Stochastic Arithmetic in Multiprecision
The SAM library

LIP6, Sorbonne Université, CNRS
Paris, France

o)
Lp S s oS

Contents

1 Introduction 5
1.1 Aim of the SAM library 5
1.2 The DSA (Discrete Stochastic Arithmetic) 7

1.2.1 The CESTAC method 7
1.2.2 The computational zero 9
1.2.3 Discrete stochastic relations 10

2 Reference guide 11
2.1 SAMtypes 11
2.2 Assignment 11
2.3 Conversion functions 12
2.4 Arithmetic operators 12
2.5 Relational operators L. 12
2.6 Mathematical functions 13
2.7 SAM specific functions 14

2.7.1 Initializing and closing the library 14
2.7.2 Printing a stochastic variable 15

2.7.3 Printing the triplet associated with a stochastic variable 16
2.7.4 Obtaining the triplet associated with a stochastic vari-

able 16

2.7.5 Obtaining the number of exact significant digits of a
stochastic variable00 17
2.7.6 Obtaining the precision of a stochastic variable 17
2.7.7 Testing if a variable is a numerical noise 18
2.7.8 Reducing accuracy of initial data 18
3 User’s guide 21
3.1 Declaration of the SAM library 21
3.2 Initialization of the SAM library 22

3

4

5

3.3 Declaration of variables
3.3.1 Changes in the type of variables
3.4 Changes in assignments or arithmetic operations
3.4.1 Conversions between usual types and the stochastic
types.
3.4.2 Classical arithmetic operators
3.5 Changes in reading statements
3.6 Changes in printing statements
3.7 Constants passed as function arguments
3.8 Termination of the SAM library
3.9 Numerical debugging with SAM
3.10 Warning: the danger of mixing classical types and stochastic
types
3.10.1 Adding mp_st variables initialized with sam_set_str
3.10.2 Adding mp_st variables initialized with double values .
3.10.3 Adding mp_st variables initialized with integers
3.10.4 Adding an mp_st variable and a double
3.10.5 Adding an mp_st variable and an integer

Structure of the SAM library

Test runs

5.1 Example 1: a rational fraction function of two variables

5.2 Example 2: solving a second order equation
5.3 Example 3: computing a determinant
5.4 Example 4: computing a second order recurrent sequence

5.5 Example 5: computing a polynomial root
5.6 Example 6: solving a linear system
5.7 Example 7: when SAM fails

Chapter 1

Introduction

1.1 Aim of the SAM library

The arithmetic commonly used on computers for scientific programming is
floating point arithmetic. This arithmetic only approximates exact arith-
metic. Consequently each arithmetic statement generates a round-off error.
So when a correct program with regard to syntax and logical organization
is running on a computer, every produced result is unavoidably given with
a so called “computing error”. This error is due to all the round-off errors
produced along the elementary statements required to obtain the result.
Sometimes the error may be such that the final result is really wrong (and
not only inaccurate).

The aim of the SAM library presented here is to answer the following ques-
tion:

What is the computing error due to floating point arithmetic on
the results produced by any program running on a computer?

So, we want to estimate the round-off error on each result with a technique
which is independent on the program and hence on the algorithm used.

SAM is a library, based on the MPFR library. More precisely, SAM is a set
of data types, functions and subroutines that may be used in any program
written in C/C++. It implements the CESTAC method in a synchronous
way (the Discrete Stochastic Arithmetic DSA). With a few modifications in
the source code, this library has for main purpose to estimate the effects
of round-off error propagation on every numerical computed result. It also
allows to study the effects of the initial data uncertainties upon computed
results, as described in 2.7.

This implementation consists in replacing the computer deterministic arith-
metic by a stochastic arithmetic (the Discrete Stochastic Arithmetic DSA)
and in performing N times (N = 3) each elementary operation before exe-
cuting the next statement.

Thus, it is as N identical programs were simultaneously running on N syn-
chronized computers each of them using random arithmetic. So for each
result, we obtain N samples from which we compute the mean value and
the standard deviation which characterize the corresponding stochastic num-
ber. The value of this number is defined as the mean value of the different
samples. The accuracy of this number, i.e. its number of exact significant
digits, is estimated using the mean value and the standard deviation. If all
the samples are equal to zero or if the number of exact significant (deci-
mal) digits is less than one, then the number is defined as a computational
zero [13]. This means that a computational zero is either the mathematical
zero or a number without any significance.

So round-off error propagation can be analyzed step by step. Numerical
instabilities and non significant results are detected. The branchings based
on order relations may also be controlled. Therefore, this synchronous im-
plementation of the CESTAC method allows to validate any scientific code
during its run.

With the SAM library, one can run any scientific code using random arith-
metic, without having to rewrite or notably change the initial code. This
tool has been written in C++. This language enables to create new numer-
ical types with their operators; furthermore the designating symbol of an
operator can be chosen among the primitive symbols in the language (+,
*,...). In other words, this language enables the so called “operator overload-
ing”. Thanks to these new properties, SAM has been developed for C/C++
programs.

Thus a new numerical type has been created, the stochastic number; it
is nothing else than an N-set (N = 3) containing perturbed floating-point
values (of type mpfr_t). All the arithmetic operators (4, —, *, /) have been
overloaded in such a manner that when an operator is used, the operands are
N-sets and the returned result is a randomly perturbed N-set. The relational
operators (>, >, <, <, ==, #) are overloaded. All standard functions
defined in “math.h” (sin, cos, exp, ...) have also been overloaded. Likewise,
in/out statements have been modified, mainly the printing statement which
gives as a result the mean value of the N-set written with only its exact
significant (decimal) digits.

Furthermore, in order to enable the evaluation of the weight of uncertainties

6

on initial data on the results, a function called data_st may be used to perturb
data as exposed in 2.7.8.

During the run of a program, as soon as a numerical anomaly (for example
the product of non-significant numbers, or a relational test involving a non-
significant result) is produced, some special counters are updated. At the
end of the run, all information about numerical anomalies is printed on the
standard output.

If no anomaly has been detected, it means that the program runs without
any numerical problem. Results are then given with their accuracy - number
of exact significant (decimal) digits.

If some numerical anomalies have been detected, they must be analysed.
Helped by the debugger associated with the compiler, the user may retrieve
the statements that produced the anomalies and determine if changes in the
code are required.

The stochastic types and the overloaded or newly defined functions of the
library are presented in the next sections.

1.2 The DSA (Discrete Stochastic Arithmetic)

1.2.1 The CESTAC method

The CESTAC (Controle et Estimation Stochastique des Arrondis de Calcul)
method, which has been developed by La Porte and Vignes [14, 9, 8], enables
one to estimate the number of exact significant digits of any computed result.

The basic idea of the method is defined in [6, 7] and consists of the following:

e to perform the same code N times with a different round-off error
propagation for each run,

e to estimate the common part of these results and to consider that this
part is representative of exact result.

In practice, these different round-off error propagations are obtained by us-
ing the random rounding mode defined below.

Each result p of a floating-point operation (assignment, arithmetical opera~
tion) which is not an exact floating-point value, is bounded by two floating-

point values, one by default p~ and the other by excess p™.

7

The random rounding mode consists, at the level of each floating-point op-
eration or assignment, in choosing as a result randomly with an equal prob-
ability either p~ or p™.

With this random rounding mode, the same program run several times pro-
vides different results, due to different round-off errors.

Let us consider a sequence of computations providing an exact result r.
When this sequence is performed with the CESTAC [3, 11, 9] method, N
results R, k = 1,...N are obtained. From the formalization of the round-off
errors of the floating-point arithmetic operations (+, —, %, /) a probabilistic
model for estimating the round-off error on the mean value R of the Ry,
considered as the computed result, has been established. This model is a
first order model. It means that the terms in 2727 (p being the number of
bits of the mantissa) which appear in the expression of the round-off error of
the floating-point multiplications and divisions have been neglected. Only
the terms in 277 are considered.

This model is based on two hypotheses.

e Hypl.: The elementary round-off errors «; of the floating-point arith-
metic operations are random independent, centered and uniformly dis-
tributed variables.

e Hyp2.: The approximation of the first order in 277 is legitimate.

It has been proved that if the two hypotheses hold then the Ry, k = 1,...N are
samples of the Gaussian distribution, centered on the exact result r. Thus
it is possible to use the Student’s test which allows to obtain a confident
interval of R with a (1 — 3) probability and then to estimate the number of
exact significant digits of R by the formula

VNIR|

T80

Cg = logyo (

) (1.1)

with
1 X
R=— R;
Py
and

1 N
2 L 2
J_N_lg(Rl R)%.

8

7g is the value of the Student’s distribution for N — 1 degrees of freedom
and a probability level 1 — 8. In practice N = 3, 3 = 0.05 and then 75 =
4.303.

The result provided by eq(1.1) is reliable when the two previous hypotheses
hold in practice [11, 15].

e Concerning Hypl, with the use of random rounding, the «; are truly
independent random variables. However they are not exactly centered,
consequently the R is biaised. But because of the robustness of Stu-
dent’s test, Hypl still holds. This hypothesis is not an inconvenience
for the reliability of eq(1.1).

e Concerning Hyp2, it holds if the terms in 2727 are negligible in compar-
ison to the terms in 27P. It has been proved that this fact is satisfied
if

— the operands of any multiplication are both significant

— the divisor of any division is significant.
It is then absolutely necessary to control these two points during a run of
code. Indeed if they are not satisfied, this means that the Hyp2 has been

violated and then the results obtained with eq(1.1) must be considered as
not reliable.

This control is done with the concept of computational zero, also named
informatical zero, computed zero, or stochastic zero [13].

1.2.2 The computational zero

Each result provided by the CESTAC method is a “computational zero”
denoted by @.0 if one of the two following conditions holds:

e Vii=1,.N,R; =0
e (3 <0 (Cf obtained with eq(1.1))
When C5 < 0, then R is an insignificant value.
From the concept of computational zero, also named informatical zero, dis-

crete stochastic relations have been defined (equality and order relations).

9

1.2.3 Discrete stochastic relations

Let X and Y be N-samples provided by CESTAC method.

e Discrete stochastic equality denoted by s = is defined as:
Xs=YifX-Y=Q0

e Discrete stochastic inequalites denoted by s > and s > are defined as:
Xs>Y if X>Y and X —Y # @.0
Xs>YifX>YorX—-Y=@0

The Discrete Stochastic Arithmetic (DSA) [1, 15, 5] is defined from the
CESTAC method, the concept of informatical zero and the discrete stochas-
tic relations. With this DSA, it is possible to control the run of a scientific

code, to detect the numerical instabilities and the violation of the hypotheses
underlying the method.

10

Chapter 2

Reference guide

2.1 SAM types

SAM provides new numerical types (stochastic types) associated to a mantissa-
length chosen by the user. When a SAM variable is declared, the number
of bits of its mantissa must be given. For instance,

mp_st<122> res;

enables one to declare a stochastic variable named res with a 122 bit-long
mantissa. Its precision (122 bits) will not change. Note that double vari-
ables are 53-bit mantissa length numbers and that float variables are 24-
bit mantissa length numbers according to the IEEE standard floating-point
arithmetic [16].

A stochastic variable consists in three mpfr_t variables and one integer
variable to store its accuracy.

2.2 Assignment

“ ”

The operator “=" is overloaded and accepts stochastic types. It sets a
stochastic variable with different types of values: mp_st, float, double, int,
unsigned int, long, unsigned long, or MPFR object. If an mp_st, a float, a
double, or an MPFR object is set to a longer mp_st variable, then its value
is perturbed.

A string can be assigned to an mp_st variable using the sam_set_str function.
For instance, the following instructions are valid.

11

mp_st<80>a; //precision of 80 bits
sam_set_str(a,"1.234567");
cout<<a<<endl;

The associated output is:

0.123456700000000000000000E+1

2.3 Conversion functions

The float, double, int, unsigned int, long, and unsigned long cast operators act
on variables of stochastic type and work like for numerical predefined types.
Thus the result is of classical type and the knowledge of the accuracy is lost.
If X is a stochastic variable consisting in N samples X, for instance (int) X

N .
is computed as (mt)(#)

2.4 Arithmetic operators

Arithmetic operators are overloaded and accept stochastic types and a mix-
ture of classical types and stochastic types.

If the stochastic mp_st operands have different sizes, the arithmetic opera-
tion is performed with the largest size, i.e. in the greatest precision.

If a double variable d is mixed with mp_st<N> variables with N> 53, the
operations are performed with precision N. But only its first 15 decimal digits
can be correct. Operations with mp_st variables are preferable, because if
they have different sizes adequate perturbations can be performed. More
information on the danger of mixing classical types and stochastic types is
given in 3.10.

If an arithmetic operation is performed with a float variable f and a stochas-
tic variable, f is casted to a double value, in accordance with the MPFR
arithmetic function used.

2.5 Relational operators

Comparison operators are overloaded and accept stochastic types and a
mixture of classical types and stochastic types. They take into account the
accuracy of the operands. Thus when the expression a == 0.0 is true, it
means that a is a computational zero, i.e.

12

e a is a mathematical zero or
e a has no exact significant digit.

Similarly, when the expression a >= b is true, it means that
e a-b is a computational zero or

ZzNzl bi

o > il b

N
Dim1 i
N

and, when the expression a > b is true, it means that

e a-bis NOT a computational zero, i.e. has at least one exact significant
digit, and

Zil ai > Zi\;l bi
N N .

If the stochastic mp_st operands have different sizes, the comparison is per-
formed in the greatest precision.

2.6 Mathematical functions

Mathematical functions have been extended to stochastic types. These are
the following functions: fabs, floor, ceil, trunc, nearbyint, rint, Irint, llrint, sqrt,
exp, exp2, expml, log, logl0, sin, cos, tan, asin, acos, atan, atan2, sinh, cosh,
tanh, hypot. They accept arguments of mp_st stochastic type.

If mathematical functions have two mp_st stochastic arguments, they must
have the same size. Otherwise cast operations are required.

For instance, the following instructions are valid.

mp_st<40> x 1;

mp_st<50> y = 2;

mp_st<40> max;
max=fmax (x, (mp_st<40>)y);
cout << "max=" << max<< endl;

The associated output is:
max= 0.200000000000E+1

13

2.7 SAM specific functions

The previous part described how some classical C statements are slightly af-
fected when using the SAM tool. Now we present functions that are specific
to the library. Note that the functions SAM_init and SAM_end have to ap-
pear, respectively to initialize and to close the library. Other functions such
as SAM _enable, SAM _disable, self_validation_only, data_st, nb_significant_digit,
str and strp can also be used.

2.7.1 Initializing and closing the library

The SAM_init function has to be called once, early in the main program,
before any kind of declaration.

This function has four integer arguments:

SAM _init(numb_instability, SAM_instability, cancel_level, init_random).

The first argument must always be present.

The user chooses the maximum number of numerical instabilities that will
be detected.

e if numb_instability = —1, all the instabilities will be detected
e if numb_instability = 0, no instability will be detected

e if numb_instability = M (strictly positive M), the first M instabilities
will be detected.

The other arguments are optional.

The second argument allows the user to determine what kind of instabil-
ities will be enabled or disabled.

There are 7 integer parameters in the library:

SAM_BRANCHING,

SAM_CANCEL,

SAM_DIV,

SAM_INTRINSIC,

SAM_MATH,

SAM_MUL,

SAM_POWER.

By default, the detection of all types of instability is enabled. The

14

user has only to specify what kind of instability is to be disabled by pass-
ing, as the second argument, the addition of the chosen parameters.

The third argument is an integer which is used to initialize some internal
variables for random arithmetic. The default value for this argument is 51.

The fourth argument corresponds to the following. An unstable cancellation
is pointed out when the difference between the number of exact significant
digits (i.e. digits which are not affected by round-off errors) of the result
of an addition or a subtraction and the minimimum of the number of exact
significant digits of the two operands is greater than the cancel_level argu-
ment. The default value of this argument is 4. In other words, when one
loses more than cancel_level significant digits in one addition or subtraction,
SAM considers that a catastrophic cancellation has been detected (if the
detection of this kind of instability is enabled).

The SAM _end function “closes” the library and prints to the standard
output the result of the detection of numerical instabilities.

2.7.2 Printing a stochastic variable

When a stochastic variable is printed, only its exact significant digits appear.
Thus its accuracy is easy to read. When the stochastic variable has no exact
significant digit, @.0 is printed.
With the printf function, the %s format and the strp SAM function are used.
For C++ programmers, the classical cout and << notations have been over-
loaded for the stochastic types.

For instance, the following instructions are valid.

mp_st<40> x = 123;
printf ("x=Ys\n",strp(x));
cout << "x=" <<x<< endl;

The associated output is:

0.122999999999E+3
0.122999999999E+3

Koo
non

15

2.7.3 Printing the triplet associated with a stochastic vari-
able

The display method prints the triplet associated with a stochastic variable.
For instance, let d be a multiple-precision stochastic variable. The following
instructions

printf ("%s\n",strp(d));
d.displayQ;

may provide

0.30E-64
3.0217133019536030e-65 -- 3.0133146666062181e-65 -- 3.0248565827034563e-65

The three multiple-precision values associated to d have 2 common signifi-
cant digits.

2.7.4 Obtaining the triplet associated with a stochastic vari-
able

The getX, getY and getZ methods enable one to get the triplet associated
with a stochastic variable.
For instance, the following instructions are valid.

mp_st<40> a = 123;

cout << "a=" <<a<< endl;

mpfr_t *x,*xy,*z;

x=a.getX();

y=a.getY();

z=a.getZ();

printf ("x=");

mpfr_out_str (stdout, 10, 0, *x, MPFR_RNDN) ;
printf ("\ny=");

mpfr_out_str (stdout, 10, 0, *y, MPFR_RNDN) ;
printf ("\nz=");

mpfr_out_str (stdout, 10, 0O, *z, MPFR_RNDN) ;
printf ("\n");

The associated output is:

a= 0.122999999999E+3
x=1.2300000000000e2
y=1.2300000000000e2
z=1.2300000000000e2

16

2.7.5 Obtaining the number of exact significant digits of a
stochastic variable

The nb_significant_digit and getAccuracy methods both return an integer giv-
ing the number of exact significant decimal digits of a stochastic variable
when the method is called.

At some point x.nb_significant_digit() may return 7; later during the run
it may return 5. If x becomes non-significant then x.nb_significant_digit()
returns 0.

For instance, the following instructions are valid.

mp_st<40> a = 123;

cout << "a=" <<a<< endl;

int acc= a.nb_significant_digit(Q);
cout << "acc=" <<acc<< endl;
acc=a.getAccuracy(Q) ;

cout << "acc=" <<acc<< endl;

The associated output is:

a= 0.122999999999E+3
acc=12
acc=12

2.7.6 Obtaining the precision of a stochastic variable

The getPrecision method returns an integer giving the mantissa length (the
number of bits) of of a stochastic variable.

For instance, the following instructions are valid.

mp_st<40> a = 123;

cout << "a=" <<a<< endl;
int p=a.getPrecision();
cout << "p=" <<p<< endl;

The associated output is:

a= 0.122999999999E+3
p=40

17

2.7.7 Testing if a variable is a numerical noise

The numericalnoise method acts on a stochastic variable and returns 1 if it
is a numerical noise (i.e. it has no exact significant digit), -1 if it is zero
(the 3 values that represent the stochastic variable are zero), 0 otherwise.
For instance, the following instructions are valid.

mp_st<40> a = 123;

cout << "a=" <<a<< endl;
int na=a.numericalnoise();
cout << "na=" <<na<< endl;

mp_st<40> b = 0;

cout << "b=" <<b<< endl;
int nb=b.numericalnoise();
cout << "nb=" <<nb<< endl;

mp_st<40> c(0.,-1.,1.);
cout << "c¢c=" <<c<< endl;
int nc=c.numericalnoise();
cout << "nc=" <<nc<< endl;

The associated output is:

a= 0.122999999999E+3
na=0

b= 0.000000000000
nb=-1

c= Q.0

nc=1

2.7.8 Reducing accuracy of initial data

Initial data are often known with less significant digits than provided by their
internal representation. The data_st method allows the user to introduce
some effective uncertainties on these data, reducing their initial accuracy.
So the accuracy of results depends in some way on the accuracy of initial
data.

The data_st method acts on a stochastic variable X and has two optional
arguments: X.data_st(ERX,IER);

18

The first argument is an optional double argument that contains the rel-
ative or absolute uncertainty of the stochastic variable X. The second ar-
gument determines the kind of the uncertainty: relative or absolute. If X
is a stochastic variable and ERX is a double value strictly less than 1, the
X.data_st(ERX,IER); instruction modifies the values of the N samples in X
according to the following formula:

X;=X;*(1+ ERX «» ALEA) for i =1 to N if IER = 0
X;=X;+ ERX * ALEA for i =1 to N if IER = 1

ALFEA is a random variable uniformly distributed between -1 and 1.

If ERX is 0, no perturbation takes place as if the statement was suppressed.
If FRX is absent, perturbation will concern only the last bit of the mantissa.
If IER is absent, it is like ITER = 0. The data_st method without ERX must
be used when data are considered as exact but cannot be exactly coded in
the memory.

19

20

Chapter 3
User’s guide

The use of the SAM library involves seven steps:
e declaration of the SAM library for the compiler,
e initialization of the SAM library,

e substitution of the type float or double by stochastic type mp_st in
variable declarations,

e possible changes in the input data if perturbation is desired, to take
into account uncertainty in initial values,

e change of output statements to print stochastic results with their ac-
curacy,

e possible use of SAM functions to evaluate the number of exact signif-
icant digits,

e termination of the SAM library.

3.1 Declaration of the SAM library

The following pseudo-statement

#include <SAM.h>
must take place in any file which contains declarations of stochastic variables
or SAM functions to be found by the compiler.

21

3.2 Initialization of the SAM library

The SAM_init function has to be called once, early in the main program,
before any kind of declaration, to initialize the random arithmetic. For
more information about the arguments of the SAM_init function, see 2.7.1.

3.3 Declaration of variables

3.3.1 Changes in the type of variables

To control the numerical quality of a variable, just replace its standard type
by the stochastic type.
Example:

standard declarations SAM declarations

float a, b; mp_st<24> a, b;
double c; mp_st<53> c;
float d[6], e, f; mp_st<24> d[6], e, f;

3.4 Changes in assignments or arithmetic opera-
tions

3.4.1 Conversions between usual types and the stochastic
types

In assignment statements, conversions are implicit from C float, double, int,
unsigned int, long, or unsigned long types to and from the mp_st stochastic
types (because the = operator is overloaded), but for conversions from
the mp_st stochastic types to standard types, the knowledge of
accuracy is lost.

3.4.2 Classical arithmetic operators

All arithmetic operators involving stochastic variables are overloaded. The
result of expressions containing stochastic operands will be of stochastic
type. Expressions may contain a mixture of stochastic types and classi-
cal types. However, as previously described in 2.4, operations with mp_st
variables is recommended to get a correct accuracy estimation.

22

3.5 Changes in reading statements

The family of scanf functions is adapted to classical floating-point variables,
which must be transformed into stochastic variables.

Example:
Initial C statements Modified C statements
for SAM
float x; char xaux[100];

mp_st<24> x;

scanf("x = %14.7e \n", &x); | scanf(“%s", xaux);
sam _set _str(x,xaux);

Note that initial data read from a file or from keyboard may have sometimes
to be duplicated in some way, because they are read as classical variables
which are then assigned to stochastic variables.

3.6 Changes in printing statements
The strp function enables one to print a stochastic variable if printf is used.

For example, if a float variable x becomes a mp_st variable, the printing
instruction can be modified as follows:

Initial C statements Modified C statements
for SAM
float x; mp_st<24> x;

printf(“x = %14.7¢", x); | printf("x = %s", strp(x));

3.7 Constants passed as function arguments

Function definitions and function calls must sometimes be adapted because
stochastic parameters of functions must not be passed by value.

Example:

23

Initial C statements Modified C statements
for SAM

float a; mp_st<24> aux, a;
aux=2.0;

a=3.14*{(2.0); a=3.14*f(aux);

float f(float x) mp_st<24> f(mp_st<24>x)

{ {

} }

3.8 Termination of the SAM library

The call to the SAM_end function must be the last program statement.

3.9 Numerical debugging with SAM

One can enable the detection of the following instabilities:
UNSTABLE DIVISION(S),

UNSTABLE POWER FUNCTION(S),

UNSTABLE MULTIPLICATION(S),

UNSTABLE BRANCHING(S),

UNSTABLE MATHEMATICAL FUNCTION(S),

UNSTABLE INTRINSIC FUNCTION(S),

LOSS OF ACCURACY DUE TO CANCELLATION(S).

The library counts the number of detections for each instability. The global
information for these detections is printed out with the SAM_end function,

see 2.7.1.

The accuracy estimated by SAM is valid if there is no deep numerical
anomaly during the computation, i.e. no UNSTABLE DIVISION, UNSTA-
BLE POWER FUNCTION and UNSTABLE MULTIPLICATION, see [2, 4, 1].

The meaning of the message is:

e unstable division: the divisor is non-significant

e unstable power function: one operand of the power function is

non-significant

24

e unstable multiplication: both operands are non-significant

e unstable branching: the difference between the two operands is
non-significant (a computational zero).

The chosen branching statement is associated with the equality.

e unstable mathematical function:

in the log, sqrt, exp or logl0 function, the argument is non-significant.
e unstable intrinsic function:

— when using integer cast functions, the integral part of the argu-
ment can not be exactly determined due to the round-off error
propagation;

— in the fabs function: the argument is non-significant;

— the floor, ceil or trunc function returns different values for each
component of the stochastic argument.

e loss of accuracy due to cancellation: as explained in 2.7.1, a can-
cellation is pointed out when the difference between the number of
exact significant digits (i.e. digits which are not affected by round-off
errors) of the result of an addition or a subtraction and the minim-
imum of the number of exact significant digits of the two operands
is greater than the cancel_level argument. The default value of this
argument is 4. In other words, when one loses more than cancel_level
significant digits in one addition or subtraction, SAM considers that
a catastrophic cancellation has been detected (if the detection of this
kind of instability is enabled).

To perform actual numerical debugging, it is necessary, for each instability,
to identify the statement in the code that generates this instability. This
can be performed directly using a symbolic debugger like gdb with Linux
or as a background task using special input and output files.
In both cases, one has to put a breakpoint at the entry of the instability
internal function of the SAM library. This function is called each time a
numerical instability is detected. To get the right label for this system and
compiler dependent function, one can use the following statement:

nm name_of_the_binary_code | grep instability
For instance, using gdb with Linux, the general statement which enables
the detection of all the instabilities in a single run is

nohup gdb name_of_the_binary_code < gdb.in >! gdb.out &
The gdb.in file may contain:

25

break instability
run

while 1

where

cont

end

where prints out the complete trace of the instability which has stopped
the run and cont makes the execution going on.

P.S.: nohup allows to keep the process alive even when logging off.

The gdb.out file will contain all the traces of instabilities.

3.10 Warning: the danger of mixing classical types
and stochastic types

In this section we point out the fact that mixing classical types and stochas-
tic types may lead to an incorrect accuracy estimation. In the following
examples, the result accuracy is correctly estimated, except in 3.10.4 where
an mp_st<70> variable is added with a double.

3.10.1 Adding mp_st variables initialized with sam_set_str

Adding mp_st<70> variables initialized with sam_set_str:

Let us consider the following instructions.

mp_st<70> x,y,z; //precision is 70 bits, i.e. 21 decimal digits
sam_set_str(x,"1.23");

cout << "x=" <<x<< endl;

x.displayQ;

sam_set_str(y,"4.56");

cout << "y=" <<y<< endl;

y.display(Q);

Z=x+y;

cout << "z=" <<z<< endl;

z.displayQ);

The associated output is.

x= 0.123000000000000000000E+1
1.2300000000000000000004 -- 1.2300000000000000000004 -- 1.2300000000000000000004
y= 0.456000000000000000000E+1
4.5600000000000000000022 -- 4.5600000000000000000022 -- 4.5600000000000000000022
z= 0.57899999999999999999E+1
5.7899999999999999999992 -- 5.7899999999999999999992 -- 5.7900000000000000000060

26

x and y are declared as mp_st<70> variables, their precision is 70 bits, i.e.
21 decimal digits. They are initialized using sam_set_str. One can check
that their accuracy is 21 decimal digits. The three values that represent x
(resp. y) are displayed. As a remark, display prints the three values that
represent an mp_st variable with 2 more digits than its precision, so 23 digits
here. The addition x+y is performed with the random rounding mode. The
accuracy of the sum z (20 digits) is correctly estimated.

Adding an mp_st<70> variable and an mp_st<53> variable initialized
with sam_set_str:

Let us consider the following instructions.

mp_st<70> x,z; //precision is 70 bits, i.e. 21 decimal digits
mp_st<53> y; //precision is 53 bits, i.e. 15 decimal digits
sam_set_str(x,"1.23");

cout << "x=" <<x<< endl;

x.display(Q);

sam_set_str(y,"4.56");

y.data_stQ);

cout << "y=" <<y<< endl;

y.display(Q);

Z=x+y;

cout << "z=" <<z<< endl;

z.display();

The associated output is.

x= 0.123000000000000000000E+1

1.2300000000000000000004 -- 1.2300000000000000000004 -- 1.2300000000000000000004
y= 0.45599999999999E+1

4.5600000000000005 -- 4.5599999999999987 -- 4.5599999999999996

z= 0.578999999999999E+1

5.7900000000000004973769 -- 5.7899999999999987210201 -- 5.7899999999999996092053

x and z are declared as mp_st<70> variables, their precision is 70 bits, i.e.
21 decimal digits. y is declared as an mp_st<53> variable, its precision is 53
bits, i.e. 15 decimal digits. x and y are initialized using sam_set_str. y
that is shorter than x is perturbed using the data_st method. The last bit
of y is perturbed. The three values that represent y are slightly different.
As previously mentioned, display prints the three values that represent an
mp_st variable with 2 more digits than its precision, so 23 digits here. The
addition x+y is performed with the random rounding mode. The accuracy
of the sum z (15 digits) is correctly estimated.

27

3.10.2 Adding mp_st

variables initialized with double values

Let us consider the following instructions.

mp_st<70> x,y,z;

x=1.23;

cout << "x=" <<x<< endl;
x.displayQ;

y=4.56;

cout << "y=" <<y<< endl;
y.display(Q);

Z=x+y;

cout << "z=" <<z<< endl;
z.displayQ;

The associated output is.

x= 0.123000000000000E+1
1.2300000000000002563520 --
y= 0.455999999999999E+1
4.5600000000000003685970 --
z= 0.578999999999999E+1
5.7900000000000006239440 --

//precision is 70 bits, i.e. 21 decimal digits

//accuracy of x is 15 decimal digits (see output)

//accuracy of y is 15 decimal digits (see output)

1.2299999999999998456778 -- 1.2299999999999999822364
4.5599999999999993560674 -- 4.5599999999999996092015

5.7899999999999992017418 -- 5.7899999999999995914379

x and y are declared as mp_st<70> variables, their precision is 70 bits, i.e. 21
decimal digits. They are initialized using double values. One can check that
their accuracy is 15 decimal digits. If an mp_st<N> variable with N> 53 is
set from a double value, it is perturbed and its accuracy is 15 decimal digits.
The three values that represent x (resp. y) are different because of this
perturbation. The accuracy of the sum z (15 digits) is correctly estimated.

3.10.3 Adding mp_st variables initialized with integers

Let us consider the following instructions.

mp_st<70> x,y,z;

x=123;

cout << "x=" <<x<< endl;
x.displayQ;

y=456;

cout << "y=" <<y<< endl;
y.display();

Z=x+y;

cout << "z=" <<z<< endl;
z.displayQ;

The associated output is.

28

x= 0.123000000000000000000E+3
1.2300000000000000000000e2 -- 1.2300000000000000000000e2 -- 1.2300000000000000000000e2
y= 0.456000000000000000000E+3
4.5600000000000000000000e2 -- 4.5600000000000000000000e2 -- 4.5600000000000000000000e2
z= 0.578999999999999999999E+3
5.7900000000000000000000e2 -- 5.7900000000000000000000e2 -- 5.7900000000000000000000e2

x and y are declared as mp_st<70> variables, their precision is 70 bits, i.e. 21
decimal digits. They are initialized using integers. One can check that their
accuracy is 21 decimal digits. If an mp_st variable is set from an integer, it
is not perturbed. The three values that represent x (resp. y) are equal. The
accuracy of the sum z (21 digits) is correctly estimated.

3.10.4 Adding an mp_st variable and a double

Adding an mp_st<70> variable and a double:

Let us consider the following instructions.

mp_st<70> x,z;
sam_set_str(x,"1.23");
cout << "x=" <<x<< endl;
x.display();

double y=4.56;

cout << "y=" <<y<< endl;
z=x+y;

cout << "z=" <<z<< endl;
z.display(Q;

The associated output is.

x= 0.123000000000000000000E+1

1.2300000000000000000004 -- 1.2300000000000000000004 -- 1.2300000000000000000004
y=4.56

z= 0.57899999999999996092E+1

5.7899999999999996091985 -- 5.7899999999999996091985 -- 5.7899999999999996092053

x and z are declared as mp_st<70> variables, their precision is 70 bits, i.e.
21 decimal digits. x is initialized using sam_set_str. One can check that its
accuracy is 21 decimal digits. The sum of x with a double y is performed
with the random rounding mode. If a double variable y is added with an
mp_st<N> variable with N> 53, the addition is performed with precision N.
However only the first 15 digits of y are correct. The accuracy of
the sum z (20 digits) is not correctly estimated. In the output, one
can observe that the last decimal digits of z are not correct. y should be
declared as an mp_st<53> variable as show in 3.10.1.

29

Adding an mp_st<50> variable and a double:
Let us consider the following instructions.

mp_st<50> x,z;
sam_set_str(x,"1.23");
cout << "x=" <<x<< endl;
x.displayQ;

double y=4.56;

cout << "y=" <<y<< endl;
Z=x+y;

cout << "z=" <<z<< endl;
z.displayQ);

The associated output is.

x= 0.123000000000000E+1

1.2300000000000004 -- 1.2300000000000004 -- 1.2300000000000004
y=4.56

z= 0.57899999999999E+1

5.7899999999999991 -- 5.7899999999999991 -- 5.7900000000000063

x and z are declared as mp_st<50> variables, their precision is 50 bits, i.e.
15 decimal digits. x is initialized using sam_set_str. One can check that its
accuracy is 15 decimal digits. The sum of x with a double y is performed.
The accuracy of y is 15 decimal digits. The accuracy of the sum z is 14
digits. If a double variable y is added with an mp_st<N> variable with
N< 53, the accuracy of the sum is correctly estimated.

3.10.5 Adding an mp_st variable and an integer

Let us consider the following instructions.

mp_st<70> x,z;
sam_set_str(x,"1.23");
cout << "x=" <<x<< endl;
x.displayQ);

int y=456;

cout << "y=" <<y<< endl;
Z=xX+y;

cout << "z=" <<z<< endl;
z.displayQ);

The associated output is.

30

x= 0.123000000000000000000E+1

1.2300000000000000000004 - 1.2300000000000000000004 -- 1.2300000000000000000004
y=456

z= 0.45722999999999999999E+3

4.5722999999999999999958e2 -- 4.5722999999999999999958e2 -- 4.5723000000000000000002¢2

x and z are declared as mp_st<70> variables, their precision is 70 bits, i.e.
21 decimal digits. x is initialized using sam_set_str. One can check that its
accuracy is 21 decimal digits. The sum of x with an integer y is performed
with the random rounding mode. The accuracy of the sum z is 20 digits.
The accuracy is correctly estimated.

31

32

Chapter 4

Structure of the SAM library

The source codes of the SAM library are located in the src directory.

e SAM add.h contains the operators related to addition: 4, +4, +=
e SAM convert.h contains:

— the data_st method that takes into account data uncertainty at
the initialization of stochastic variables.

— conversion functions from mp_st objects to classical values

e SAM digitnumber.h contains nb_significant_digit that computes
the accuracy of an mp_st object

e SAM div.h contains the operator /=

e SAM_eq.h contains the definition of the comparison operator ==
e SAM_ge.h contains the definition of the comparison operator >=
e SAM gt .h contains the definition of the comparison operator >

e SAM.h contains the definition of the mp_st class

e SAM_ intr.h: contains the definition of the following functions when
called with stochastic arguments: fabs, floor, ceil, trunc, nearbyint,
rint, lrint, llrint

e SAM_le.h contains the definition of the comparison operator <=

e SAM_1t.h contains the definition of the comparison operator <

33

SAM math.h contains the definition of the math functions when called
with stochastic arguments.

SAM_MPFR_templates.h provides simple template wrapper for common
MPEFR functions to make code appear more generic

SAM_mul.h contains the operator *=

SAM_ne.h contains the definition of the comparison operator !=

SAM numericalnoise.h contains the numericalnoise function that
returns 1 if the argument is numerical noise, -1 if it is zero, and 0
otherwise.

SAM_op2.h contains the definition of arithmetic and relational opera-
tors with at least one stochastic argument

SAM_perturbation.h contains the perturbationLastBit function that
perturbs a stochastic value when it is assigned to a longer stochastic
variable.

SAM_private.h contains declarations for instability detection and ran-
dom number generation

e SAM random.cpp contains functions for random number generation

SAM_str2.h contains the strp function related to stochastic variables
printing

SAM_str.h is required to print stochastic variables constains the dis-
play method that prints the triplet associated with a stochastic vari-
able and the str function

SAM_sub.h contains the operators related to subtraction: -, — -=

SAM_to.h

— contains the constructors

— defines all the functions involving at least one argument of stochas-
tic type which overload the assignment statement =

— contains the sam_set_str method that assigns a string to an
mp_st variable.

e SAM type.cpp contains the following functions:

34

— SAM_init that initializes the SAM library
— SAM_end that ”closes” the SAM library

— SAM_enable that enables the detection of a kind of numerical
instability

— SAM_disable that disables the detection of a kind of numerical
instability

— self_validation_only that enables the detection of the multi-
plication instability, the division instability and the power insta-
bility. It disables the others.

e SAM unstab.cpp contains the instability function that manages the
different kinds of instabilities detected by SAM.

35

36

Chapter 5

Test runs

You first need to install GMP (GNU Multiprecision Library) and MPFR for
running the tests.

We present, with the examples included in the distribution, an illustration
of the use of the SAM library and the benefits of the DSA. For each example,
we describe the results obtained using the standard floating-point arithmetic
and then the results provided by the SAM library.

As a remark, the results may depend on the processor or the compiler, es-
pecially when the digits printed out using the standard floating-point arith-
metic are affected by round-off errors. With SAM, only the exact significant
digits appear in the results.

5.1 Example 1: a rational fraction function of two
variables

In the following example [12], the rational fraction

Fx,y) = 333.75y° + 22(11a%y? — ¢® — 121y — 2) + 555 + ;—y
is computed with « = 77617, y = 33096. The first 30 digits of the exact
result are -0.827396059946821368141165095479.

Using IEEE double precision arithmetic with rounding to the nearest, one
obtains: res = 5.764607523034235E+17.

With SAM, we obtain a satisfactory result when the working precision is
greater than 121 bits. So using SAM in 122 bits, one obtains:

| Polynomial function of two variables |
| with SAM |

SAM software
No instability detected

5.2 Example 2: solving a second order equation
The roots of the following second order equation are computed:
0.32° — 2.1z + 3.675 = 0.

The exact results are: Discriminant d=0, x1=x2=3.5.
Using IEEE single precision arithmetic with rounding to the nearest, one

obtains:

| Second order equation

| without SAM |

d = -2.861023e-06

There are two complex solutions.

z1 = +3.500000e+00 + i * +8.457279e-04
z2 = +3.500000e+00 + i * -8.457279e-04

and using SAM with 100 bits, one obtains:

| Second order equation

| with SAM

d = .0

Discriminant is zero.

The double solution is 0.35000000000000000000000000000E+1

SAM software

There are 2 numerical instabilities

1 UNSTABLE BRANCHING(S)

1 LOSS OF ACCURACY DUE TO CANCELLATION(S)

38

The standard floating-point arithmetic cannot detect that d=0. The wrong
branching is performed and the result is false.

The SAM software takes into account the accuracy of operands in the order
relations or in the equality relation and, therefore, the correct branching is
performed and the exact result is obtained.

5.3 Example 3: computing a determinant

The determinant of Hilbert’s matrix of size 11 is computed using Gaussian
elimination without pivoting strategy. The determinant is the product of
the different pivots. Hilbert’s matrix is defined by: a(i,j) = 1/(i +j — 1),
1<i<11,1 <45 <11. All the pivots and the determinant are printed out.
The first exact digits of the determinant are 3.0190953344493 x 10762,

Using IEEE double precision arithmetic with rounding to the nearest, one
obtains a determinant that has only two exact significant digits.

| Computation of the determinant of Hilbert’s matrix |
| using Gaussian elimination without SAM |
.000000000000000e+00
.333333333333331e-02
.555555555555526e-03
.571428571428830e-04
.267573696145566e-05
.431549050529594e-06
.009749264103679e-08
.659971084095516e-09
.551369635569034e-10
.226762517485834e-11
1.399228241996033e-12
3.028594438809703e-65

Pivot number
Pivot number
Pivot number
Pivot number
Pivot number

Pivot number
Pivot number
Pivot number

1]
N WO O~ N WO 00—

0
1
2
3
4
Pivot number 5 =
6
7
8
9

Pivot number
Pivot number 10
Determinant

and using SAM with 100 bits, one obtains:

| Computation of the determinant of Hilbert’s matrix |
| using Gaussian elimination with SAM |

Pivot number O = 0.100000000000000000000000000000E+1

39

.8333333333333333333333333333E-1
.555555555555555555555555556E-2
.35714285714285714285714286E-3
.226757369614512471655329E-4
.14315490505966696442887E-5
.900974926948952922979E-7
.56599706949357299008E-8

Pivot number .3551354161528301114E-9

Pivot number .22264681662832228E-10

Pivot number 10 = 0.139503017937545E-11
Determinant = 0.301909533444935E-64

Pivot number
Pivot number
Pivot number
Pivot number
Pivot number
Pivot number
Pivot number

© 00 NO Ok WN -
1
O O OO O O O oo

SAM software
No instability detected

5.4 Example 4: computing a second order recur-
rent sequence

This sequence was proposed by J.-M. Muller [10]. The first 30 iterations of
the following recurrent sequence are computed:

1130 3000

Upi1 =111 -
i Un * UnUnfl

61
with Uy = 5.5 and Uy = (TR The exact limit is 6.

Using IEEE double precision arithmetic with rounding to the nearest, one
obtains:

| A second order recurrent sequence |
| without SAM |
U(3) = +5.590163934426237e+00
U(4) = +5.633431085044127e+00
U(5) = +5.674648620512615e+00
U(6) = +5.713329052423919e+00
U(7) = +5.749120920462043e+00
U(8) = +5.781810933690098e+00
U(9) = +5.811314466602178e+00
U(10) = +5.837660476543959e+00

40

U(11) = +5.861018785996283e+00
U(12) = +5.882524608269310e+00
U(13) = +5.918655323805488e+00
U(14) = +6.243961815306110e+00
U(15) = +1.120308737284091e+01
U(16) = +5.302171264499677e+01
U(17) = +9.473842279276452e+01
U(18) = +9.966965087355071e+01
U(19) = +9.998025776093678e+01
U(20) = +9.999882245337588e+01
U(21) = +9.999992970745579e+01
U(22) = +9.999999580049865e+01
U(23) = +9.999999974893262e+01
U(24) = +9.999999998498109¢e+01
U(25) = +9.999999999910112e+01
U(26) = +9.999999999994618e+01
U(27) = +9.999999999999677e+01
U(28) = +9.999999999999980e+01
U(29) = +9.999999999999999¢e+01
U(30) +1.000000000000000e+02
The exact limit is 6.

and using SAM in double precision (53 bits), one obtains:

| with SAM I
U(3) = 0.5590163934426E+1
U(4) = 0.563343108504E+1
U(5) = 0.56746486205E+1
U(6) = 0.571332905E+1
U(7) = 0.57491209E+1

U(8) = 0.5781811E+1

U(9) = 0.581131E+1

U(10) = 0.58376E+1

U(11) = 0.586E+1

U(12) 0.59E+1

U(13) 0.6E+1

U(14) = @.0

U(15) = @.0

41

U(16) = Q.0

U(17) = Q.0

U(18) = 0.9E+2

U(19) = 0.99E+2

U(20) = 0.999E+2

U(21) = 0.99999E+2

U(22) = 0.999999E+2

U(23) = 0.9999999E+2

U(24) = 0.99999999E+2

U(25) = 0.999999999E+2
U(26) = 0.99999999999E+2
U(27) = 0.999999999999E+2
U(28) = 0.9999999999999E+2
U(29) = 0.99999999999999E+2
U(30) = 0.100000000000000E+3

The exact limit is 6.

SAM software

CRITICAL WARNING: the self-validation detects major problem(s).
The results are NOT guaranteed.

There are 12 numerical instabilities

9 UNSTABLE DIVISION(S)

3 UNSTABLE MULTIPLICATION(S)

if 40 iterations are performed using SAM with 100 bits , one obtains:

| with SAM I
U(3)= 0.559016393442622950819672131E+1
U(4)= 0.56334310850439882697947214E+1
U(5)= 0.5674648620510150963040083E+1
U(6)= 0.571332905238051554903219E+1
U(7)= 0.5749120919702638043705E+1
U(8)= 0.578181092048561557947E+1
U(9)= 0.58113142382939957232E+1

U(10)= 0.5837656548958711962E+1
U(11)= 0.58609515225161319E+1
U(12)= 0.5881377215841419E+1
U(13)= 0.589915390579007E+1

42

U(14)= 0.59145249506789E+1
U(15)= 0.592774140778E+1
U(16)= 0.59390504855E+1
U(17)= 0.5948687492E+1
U(18)= 0.595687073E+1
U(19)= 0.5963799E+1
U(20)= 0.596965E+1
U(21)= 0.59746E+1

U(22)= 0.5979E+1

U(23)= 0.598E+1

U(24)= 0.6E+1

U(25)= @.0

U(26)= @.0

U(27)= @.0

U(28)= 0.0

U(29)= @.0

U(30)= 0.10E+3

U(31)= 0.100E+3

U(32)= 0.1000E+3

U(33)= 0.10000E+3

U(34)= 0.1000000E+3
U(35)= 0.10000000E+3
U(36)= 0.100000000E+3
U(37)= 0.1000000000E+3
U(38)= 0.100000000000E+3
U(39)= 0.1000000000000E+3

U(40)= 0.10000000000000E+3
The exact limit is 6.

SAM software

CRITICAL WARNING: the self-validation detects major problem(s).
The results are NOT guaranteed.

There are 15 numerical instabilities
11 UNSTABLE DIVISION(S)
4 UNSTABLE MULTIPLICATION(S)

The warnings UNSTABLE DIVISION(S) are generated by divisions where
the denominator is a computational zero. Such operations make the com-

43

puted trajectory turn off the exact trajectory and then, the estimation of
accuracy is not possible any more. Even using the multiple precision (100
bits), the computer cannot give any significant result after the iteration 24.

5.5 Example 5: computing a polynomial root

This example deals with the improvement and optimization of an iterative
algorithm by using SAM features. This program computes a root of the
polynomial

f(z) = 1.472% + 1.192% — 1.832 + 0.45

by Newton’s method. The sequence is initialized with x = 0.5. The exact
value of the root is 3/7 = 0.428571428571428571...

First we use IEEE double precision arithmetic with rounding to nearest

and we stop the iterative algorithm x, 1 = x, — J{,((a;")) with the criterion

| — 21| < 1072, The associated instructions are (for clarity, print in-
structions are not given):

int i,nmax=100;

double y, x, eps=1l.e-12;

y = 0.5;

for(i = 1;i<=nmax;i++){
X =y;
y = x-(1.47*xxx*x+1.19%x*x-1.83*x+0.45) / (4.41*xxx+2.38%x-1.83);
if (fabs(x-y)<=eps) break;

}

We obtain:

+4.285714285823216e-01
+4.285714285823216e-01

Mob
~
w w
B~ W
N
o

Only the first 10 digits are correct.

Using SAM, the stopping criterion can be changed. Iterations are stopped
when the difference between two successive iterates is a computational zero

44

(there is no more useful information to compute at the next iteration). SAM
is used with a working precision of 100 bits (30 decimal digits). The poly-
nomial coefficients are initialized using the sam_set_str function. The as-
sociated instructions are (for clarity, some print instructions are not given):

SAM_init(-1);
mp_st<100> y, x, t[6], half, exact_root;
int i, nmax=100;
sam_set_str(half,"0.5");
sam_set_str(t[0],"1.47");
sam_set_str(t[1],"1.19");
sam_set_str(t[2],"-1.83");
sam_set_str(t[3],"0.45");
sam_set_str(t[4],"4.41");
sam_set_str(t[5],"2.38");
//if an integer is assigned to an mp_st, no perturbation is performed.
exact_root=3;
exact_root/=7;
y = half;
for(i = 1;i<=nmax;i++){
X =y;
y=x-((t [0] *xxxxkx+t [1] kxkx+t [2] *x+t [3]) / (£ [4] *x*x+t [B] *x+t [2])) ;
if (x==y) break;
}
printf ("x(%3d) = %s\n",i-1,strp(x));
printf ("x(%3d) %s\n",i,strp(y));
printf("exact root = %s\n",strp(exact_root));
SAM_end () ;

One obtains:

x(46) = 0.428571428571429
x(47) = 0.42857142857143
exact root = 0.42857142857142857142857142857

SAM software

45

CRITICAL WARNING: the self-validation detects major problem(s).
The results are NOT guaranteed.

There are 83 numerical instabilities

1 UNSTABLE DIVISION(S)

1 UNSTABLE BRANCHING(S)

81 LOSS OF ACCURACY DUE TO CANCELLATION(S)

All the digits in the result obtained are correct. As a remark, in Newton’s
method, a division by a computational zero may suggest a double root.

Then we use the following instructions (for clarity, some print instructions
are not given):

SAM_init(-1);

mp_st<100> y, x, exact_root;
int i, nmax=100;
exact_root=3;

exact_root/=7;

y = 0.5;
for(i = 1;i<=nmax;i++){
X =y;
y = x-(1.47*xxx*x+1.19%x*x-1.83*x+0.45) / (4.41*x*xx+2.38%x-1.83);

if (x==y) break;
}
printf ("x(%3d) %s\n",i-1,strp(x));
printf ("x(%34d) %s\n",i,strp(y));
printf ("exact root = %s\n",strp(exact_root));
SAM_end () ;

The polynomial coefficients are double values. Only their 15 first digits are
correct. In the following results, only the 8 first digits are correct.

x(29) = 0.428571431755965987340
x(30) = 0.428571431755965987340
exact root = 0.42857142857142857142857142857

SAM software

There are 47 numerical instabilities

1 UNSTABLE BRANCHING(S)

46 L0OSS OF ACCURACY DUE TO CANCELLATION(S)

5.6 Example 6: solving a linear system

In this example, SAM is able to provide correct results which were impossible
to be obtained with the standard floating-point arithmetic. The following

linear system Ax = b is solved using Gaussian elimination with partial
pivoting.

21 130 0 2.1 153.1

13 80 4.74 108 752 S 849.74

0 —0.4 3.981610% 4.2 ' N 7.7816

0 0 1.7 91077 2.6 1078
The exact solution is 2!, = (1, 1,108, 1). Using IEEE single precision

arithmetic with rounding to the nearest, one obtains:

| Solving a linear system using Gaussian elimination |
| by partial pivoting without SAM |
x_s0l1(0) = +6.261988e+01 (exact solution: xs0l(0)= +1.000000e+00)
x_sol(1) -8.953979e+00 (exact solution: xsol(1)= +1.000000e+00)
x_sol(2) = +0.000000e+00 (exact solution: xso0l(2)= +1.000000e-08)
x_so0l(3) +1.000000e+00 (exact solution: xso0l(3)= +1.000000e+00)

and using SAM with 53 bits, one obtains:

| Solving a linear system using Gaussian elimination |

| with partial pivoting |

x_sol(0) = 0.10000000000E+1 (exact solution: xsol(0)= 0.100000000000000E+1)
x_s01(1) = 0.999999999999 (exact solution: xsol(1)= 0.100000000000000E+1)
x_so0l(2) = 0.100000000000000E-7 (exact solution: xso0l(2)= 0.100000000000000E-7)
x_s0l(3) = 0.999999999999999 (exact solution: xs0l(3)= 0.100000000000000E+1)

SAM software

47

There is 1 numerical instability
1 LOSS OF ACCURACY DUE TO CANCELLATION(S)

Using standard floating-point arithmetic, during the reduction of the third
column, the matrix element A(3,3) is equal to 4864. But the exact value
of A(3,3) is zero. The standard floating-point arithmetic cannot detect
that a(3,3) is insignificant. This value is chosen as pivot. That leads to
erroneous results. SAM detects the non-significant value of A(3,3). This
value is eliminated as pivot. That leads to satisfactory results.

5.7 Example 7: when SAM fails

SAM is based on a probabilistic model. It should never be forgotten that all
the estimations computed by SAM are probabilistic, even if the probability
is close to 1. Moreover, the theoretical model shows that SAM is able to
estimate the round-off errors to the first order. If they represent the global
round-off errors, SAM works well but, if they are dominated by terms of
greater order, SAM may fail.

In the present example, we have the same behaviour but only with additions
and subtractions, so without any warning of numerical instability. Let us
perform the following computation:

x=6.83561e+5;
y=6.83560e+5;
z=1.00000000007 ;
r =2z - X;

rl =z -y;
r=r+y,

rl =rl + x;

rl =rl1 - 2;
r=r +ri;
// r = ((z-x)+y) + ((z-y)+x-2)

The exact result is 1.4 107!°. The result obtained using IEEE double preci-
sion arithmetic with rounding to the nearest is 2.32830643653870E-10.

With SAM in double precision (53 bits), because we essentially perform the
same computation, ((z — z) +y) and ((z — y) + — 2), we find that if the
same rounding mode is chosen for both parts, the final result appears as
exact but it is wrong. It happens in one case out of four and the result
provided by SAM is then 0.116415321826935E-009 with 15 exact significant

48

digits. If computations are performed 100000 times using SAM, one may
obtain:

Example created on purpose to make CADNA fail

The same result r is computed for a number of iteratioms
chosen by the user.

The exact result is 1.4E-10.

But in 1 case out of 4, SAM estimates an incorrect accuracy.
Enter the number of iterations: 1000

Last value of r: @.0

Number of iterations when CADNA estimates an incorrect accuracy: 254
SAM software

There are 3746 numerical instabilities

746 UNSTABLE BRANCHING(S)

3000 LOSS OF ACCURACY DUE TO CANCELLATION(S)

The last value of r is printed out, and also the number of times when the
result was wrong.

49

50

Bibliography

1]

[9]

[10]

J. Vignes, Discrete Stochastic Arithmetic for Validating Results of Nu-
merical Software, Special Issue of Numerical Algorithms, 2004, 37, pp.
377-390

J.-M. Chesneaux, Etude théorique et implémentation en ADA de la
méthode CESTAC, These de l'université P. et M. Curie, Paris, 1988.

J.-M. Chesneaux, Modélisation théorique et conditions de validité de
la méthode CESTAC, C.R.A.S., Paris, série 1, tome 307, 19881 pp.
417-422.

J.-M. Chesneaux, L’arithmétique stochastique et le logiciel CADNA,
Habilitation a diriger des recherches, Université Pierre et Marie Curie,
Paris, 1995.

J.-M. Chesneaux, The equality relations in scientific computing, Num.
Algo 7, 1994, pp. 129-143.

J. Vignes, Error analysis in computing. International Federation for
Information Processing Congress, Stockholm, Aug. 1974, pp. 610-614.

J. Vignes, New Methods for evaluating the validity of the results of
mathematical computations. Math. and Comp. in Sim., 20, 1978, pp.
227-249.

J. Vignes, Estimation de la précision des résultats de logiciels
numériques. La Vie des Sciences, Comptes Rendus, série générale, 7,
1990, pp. 93-143.

J. Vignes, A stochastic arithmetic for reliable scientific computation,
Math. and Comp. in Sim. 35, 1993, pp. 233-261.

J.-M. Muller, Arithmétique des ordinateurs, Masson, 1989.

51

[11]

[12]

[13]

[14]

J.-M. Chesneaux, J. Vignes, Sur la robustesse de la méthode CESTAC,
C.R. Acad. Sc. Paris, Sér. I Math. 307, 1988, pp. 855-860.

S.M. Rump, Algorithms for Verified Inclusions - Theory and Practice. In
R.E. Moore, editor, Reliability in Computing, volume 19 of Perspectives
in Computing, pages 109-126. Academic Press, 1988.

J. Vignes, Zéro mathématique et zéro informatique. La Vie des Sci-
ences, C.R. Acad. Sci., Paris, 4, 1, janvier 1987, pp. 1-13.

J. Vignes, M. La Porte, Error analysis in computing, Information Pro-
cessing 74, North-Holland, 1974.

J. Vignes, A Stochastic Approach to the Analysis of Round-off Error
Propagation. A Survey of the CESTAC Method. Proceedings of Real
Numbers and Computer Conference. Marseille, 1996 pp. 233-251.

IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE
Standard 754-1985, Institute of Electrical and Electronics Engineers,
August, 1985, reprinted in SIGPLAN 22, 2, pp. 9-25.

52

