks is the as-
sessment of the (relative) importance of a given node. For this purpose,
multiple centrality measures are known in the literature. In the context
of our work, the cross-clique connectivity [14] is highly relevant. The
cross-clique connectivity of a vertex v is the number of cliques the
vertex is a part of. We can extend this definition to clique communities
and define the clique community centrality of a vertex v to be

Γc(v) := ∑
v∈C

pers(C), (9)

where C refers to all clique communities the vertex is a part of. By
measuring the persistence of every clique community, we are automati-
cally taking into account the relevance of a particular vertex: vertices
that participate in many clique communities of low persistence will be
assigned a lower centrality value than vertices that participate in few
clique communities of high persistence.

To demonstrate the utility of our measure, we briefly compare it with
existing centrality measures on the “Les Misérables” co-occurrence
network, which we shall analyze in more detail in Section 4.1. Using
different centrality measures, we extracted the five most central nodes
of the network. Table 1 shows the results. Since the utility of a centrality
measure is application-dependent [31], there is no clear “best” measure.
All measures are capable of detecting the main character, Valjean, for
example. The short ranking serves to elucidate some properties of our
measure, though: (i) Nodes with a high degree will not automatically be

BC CC EC CCC

Valjean Valjean Gavroche Valjean
Myriel Marius Valjean Gavroche
Gavroche Javert Enjolras Fantine
Marius Thénardier Marius Marius
Fantine Gavroche Bossuet Enjolras

Table 1. The five most central characters for the “Les Misérables” co-
occurrence network, ranked by different centrality measures (between-
ness centrality, closeness centrality, eigenvector centrality, and our clique
community centrality).

Data set Cliques Time

Les Misérables 2922 0.09 s
Shakespeare (Antony & Cleopatra) 53399 1.66 s
Brain 126526 4.38 s

Collaboration network (1999) 1052701 52.86 s
Collaboration network (2003) 2965703 185.32 s
Collaboration network (2005) 6530308 537.16 s

Table 2. Processing times (including centrality calculations) for several of
the analyzed networks.

considered to be more important: Myriel (a character with a high degree
whose connections do not form cliques) hence does not appear in the
list. (ii) Since centrality is calculated over all k-clique communities
for all k, our measure is capable of assigning a larger importance to
“key players” of a community, i.e., nodes that occur in multiple clique
communities for different values of k. Thus, Enjolras, the leader of
a group of revolutionary students, is assigned a slightly larger clique
community centrality value than other members (e.g., Bossuet) of the
revolutionary group (whose other members are not shown in the table).
In subsequent sections, we will use the centrality values in order to
analyze changes in network structure.

3.6 Implementation & technical details
Our implementation uses C++ and is made publicly available (among
other algorithms) within Aleph1, an open-source library for persistent
homology. We first calculate all cliques up to a maximum threshold for
k using an incremental algorithm [49]. The result is a simplicial com-
plex, i.e., a generalization of a graph whose elements, called simplices,
correspond to the retrieved cliques. We extract the k-clique connectivity
graph by traversing all simplices of the complex and store their co-faces
in a map, from which we finally extract all edges of the graph. This
extraction step is currently performed independently for every k and
not yet heavily optimized. Table 2 shows the performance of our algo-
rithm on a desktop machine (Intel Core i7-6700K, 64 GiB RAM). The
calculation time includes centrality measure calculations, making them
faster than traditional centrality measures such as betweenness central-
ity, whose calculation alone takes several hours for the collaboration
networks.

4 CASE STUDIES

In the following, we exemplify the use of clique community persistence
by analyzing several networks. Our method is highly generic and may
be applied to any weighted network, provided the notion of cliques is
useful for the particular application scenario.

4.1 “Les Misérables” co-occurrence network
This network describes co-occurrences between characters in Victor
Hugo’s novel “Les Misérables”. The edge weights correspond to the
number of co-occurrences between two characters. Consequently, we
have to invert the weights because we consider edge weights to corre-
spond to proximity. The network is very small, comprising 77 nodes

1https://github.com/Submanifold/Aleph
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Fig. 7. A force-directed graph layout (a) of the “Les Misérables” co-occurence network for edge weight 29 in which 4-clique communities are
represented through different colors. The nested graph visualization (b) showing the evolution of the 4-clique communities of the network according
to all edges weight thresholds.

and 254 edges, but we can use it to illustrate the properties of our
method. It contains numerous cliques up to k = 10. Despite its size, the
data set is well-known in the network analysis community, representing
a small but significant benchmark for demonstrating how our approach
addresses relevant challenges in this field. In the introduction, we al-
ready discussed the relevance of clique communities: they decompose
a network into cohesive communities while still permitting overlaps be-
tween individual groups. The definition of a clique community mainly
depends on two parameters: (i) the degree of a community (ii) the
weight of the edges of the network. To the best of our knowledge, there
is no other approach for analyzing the clique community structure of a
network that also takes into account these parameters. In the following,
we show how considering both of them can significantly enhance the
analysis of a network.

In order to depict the evolution of clique communities retrieved
by our method, we use the nested graphs paradigm by Lukasczyk et
al. [34]. Their visualization is originally used to track merges between
superlevel set components in scientific data sets, which satisfy a nesting
relationship. The same holds for k-cliques and their communities.
A (k+ 1)-clique community may only contain exactly one k-clique
community. We may thus represent the different clique degrees as
levels in the graph, while the x-axis represents different edge weight
thresholds. The edges of the nested graph illustrate the evolution of
k-clique communities. In the following sections (as well as in the
accompanying video), we detail how clique community detection and
nested graphs support users in their analysis.

Figure 1(a) shows the nested graph for the complete data set. Differ-
ent colors correspond to different clique degrees, with higher degrees
nested in lower degrees. For small edge weight values, the network
consists of a single, small, 2-clique community. By increasing the
weight threshold, new 2-clique communities start to appear and merge.
At the same time, colors turn into brighter shades, thereby revealing
that the connectivity between nodes become stronger. As expected,
communities merge over time, while it is not possible that communities
split for increasing edge weight thresholds. For the highest edge weight
value, the presence of a single gray structure in the background reflects
the fact that the network is edge-connected. In contrast to a standard
connectivity analysis, the use of clique communities reveals more infor-
mation. By only considering connected components (gray edges in the
graph’s background), we cannot reveal the network structure; focusing
on brighter colors, on the other hand, reveals the presence of various
communities. For this specific network, this reflects the fact that even if
all the characters are part of the same story, there exist several distinct
subplots.

In combination with several interaction mechanisms of the proposed
visualization tool, our method permits exploring different edge weights
and degrees. This enables users to discover information that is not
available by just focusing on a single one of these parameters. For
instance, analyzing the network for the largest edge weight results in
a clear community structure for k = 4. Leaving k fixed and moving
“horizontally” in the nested graph, it is possible to track the evolution of
a selected community. Thanks to this approach, moving from threshold
32 to 29, we find that the big dark blue community at 32 consists of

three different sub-communities (see Figure 7(a) for the corresponding
sub-graphs and Figure 7(b) for the nested graph). Moreover, these
six communities turn out to be highly relevant for the structure of this
network, as each of them corresponds to a significant group of char-
acters: the members of the revolutionary association called Les Amis
de l’ABC (dark blue), the circle of friends of the young Fantine (light
blue), the members of the Patron-Minette crime gang (orange), the so-
cial circle of Bishop Myriel (green), the participants at Champmathieu’s
trial (red), and the family of Marius (light red). Intuitively, varying the
edge weight threshold helps extract the “core” of a community, while
changing the degree permits analyzing the same social circle accord-
ing to different granularity levels by revealing the sub-communities it
consists of.

The histogram and persistence diagram support the analysis of inex-
perienced users while providing further guidelines and confirmations
to experts. Specifically, the histogram of the persistence indicator
functions (Figure 1(b)) permits detecting relevant threshold values for
the analysis. For instance, the communities discussed above were
obtained for edge weight 29 and degree 4, as the corresponding cell
in the histogram is highly relevant. This is quite effective, especially
when dealing with more complex networks. Furthermore, the overall
information provided by the histogram makes it useful for an initial
comparison between different networks. Similarly, the persistence
diagram (Figure 1(c)) helps identify interesting communities as they
correspond to points far from the diagonal. Here, some of those points
correspond, e.g., to the community of the main characters of the novel,
or of the core members of the Les Amis de l’ABC.

We can also observe limitations of our current visualization: cur-
rently, we cannot handle the disappearance of edges (which is also
not modeled in the data, though). Consequently, some of the clique
communities persist and are never merged even though they bear no
more importance to the plot.

4.2 Shakespearean network analysis

To demonstrate that our method aids in comparative analysis of net-
works, we used publicly available co-occurrence networks of 37 Shake-
spearean plays. The networks contain the characters of a play as the
nodes, while edges signify that two characters appear in the same scene
of a play. The edge weights are set according to the amount of speech
uttered by two characters in the same scene [40]. We transform the
edge weights as discussed above and extract all clique communities up
to k = 16 (higher-order cliques do not occur). Following Shakespeare’s
First Folio, we classify all plays as either Comedy (e.g., “The Tempest”),
Tragedy (e.g., “Hamlet”), or History (e.g., “Henry V”).

4.2.1 Comparing distance measures

We first use the networks to demonstrate the structural stability of
the persistence indicator functions or, more precisely, their discretized
variants. To this end, we calculate the Wasserstein distance between all



(a) Wasserstein distance (b) L2 distance

Fig. 8. Distances matrices for network dissimilarity measures. The
Wasserstein distance (left) is a well-established topological dissimilarity
measure. Our histogram distance (right) produces virtually identical
results at a fraction of the calculation complexity.

persistence diagrams of all plays, i.e.,

Wp(a,b) =

(
∑
k

inf
ηk : Da,k→Db,k

∑
x∈Da,k

‖x−ηk(x)‖p
∞

) 1
p

, (10)

where a and b refer to the individual persistence diagrams of each
network, and k ranges over the clique community degrees. We also
compute the L2 distance between the discretized persistence indicator
functions (with 15 uniformly-spaced bins). This is akin to calculating a
distance between histograms. Figure 8 depicts the resulting distance
matrices. The patterns shown in both matrices are virtually identical.
A numerical analysis shows that the matrices are highly-correlated
with Pearson’s correlation coefficient R2 ≈ 0.96. This means distances
measured by the Wasserstein distance and distances measured by the
L2 distance are related by a linear transformation. Other numerical
experiments (please refer to the supplementary materials for more
details) confirm the relationship between the two measures. We may
thus be confident that the L2 distance suffices for capturing structural
dissimilarities between networks.

4.2.2 Structural differences between groups of plays

For our first analysis, we focus on structural differences between groups
of plays. We want to check whether the community structures typically
found in comedies differs from, say, tragedies. In order to simplify
the subsequent comparison, we assume that the weights are scaled
from [0,1]. We now calculate all clique community persistence dia-
grams and convert them to their persistence indicator function. Follow-
ing this, we calculate the mean persistence indicator function for every
value of k. Last, we convert these functions into 2D histograms with
n = 15 bins. This yields a mean 2D histogram that displays the amount
of clique community activity for every threshold and every k. Figure 9
depicts the results. At first glance, the 2D histograms appear to be very
similar: all histograms display an elongated structure indicating that
more communities are merged at higher thresholds. A closer inspection
shows that the mean 2D histogram for comedies is different. It has a
larger amount of clique community activity for small values of k than
either tragedies or histories. Furthermore, there is less activity for large
values of k, indicating that the number of connected characters tends to
be smaller on average. The activity for smaller values of k is caused
by a higher number of subplots, or even “plays with a play”, which are
often a feature of Shakespeare’s comedies.

4.2.3 Structural differences between all plays

As a second step, we demonstrate how our method permits a com-
parison of structural differences between all networks. In previous
work [40], the authors used an embedding based on the Wasserstein dis-
tance between the persistence diagrams corresponding to a play. Only
zero-dimensional and one-dimensional persistent homology was taken
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Fig. 9. Mean histograms for Shakespeare’s plays, grouped according to
their categorization.

Pericles

The Winter’s Tale

Cymbeline

Comedy
Tragedy
History

Fig. 10. An embedding of Shakespeare’s plays according to the his-
togram distance. We do not show all labels due to layout reasons.

into account, though, whereas our method includes higher-dimensional
connectivity information in the form of cliques.

Figure 10 depicts an embedding based on the L2 distance, which we
calculated using multidimensional scaling. Colors show the category of
a play. We can see that most comedies (yellow) are structurally similar,
so they form a cluster. Histories and tragedies, on the other hand,
exhibit no cluster structure because they are structurally too different.
Similar observations were made in previous work [40]. The interesting
comedies are those that are remote from the cluster center because their
structure is somewhat atypical. Here, we have marked three plays that
are typically considered to be problematic by scholars: in PERICLES,
for example, Shakespeare was only a co-author of the play, which may
be the reason why its line-up of characters is so different from other
comedies. The other two highlighted comedies are also special: both
CYMBELINE and THE WINTER’S TALE feature a larger number of
clique communities with high persistence values.

In summary, we showed how our method can be used to obtain
embeddings of the structural similarity between different networks.
Our histogram-based distance measure is fast and easy to calculate,
while maintaining important information.

4.3 Brain networks
The connectivity of the human brain—usually referred to as the hu-
man connectome—is a fundamental object of study in neurobiology
research [44]. Of particular interest to researchers is the identifica-
tion of changes in brain connectivity when certain areas are removed:
how is the transfer of signals impaired by this change? This question
is highly relevant for improving our understanding of diseases such
as depression [28] or multiple sclerosis [43]. Usually, differences in
networks are measured using graph-theoretic measures [4] or persis-
tent homology based on connected components [32, 33]. Previous
work [41] already showed that brain activity exhibits a community
structure, whose analysis sheds light on neurological concepts such as
brain function. Our method is the first approach that permits a multi-
scale analysis and comparison based on these community structures.
It is therefore an extension or generalization of approaches based on
connected components.



(a) All fibers (b) Variant 1 (c) Variant 3 (d) Variant 5

Fig. 11. The high inter-connectivity of the brain network makes it hard to
see differences between the original network with all fibers and several
variants in which numerous fibers have been removed.

Variant Density Diam. (weighted) Avg. degree (weighted)

0 0.125 4 (60.0) 21.21 (2300.3)
1 0.124 4 (60.0) 21.06 (2296.0)
2 0.124 4 (60.0) 21.13 (2295.2)
3 0.124 4 (60.0) 21.16 (2282.0)
4 0.124 4 (60.0) 21.15 (2279.3)
5 0.125 4 (60.0) 21.19 (2264.0)
6 0.125 4 (60.0) 21.19 (2264.0)
7 0.124 4 (60.0) 21.16 (2279.6)
8 0.125 4 (60.0) 21.20 (2257.5)

Table 3. Common graph measures are incapable of detecting salient
differences between the individual brain networks.

In the following, we want to briefly analyze multiple variants of
a brain connectivity network. The network consists of fibers (spatial
curves) that connect areas in the brain. Fibers with the same target
are collapsed to an edge whose weight is set to the number of fibers it
contains. Every area is represented as a node with a set of associated
coordinates, making the network easy to depict. Next to an unmodified
network (variant 0), there are also variants in which different edges have
been removed at random in order to simulate changes in connectivity.
Figure 11 demonstrates that these changes are so slight that they do not
show up in direct graph visualizations.

The clique community structure changes, however. To quantify this,
we calculate all clique communities up to k = 13. From the resulting
clique community persistence diagrams, we get the persistence indica-
tor functions so that we are able to once again compare the common
Wasserstein distance as well as our persistence indicator function dis-
tance. Figure 12 depicts dissimilarity matrices for the two different
measures. Every entry in the matrix corresponds to a brain network.
We can see that all modified variants (1 . . .9) are unable to maintain the
community structure to some extent, as indicated by the blue colors in
the matrix. Networks 5, 6, and 8 are particularly dissimilar from the
original data, which is not apparent in the direct graph visualization.
Neurologists could now analyze these networks and assess to what
extent brain function was impeded due to the removed edges. Con-
firming the previous case study, we find that the distance matrices are
highly-correlated with R2 ≈ 0.99, hence both distance measures are
nearly identical. Moreover, common graph measures such as density,
diameter, and average weighted degree remain almost unchanged for
all network variants (Table 3). Only our community-based method
is capable of quantifying differences between the networks—over all
weight thresholds and all clique degrees.

4.4 Condensed matter collaborations
Our method can also be used to detect changes in network structure.
As a demonstration, we used three different data sets that describe co-
authorship between scientists of the “Condensed Matter” category of
the “arXiv” e-print repository. The edge weights in these networks are
a function of the number of collaborations between authors. We invert
them in order to treat them as distances. Furthermore, we normalize
them to [0,1] in order to simplify comparisons. The data was compiled
at three snapshots in time: 1999, 2003, and 2005; the network from
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Fig. 12. Dissimilarity matrices for all variants of the brain network. Both
measures show that all cuts in the network destroy connectivity to some
extent. At least three cuts result in a markedly different network structure.

(a) Node–link diagram (b) Force-directed layout

Fig. 13. The number of vertices and edges in the “condensed matter”
networks makes visualizing and comparing them very challenging.

1999 is included in the 2003 network, for example. As pointed out
by Figure 13, the network sizes (1999: 16,726 nodes, 47,594 edges;
2003: 31,1163 nodes, 120,029 edges; 2005: 40,421 nodes, 175,692
edges) pose challenges both for visualizing and analyzing the data. Our
current implementation is able to calculate all cliques for all values
of k only for the 1999 network—for the 2003 and 2005 networks, the
size of the clique connectivity graph quickly exceeds the main memory
of a desktop machine with 64 GiB RAM. We are able to obtain clique
communities up to k= 6 so we can analyze at least a part of the structure.
Plotting the persistence diagrams (Figure 14) demonstrates that their
structure is virtually identical for higher-order clique communities. For
k = 2, however, merges tend to happen at higher thresholds for the 1999
data than for the other networks. The total number of these persistence
pairs is negligible, though, so there is almost no variation in creation
values, destruction values, and persistence values between the networks,
which impedes structural comparisons.

Calculating standard distance measures such as the bottleneck dis-
tance or the Wasserstein distance between the persistence diagrams is
unfeasible, as each persistence diagrams contains tens of thousands of
points and the distance computations do not scale well. Furthermore,
the missing variation in persistence pairs—except for a negligible num-
ber of points—will result in meaningless distances. The situation is
similar when we rely on the persistence indicator functions, as shown
in Figure 15. In order to obtain information about structural differences,
we thus use the clique community centrality values. Figure 16, left,
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Fig. 14. Clique community persistence diagrams for the “Condensed
matter” co-authorship networks for 1999, 2003, and 2005. Higher-order
clique communities exhibit the same characteristics in all networks.
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Fig. 15. Histograms for the “Condensed matter” co-authorship network.
The number of active clique communities hardly differs between the three
networks, making it very hard to distinguish them.

shows histograms and kernel density estimates of the clique commu-
nity centrality values. Here, the 1999 data is markedly different from
the two other time steps: it has fewer centrality values (which is to
be expected as its size is smaller) and they are distributed differently.
Centrality values between 5 and 10 are more equally distributed than
in the other years. The mean centrality increases from 6.55 in 1999 to
7.44 in 2003, and falls back to 7.25 in 2005. This is caused by an influx
of nodes with lower centrality values. These correspond to researchers
that are not (yet) well-connected. The mean centrality value of new
researchers, i.e., nodes do not occur in the data set for a previous year,
is 4.01 for the 2003 data, while it is 5.345 for the 2005 data. The
connectivity of newcomers to the network thus increases. We also find
that the centrality of known nodes, i.e., nodes that are available for all
three time steps, stop increasing—the mean increase from 1999 to 2003
is 1.41, while the mean increase from 2003 to 2005 is only 0.16. The
community structure appears to be saturated after a certain point.

The centrality values can also be used to filter away all but the
most central of all nodes. The results of this are shown in Figure 16,
right. Nodes are colored according to their degree, while their size
corresponds to their clique community centrality. The graph is thus
reduced to the “key players” of the network and we can see how they
change over time. For instance, we observe that Paul C. Canfield,
whose research group was founded in 1992, improved his collaboration
network from 1999 to 2003, thus starting to appear as a key player in
the 2003 data. It is also interesting to see that even the key players
become more interconnected over time. The filtered graph for the 2005
data is almost a single connected component, while earlier years do not
contain direct connections between the key players.

In summary, this example demonstrates the utility of clique commu-
nity centrality: its distribution can be analyzed to draw assumptions
about the connectivity of a network. Moreover, it can act as simple
filter—and thereby permit the analysis of graphs for which traditional
visualization techniques are not readily applicable.

5 CONCLUSION

We developed an extension of persistent homology to the analysis of
clique communities in weighted networks. In contrast to earlier meth-
ods, our algorithm is capable of analyzing the connectivity relations for
all clique degrees and all weight thresholds simultaneously. We also
presented different visualizations for showing information about clique
communities and demonstrated their utility on various data sets.

For future work, we envision using our method to compress a graph,
e.g., by removing edges that are irrelevant for the clique community
structure. Furthermore, we want to augment our method so that it can
handle time-varying networks in which connections between individual
nodes are permitted to disappear at certain thresholds. This requires
changes to the underlying model for clique community persistence,
though. We also want to consider the nesting relationships between
k-clique communities and (k + 1)-clique communities. So far, our
method performs the analysis for a single k only, but it is possible
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Fig. 16. Histograms (left, with density estimates) of the clique community
centrality values for different time steps of the condensed matter collabo-
ration networks. Non-central nodes have been removed in order to make
the force-directed graph layout (right) less cluttered.

that a given (k+1)-clique community completely “absorbs” a k-clique
community. An extension to this case would support the understanding
of how communities merge.
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