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Basements of Krylov type methods

An interesting Web site :

http://www-history.mcs.st-and.ac.uk/ history/Mathematicians

If x0 is a vector and A a matrix of dimension n, the Krylov subspace Km(A, x0) is

defined by

Km(A, x0) = span
{

x0, Ax0, ..., A
m−1x0

}

.

If y ∈ Km(A, x0), ∃ a polynomial q of degree less than m − 1 such that

y = q(A)x0.

Proposition 1 If r is the degree of the minimal polynomial of x, the dimension of

Km(A, x) is exactly m if and only if m ≤ r and Km(A, x) = Kr(A, x) if

m ≥ r.

From the Cayley-Hamilton theorem, r ≤ n.
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Projection methods

Let be Ax = b a general linear system.

If Kk and Lk are two subspaces of dimension mk and x0 a given vector, an

approximation xk can be defined by the two conditions

1. xk − x0 ∈ Kk ,

2. rk = b − Axk ⊥ Lk .

Condition 2 is the Petrov-Galerkin condition.

Let be Uk and Vk two bases of Kk and Lk . If Wk = AUk , xk exists if there is a

vector a ∈ IRmk such that xk − x0 = Uka or rk = r0 − Wka and the

Petrov-Galerkin condition leads to

V T
k rk = V T

k r0 − V T
k Wka = 0.

Jean-Marie Chesneaux - UPMC
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Krylov type projection method

Kk and Lk are Krylov subspaces =⇒ iterative methods.

Kk = Kmk
(A, r0) and Lk = Kmk

(AT , y) =⇒ Lanczos, CGS, BiCGStab and

QMR methods.

Kk = Lk = Kmk
(A, x0) =⇒ FOM algorithm.

Kk = Kmk
(A, x0) and Lk = AKmk

(A, x0) =⇒ GMRES algorithm.

Theses methods may be matrix free, lower cost of computation s for high

dimension. Because computations are essentially matrix-v ector products,

they can easily be transposed on parallel computers.
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Lanczos method

Let be x0 and y two given vectors. The Lanczos method define a sequence xk as

following

1. xk − x0 ∈ Kk(A, r0) = span
{

r0, Ar0, ..., A
k−1r0

}

,

2. rk = b − Axk ⊥ Kk(AT , y).

where r0 = b − ax0. The first condition means that

xk − x0 = −a1r0 − ... − akAk−1r0 and rk = r0 + a1Ar0 + ... + akAkr0.

The Petrov-Galerkin conditions are ((AT )iy, rk) = (y, Airk) = 0 for

i = 1, ..., k − 1. The ai’s are the solution of a linear system.

Theorem 1 If all the linear systems are regular, ∃k ≤ n such that xk = xs.

Proposition 2 All the systems are regular if A is a symmetric positive definite

matrix and the Lanczos method is similar to the Conjugate Gradient method.
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Formal orthogonal polynomial approach

If we set Pk(ε) = 1 + a
(k)
1 ε + · · · + a

(k)
k εk then we have rk = Pk(A)r0.

Moreover, if we define the linear functional c on the space of polynomials by

c(εi) = (y, Air0), i = 0, 1, · · · , then the orthogonality conditions can be

written in the form

c(εiPk) = 0 for i = 0, · · · , k − 1.

Pk is the orthogonal polynomial of degree at most k belonging to the family of

formal orthogonal polynomials with respect to c such that Pk(0) = 1.

This approach is due to C. Brezinski.
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The existence and uniqueness of Pk is determined by the non null value of the

following Henkel determinant.

H
(1)
k =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(y, Ar0) (y, A2r0) · · · (y, Akr0)

(y, A2r0) (y, A3r0) · · · (y, Ak+1r0)
...

...
...

(y, Akr0) (y, Ak+1r0) · · · (y, A2k−1r0)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

6= 0.

We assume that Pk exists and that its degree is k.

The Pk ’s family satisfy a three term recurrence relationship

Pk+1(ε) = (Ak+1ε + Bk+1)Pk(ε) − Ck+1Pk−1(ε).

with P0(ε) = 1 and P−1(ε) = 0.
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The Ak+1, Bk+1 and Ck+1 verify

Ak+1c(εUk−1Pk) − Dk+1c(Uk−1Pk−1) = 0

Ak+1c(εUkPk) + Bk−1c(UkPk) − Dk+1c(UkPk−1) = 0

where Uk is an arbitrary polynomial of degree k.

Then

rk+1(ε) = (Ak+1A + Bk+1)rk − Ck+1rk−1.

with r0 = b − Ax0 and r−1 = 0.

Different choices for Uk leads to different implementation of the Lanczos method.

For the following, Uk = Pk which leads to the Lanczos/Orthomin implementation or

Bi-Conjugate Gradient method (BCG).

Jean-Marie Chesneaux - UPMC
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Let be P
(1)
k the regular monic polynomial of degree nk belonging to the family of

formal orthogonal polynomials with respect to the functional c(1) defined by

c(1)(ζi) = c(ζi+1).

The existence and uniqueness condition is the same that the one for Pk, that is,

H
(1)
k 6= 0.

Define Qk(ε) = (−1)k

∣

∣

∣

∣

∣

∣

∣

∣

∣

(y, Ar0) · · · (y, Ak−1r0)
...

...

(y, Ak−1r0) · · · (y, A2k−2r0)

∣

∣

∣

∣

∣

∣

∣

∣

∣

P
(1)
k (ε), it can

be shown that

Pk+1(ε) = Pk(ε) − βkεQk(ε) with βk = c(P 2
k )/c(εPkQk)

Qk+1(ε) = Pk+1(ε) + αkQk(ε) αk = −c(εPkPk+1)/c(εPkQk(ε)).
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c(εPkQk) = (y, AQk(A)rk) = (Pk(AT )y, AQk(A)r0).

Define pk = Qk(A)r0, rk = Pk(AT )y and pk = Qk(AT )y, we have the

following algorithm

βk = (rk, rk)/(pk, Ark)

rk+1 = rk − βkApk

xk+1 = xk + βkpk

rk+1 = rk − βkAT pk

αk = (rk+1, rk+1)/(rk, rk)

pk+1 = rk+1 + αkpk

pk+1 = rk+1 + αkpk

Jean-Marie Chesneaux - UPMC



13 projection iterative methods of Krylov type'

&

$

%

On the convergence of the method

We only study the case where A is symmetric positive definite matrix.

Therefore xk minimizes the A-norm of the error ek in the affine subspace

x0 + Kk(A, r0) = x0 + q(A)r0 where q is a polynomial of degree ≤ k − 1 and

ek = Pk(A)e0..

If A = UDUT , A1/2 = UD1/2uT is also a symmetric positive definite matrix

and

‖ek‖ ≤ min
d(P )=k,P (0)=1

‖P (D)‖ . ‖e0‖A .

The polynomial which minimizes the maximum on [λ1, λn] is given by

Pn(ε) =
Tn

(

2ε−λn−λ1

λn−λ1

)

Tn

(

−λn−λ1

λn−λ1

)

where Tn is the Chebyshev polynomial of first kind.

Jean-Marie Chesneaux - UPMC
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Define κ = λn

λ1

, we obtain

Theorem 2 For the Conjugate Gradient method,

‖ek‖A

‖e0‖A
≤ 2

[

(√
κ+1√
κ−1

)k

+
(√

κ−1√
κ+1

)k
]−1

≤ 2
(√

κ−1√
κ+1

)k

≈ 2
(

1 − 2√
κ

)k

The convergence is linear.
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Breakdowns and near breakdowns

For a family of formal orthogonal polynomials, some polynomial may not exist.

In the lanczos method, it leads to divisions by zero.

The problem is

1. to recognize the occurrence of a breakdown,

2. to determine the degree of the next existing regular polynomial,

3. to compute this polynomial.

Jean-Marie Chesneaux - UPMC
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This has be solved by A. Draux in the case of monic orthogonal polynomials like

P
(1)
k . If P

(1)
k is the kth regular polynomial of degree nk , the degree of the next

regular is given by nk+1 = nk + mk where

c(1)
(

εiP
(1)
k

)







= 0, i = 0, ..., nk + mk − 2,

6= 0, i = nk + mk − 1

The new recurrence relationship becomes

P
(1)
k+1(ε) = wk(ε)P

(1)
k (ε) − γk+1P

(1)
k−1(ε)

where wk is a monic polynomial of degree mk .

A similar relationship occurs for the Pk ’s with an other polynomial vk and the

coefficients of wk and vk are given by solving a (small) linear system.

Jean-Marie Chesneaux - UPMC



17 projection iterative methods of Krylov type'

&

$

%

Contents

1. Basements of Krylov type and Lanczos type methods

2. The formal orthogonal polynomial approach of the Lanczos type methods

3. The CGS algorithm

4. The BiCGStab algorithm

5. The FOM algorithm

6. The GMRES algorithm

7. The QMR algorithm

Jean-Marie Chesneaux - UPMC



18 projection iterative methods of Krylov type'

&

$

%

Avoiding the transpose - the CGS algorithm

From P. Sonneveld

Remember the formula

c(εPkQk) = (y, AQk(A)rk) = (Pk(AT )y, AQk(A)r0)

which involves the expression Pk(A)rk = P 2
k (A)r0.

In the CGS algorithm the new residual is given by rk = P 2
k (A)r0.

The relation

Pk+1(ε) = Pk(ε) − βkεQk(ε)

Qk+1(ε) = Pk+1(ε) + αkQk(ε)

are simply squared.

Jean-Marie Chesneaux - UPMC
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Putting

rk = P 2
k (A)r0

qk = Q2
k(A)r0

vk = Pk+1(A)Qk(A)r0

uk = Pk(A)Qk(A)r0,

the new algorithm is

βk = (y, rk)/(y, Auk)

vk = uk − βkAqk

rk+1 = rk − βkA(vk + uk)

αk+1 = (y, rk+1)/(y, rk)

qk+1 = rk+1 + 2αkvk + α2
kqk

uk+1 = rk+1 + αkvk

xk+1 = xk + βk(vk + uk)

Jean-Marie Chesneaux - UPMC
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The BiCGStab algorithm

From H.A Van der Vorst.

The CGS allows to avoid the use of the transpose but it amplifies the chaotic

behaviour of the residual.

The aim of the BiCGStab algorithm is to smooth the convergence behaviour of the

algorithm.

The new residual is defined by

rk = Wk(A)Pk(A)r0

with Wk+1 = (1−akε)Wk(ε), W0(ε) = 1 and ak such that ‖rk+1‖ is minimal.

Because the recurrence between the Wk ’s is simpler than those between the Pk ’s,

this algorithm is simpler than the CGS algorithm.

Jean-Marie Chesneaux - UPMC
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Putting

rk = Wk(A)Pk(A)r0

pk = Wk(A)Qk(A)r0

uk = Wk(A)Pk+1(A)r0,

the new algorithm is

βk = (y, rk)/(y, Apk)

uk = rk − βkApk

ak = (uk, Auk)/(Auk, Auk)

rk+1 = uk − akAuk

αk = βk(y, rk+1)/ak(y, rk)

pk+1 = rk+1 + αk(Id − akA)pk

xk+1 = xk + βkpk + akuk.

Jean-Marie Chesneaux - UPMC



23 projection iterative methods of Krylov type'

&

$

%

Contents

1. Basements of Krylov type and Lanczos type methods

2. The formal orthogonal polynomial approach of the Lanczos type methods

3. The CGS algorithm

4. The BiCGStab algorithm

5. The FOM algorithm

6. The GMRES algorithm

7. The QMR algorithm

Jean-Marie Chesneaux - UPMC



24 projection iterative methods of Krylov type'

&

$

%

Introduction

The choice for the subspaces are

Kk = Lk = Kk(A, x0) for FOM algorithm,

Kk = Kk(A, x0) and Lk = AKk(A, x0) for the GMRES method.

There is no more bi-orthogonalization and no more recurrence relationships.

The aim is to minimize at each step a quantity relatively to a given norm.

The FOM method minimizes (A(xs − y), xs − y) in x0 + Kk if A is symmetric

positive definite.

The GMRES method minimizes ‖b − Ay‖2 in x0 + Kk if A is regular.

In both cases, the matrix V T
k Wk is regular and the Petrov-Galerkin condition

V T
k rk = V T

k r0 − V T
k Wka = 0 can be satisfied whatever the bases for Kk

and Lk .

Jean-Marie Chesneaux - UPMC
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Arnoldi’s process

It builds an orthonormal base of a Krylov subspace.

Algorithm:

1. Take a vector v1 of norm 1

2. For j = 1, ..., k Do

3. For i = 1, ..., j Do hij = (Avj , vi)

4. wj = Avj −
∑j

i=1 hijvi

5. hj+1,j = ‖wj‖2

6. If hj+1,j = 0 then stop

7. vj+1 = wj/hj+1,j

8. Enddo

Jean-Marie Chesneaux - UPMC
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The Arnoldi-modified processAlgorithm:

1 Take a vector v1 of norm 1

2 For j = 1, ..., k Do

3 wj = Avj

4 For i = 1, ..., j Do

5 hij = (wj , vi)

6 wj = wj − hijvi

7 Enddo

8 hj+1,j = ‖wj‖2

9 If hj+1,j = 0 then stop

10 vj+1 = wj/hj+1,j

11 Enddo

The new version is much more reliable than the old one. To improve the results, one

can make a second orthogonalization. Another is superfluous.

Jean-Marie Chesneaux - UPMC
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If a and b are quasi-orthonornormale :

(a, a) = 1 + εa,a, (b, b) = 1 + εb,b, (a, b) = εa,b.

We apply the two process to a new vector v.

v1 = v − (v, a)a − (v, b)b

v2 = v − (v, a)a − (v − (v, a)a, b)b

and

(v1, b) = −(v, a)εa,b − (v, b)εb,b

(v2, b) = (v, b) − (v, a)εa,b − [(v, b) − (v, a)εa,b] (1 + εb,b)

= −(v, a)εa,bεb,b − (v, b)εb,b

Jean-Marie Chesneaux - UPMC
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Some properties

Proposition 3 If Vk is the n × k matrix with columns vector v1, ..., vk, Hk the

(k + 1) × k Hessenberg matrix of the hij ’s and Hk the matrix Hk except the last

row, we have

AVk = VkHk + wkeT
k = Vk+1Hk and V T

k AVk = Hk.

Proposition 4 Arnoldi’s process stops at step j (hj+1,j = 0) if and only if the

minimal polynomial of v1 is if degree j. Then, AKj = Kj .

Jean-Marie Chesneaux - UPMC
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The FOM algorithm

Define r0 = b − Ax0, β = ‖rO‖ and v1 = r0/β. If the Arnoldi’s process is

applied, a matrix Vk is obtained.

The approximation xk verifies xk − x0 = Vkyk for a vector yk ∈ IRk and

rk − x0 = −AVkyk . The Petrov-Galerkin condition is V T
k rk = 0.

From V T
k AVk = Hk , it shows that yk is solution of

Hkyk = V T
k r0 = βV T

k v1 = βe1.

Then, yk = H−1
k (βe1) and xk = x0 + Vkyk .

The stopping criterion must depend on ‖rk‖ = hk+1,k

∣

∣eT
k yk

∣

∣.

Jean-Marie Chesneaux - UPMC



30 projection iterative methods of Krylov type'

&

$

%

The restarted FOM(k)

Algorithm:

1. Compute r0 = b − Ax0, β = ‖rO‖2 and v1 = r0/β

2. Compute Vk and Hk staring with v1

3. Compute yk = H−1
k (βe1) and xk = x0 + Vkyk

4. If satisfied then stop

5. Set x0 = xk and go to 1

Jean-Marie Chesneaux - UPMC
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The GMRES method

Due to Y. Saad and M.H. Schultz . With Lk = AKk , rk must verify

(AVk)T rk = 0 = (AVk)T r0 − (AVk)T AVkyk.

Then

yk =
[

(AVk)T AVk

]−1
(AVk)T r0.

Proposition 5 The GMRES method has a finite convergence.

The vector yk minimizes

‖r0 − AVky‖ =
∥

∥βv1 − Vk+1Hky
∥

∥ =
∥

∥βe1 − Hky
∥

∥

because of the orthonormality of Vk+1.

This is a least-squares problem which can always be solved, for instance with a QR

decomposition of Hk which leads to a triangular linear system.

Jean-Marie Chesneaux - UPMC
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Restarted GMRES(k)

Algorithm:

1. Compute r0 = b − Ax0, β = ‖rO‖2 and v1 = r0/β

2. Compute Vk and Hk staring with v1

3. Compute yk which minimizes
∥

∥βe1 − Hky
∥

∥ and xk = x0 + Vkyk

4. If satisfied then stop

5. Set x0 = xk and go to 1

Jean-Marie Chesneaux - UPMC
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On the convergence of GMRES

Proposition 6 If A is a positive definite matrix ((Ax, x) > 0, ∀x 6= 0),

GMRES(k) converges for any k ≥ 1.

Proposition 7 If A is a diagonalizable matrix, if

ǫk = min
P (0)=1

max
i=1,..,n

|P (λi|

then ∃ C such that

‖rk‖ ≤ Cǫk ‖r0‖

If the eigenvalues of A belongs to an ellipse which excludes the origine, ∃α and C1

such that C ≈ C1α
k

Jean-Marie Chesneaux - UPMC
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Miscellaneous

Proposition 8 If the Arnoldi’s process stops at step j, the least-squared problem

gives the exact solution.

For large and sparse linear system, a preconditioner is essential.

Variations

1. The use of the Householder orthogonalization instead of the Arnoldi’s process.

2. Incomplete or truncated GMRES versions (DQGMRES)

3. Block methods

4. Others ...

Jean-Marie Chesneaux - UPMC
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The QMR algorithm

From R.W. Freund and N.M. Nachtigal.

The aim is to apply the GMRES philosophy to the Lanczos method.

From the classical approach, if Vk = span
{

r0, ..., A
k−1r0

}

and

Wk = span
{

y, ..., (AT )k−1y
}

, W T
k AVk is a tridiagonal matrix Tk.

The matrix

T k =





Tk

δk+1e
T
k





verify AVk = Vk+1T k . Therefore,

‖bAxk‖ =
∥

∥Vk+1

(

βe1 − T kyk

)∥

∥

2
.

yk is taken to minimize
∥

∥βe1 − T kyk

∥

∥

2
.
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The floating point arithmetic

For a real number x 6= 0,

x = ε.be.m

with

b ∈ IN, ε ∈ {−1, +1}, e ∈ Z, m ∈ [1, b).

To store x on computer is to store {ε, e, m}. Using the base 2:

e =

p
∑

i=0

bi.2
i and m =

∞
∑

i=0

ai.2
−i with (ai, bi) ∈ {0, 1}

1 2 ... 9 10 ......... 32

s e + 27 − 1 a1 ......... a23

IEEE simple precision implementation

Jean-Marie Chesneaux - UPMC
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The rounding modes

Let be Xmin (resp. Xmax) the smaller (resp. the biggest) floating point number:

∀x ∈ (Xmin, Xmax) , ∃
{

X−, X+
}

∈ IF

such that

X− < x < X+and
(

X−, X+
)

∩ IF = O/

To define the rule which, from x, gives X− or X+ is choosing the rounding mode .

Jean-Marie Chesneaux - UPMC
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The 4 rounding modes

The IEEE norm includes 4 rounding modes :

• rounding to the zero : X is the floating point number which is the closest to x

between x and 0,

• rounding to the nearest : X is the floating point number which is the closest to

x,

• rounding to plus infinity : X = X+.

• rounding to minus infinity : X = X−.
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Who is right ?

0 200 400 600 800 1000
−15.0

−10.0

−5.0

0.0

cadna

+∞

zero

−∞
nearest

Figure 1: log(
‖rk‖

∞

‖r0‖∞
) versus the number of iterations

BiCGStab on a matrix of order 2395 with 13151 non-zero elements (electronic

circuit conception). Conditioning number is 1.76e+04.
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Consequences of the finite arithmetic

1. unknown accuracy

2. Chaotic behaviour of convergence

3. Inefficient stopping criteria

4. The theoretical property are not yet satisfied : orthogonalization ...

5. Fuzzy dynamic control of the execution for restarted strategy.
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To control the round-off error propagation

1. Backward analysis

2. Direct analysis

3. Interval arithmetic

4. Stochastic arithmetic

Direct analysis and interval arithmetic are not efficient for large scale computations

in linear algebra.
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Backward analysis

James Hardy Wilkinson (1919 - 1986)

The computed result is considered as an exact result of the exact algorithm on

different data.

y + ∆y = f (x + ∆x)

∆y is the forward error, ∆x is the backward error.

If x∗ is the compute result, we define

η(x∗) = min
∆y

{‖∆y‖ : y + ∆y = f (x∗)} .

A backward analysis gives formulae like

‖∆x‖ ≤ K(f, y)η(x∗).
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Some results

For one implementation of the CG it has been proved that

lim
k→∞

sup
‖rk‖2

‖xk‖2

≤ uκ ‖A‖C.

It has been proved that the behaviour of the CG in finite precision is the behaviour of

the CG in exact arithmetic applied on a matrix of higher dimension.

Another result fro the Arnoldi process :

Theorem 3 Let Ek = AV k − V kH , then exists a small constant C such that

‖Ek‖ ≤ Cu ‖A‖2 .

It has been proved that, in the GMRES method, the loss of orthogonality is not

essential.
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The random rounding mode

X+

�
�

�
���

X−

@
@

@@R

x

?u

bk

6

-

X− ou X+ with probability1/2.

Jean-Marie Chesneaux - UPMC



53 projection iterative methods of Krylov type'

&

$

%

On the numerical reliability of the rounding mode

X = ε.M.2E with X = x − ε.2E−p.α

• rounding to the nearest, α ∈ [−0.5, 0.5[;

• rounding to the zero, α ∈ [0, 1[;

• rounding to plus or minus infinity , α ∈] − 1, +1[;

• random rounding, α ∈] − 1, +1[

All these rounding modes are exact and, in practice numerically equivalent.
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Concept of exact significant digits

Definition 1 Let be a and b two real numbers, the number of significant digits in

common between a and b may be defined as

1. for a 6= b, Ca,b = log10

∣

∣

∣

∣

a + b

2.(a − b)

∣

∣

∣

∣

,

2. ∀a ∈ IR, Ca,a = +∞.

Remark: if |a − b| ≪ |a + b|, one can take Ca,b ≈ log10

∣

∣

∣

∣

a

a − b

∣

∣

∣

∣

.

The number of exact significant digits of a computed result X is CX,x where x is

the mathematical result.
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The CESTAC method

Jean Vignes et Michel La Porte (1972)

• Performing N times the code using the random rounding mode to get N

different results Ri.

• Taking as computed result : R =
1

N
.

N
∑

i=1

Ri.

• An estimation of the number of exact significant digits is given by :

CR = log10

(√
N.
∣

∣R
∣

∣

s.τβ

)

with s2 =
1

N − 1
.

N
∑

i=1

(

Ri − R
)2

,

N = 2 or 3, β = 0.95 and τβ = 12, 706 or 4, 303.
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Few words on the theory

R is modelized by:

Z = r +
n
∑

i=1

gi(d).2−pzi ,

zi’s are iid uniform random variables on [−1, +1].

1 - The expectation of Z is r

2 - The distribution of Z is quasi-gaussian

The formula of CR is obtained by applying the Student’s test on Z.

Few samples are only needed because the approximation do not need to be

accurate.
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Discret Stochastic Arithmetic

The new order relations are based on the concept of the computed zero .

A computed zero is a sample Ri’s such as

a) ∀i, Ri = 0,

or

b) CR <= 0.

Therefore, two samples are equal if their substraction is a computed zero (noted

@.0) . This relation is used for all the order relations.

From the computer point of vue, two results are equal if they cannot be

distinguished because of the round-off errors.

The CADNA software implements automatically the DSA. Samples are called

stochastic numbers .
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Improvement of stopping criteria

if (‖rk‖ ≤ ε) then

ε too small =⇒ infinite loop

ε too big =⇒ inaccurate approximation

A good choice : ‖rk‖ insignificant.

This is optimal from the computer point of view.

Idem for

if (‖xk − xk−1‖ ≤ ε) then =⇒ if (xk = xk−1) then.

Possibility of new strategies for numerical algorithms
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For the BiCGStab

When must we jump ?

When do we restart ?

When do we stop ?

βk = (y, rk)/(y, Apk)

uk = rk − βkApk

ak = (uk, Auk)/(Auk, Auk)

rk+1 = uk − akAuk

αk = βk(y, rk+1)/ak(y, rk)

pk+1 = rk+1 + αk(Id − akA)pk

xk+1 = xk + βkpk + akuk.
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Example 1

The dimension of the system is 1000 :

A =



















a 1

−1 a 1

. . .
. . .

. . .

−1 a 1

−1 a



















x =



















1

1

...

1

1



















x0 =



















0

0

...

0

0



















b =



















a + 1

a

...

a

a − 1



















with a = 0.5, y = b − Ax0 and for floating-point arithmetic, ε = 10−15.
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Figure 2: log(
‖rk‖

∞

‖r0‖
∞

) versus the number of iterations in BICGSTAB

Jean-Marie Chesneaux - UPMC



63 projection iterative methods of Krylov type'

&

$

%

0 100 200 300
−15.0

−10.0

−5.0

0.0
to nearest
cadna

Figure 3: log(
‖rk‖

∞

‖r0‖
∞

) versus the number of iterations in BICGSTAB
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Who is right ?
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Figure 4: log(
‖rk‖

∞

‖r0‖∞
) versus the number of iterations

BiCGStab on a matrix of order 2395 with 13151 non-zero elements (electronic

circuit conception). Conditioning number is 1.76e+04.
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