
Stochastic Arithmetic in Multiprecision

The SAM library

LIP6, Sorbonne Université, CNRS
Paris, France

2

Contents

1 Introduction 5

1.1 Aim of the SAM library . 5

1.2 The DSA (Discrete Stochastic Arithmetic) 7

1.2.1 The CESTAC method 7

1.2.2 The computational zero 9

1.2.3 Discrete stochastic relations 10

2 Reference guide 11

2.1 Stochastic type . 11

2.2 Assignment . 11

2.3 Intrinsic functions . 11

2.3.1 Conversion functions 11

2.3.2 Numerical functions 12

2.3.3 Mathematical functions 12

2.4 Relational operators . 12

2.5 SAM specific functions . 13

2.5.1 Initializing and closing the library 13

2.5.2 Obtaining a string from a result with its evaluated
accuracy . 14

2.5.3 Obtaining the number of exact significant digits of a
stochastic variable . 15

2.5.4 Obtaining the triplet associated with a stochastic vari-
able . 16

2.5.5 Testing if a variable is a computational zero 16

2.5.6 Reducing accuracy of initial data 16

3 User’s guide 19

3.1 Declaration of the SAM library 19

3.2 Initialization of the SAM library 20

3

3.3 Declaration of variables . 20
3.3.1 Changes in the type of variables 20

3.4 Changes in assignments or arithmetic operations 20
3.4.1 Conversions between usual types and the stochastic type 20
3.4.2 Classical arithmetic operators 21

3.5 Changes in reading statements 21
3.6 Changes in printing statements 22
3.7 Constants passed as function arguments 22
3.8 Termination of the SAM library 23
3.9 An example of numerical code and its modified version 23

3.9.1 Standard C source code 23
3.9.2 Source code using the SAM library 24
3.9.3 Example of execution without SAM 25
3.9.4 Example of execution with SAM 26

3.10 Numerical debugging with SAM 26

4 Test runs 29
4.1 Example 1: a rational fraction function of two variables . . . 29
4.2 Example 2: solving a second order equation 30
4.3 Example 3: computing a determinant 31
4.4 Example 4: computing a second order recurrent sequence . . 33
4.5 Example 5: computing a root of a polynomial 37
4.6 Example 6: solving a linear system 39
4.7 Example 7: when SAM fails 40

4

Chapter 1

Introduction

1.1 Aim of the SAM library

The arithmetic commonly used on computers for scientific programming is
floating point arithmetic. This arithmetic only approximates exact arith-
metic. Consequently each arithmetic statement generates a round-off error.

So when a correct program with regard to syntax and logical organization
is running on a computer, every produced result is unavoidably given with
a so called “computing error”. This error is due to all the round-off errors
produced along the elementary statements required to obtain the result.
Sometimes the error may be such that the final result is really wrong (and
not only inaccurate).

The aim of the SAM library presented here is to answer the following ques-
tion:

What is the computing error due to floating point arithmetic on
the results produced by any program running on a computer?

So, we want to estimate the round-off error on each result with a technique
which is independent on the program and hence on the algorithm used.

SAM is a library, based on the MPFR library. More precisely, SAM is a set
of data types, functions and subroutines that may be used in any program
written in C/C++. It implements the CESTAC method in a synchronous
way (the Discrete Stochastic Arithmetic DSA). With a few modifications in
the source code, this library has for main purpose to estimate the effects
of round-off error propagation on every numerical computed result. It also
allows to study the effects of the initial data uncertainties upon computed
results, as described in 2.5.

5

This implementation consists in replacing the computer deterministic arith-
metic by a stochastic arithmetic (the Discrete Stochastic Arithmetic DSA)
and in performing N times (N = 3) each elementary operation before exe-
cuting the next statement.

Thus, it is as N identical programs were simultaneously running on N syn-
chronized computers each of them using random arithmetic. So for each
result, we obtain N samples from which we compute the mean value and
the standard deviation which characterize the corresponding stochastic num-
ber. The value of this number is defined as the mean value of the different
samples. The accuracy of this number, i.e. its number of exact significant
digits, is estimated using the mean value and the standard deviation. If all
the samples are equal to zero or if the number of exact significant (decimal)
digits is less than one, then the number is defined as a computational zero.
This means that a computational zero is either the mathematical zero or a
number without any significance.

So round-off error propagation can be analyzed step by step. Numerical
instabilities and non significant results are detected. The branchings based
on order relations may also be controlled. Therefore, this synchronous im-
plementation of the CESTAC method allows to validate any scientific code
during its run.

With the SAM library, one can run any scientific code using random arith-
metic, without having to rewrite or notably change the initial code. This
tool has been written in C++. This language enables to create new numer-
ical types with their operators; furthermore the designating symbol of an
operator can be chosen among the primitive symbols in the language (+,
∗,...). In other words, this language enables the so called “operator overload-
ing”. Thanks to these new properties, SAM has been developed for C/C++
programs.

Thus a new numerical type has been created, the stochastic number;
it is nothing else than an N -set (N = 3) containing perturbed floating-
point values (of type mpfr t). All the arithmetic operators (+, −, ∗, /)
have been overloaded in such a manner that when an operator is used, the
operands are N-sets and the returned result is a randomly perturbed N-
set. The relational operators (>, ≥, <, ≤, ==, 6=) are overloaded. All
standard functions defined in “math.h” (SIN, COS, EXP, ...) have also
been overloaded. Likewise, in/out statements have been modified, mainly
the printing statement which gives as a result the mean value of the N-set
written with only its exact significant (decimal) digits.

Furthermore, in order to enable the evaluation of the weight of uncertainties

6

on initial data on the results, a function called data st may be used to perturb
data as exposed in 2.5.6.

During the run of a program, as soon as a numerical anomaly (for example
the product of non-significant numbers, or a relational test involving a non-
significant result) is produced, some special counters are updated. At the
end of the run, all information about numerical anomalies is printed on the
standard output.

If no anomaly has been detected, it means that the program runs without
any numerical problem. Results are then given with their accuracy - number
of exact significant (decimal) digits.

If some numerical anomalies have been detected, they must be analysed.
Helped by the debugger associated with the compiler, the user may retrieve
the statements that produced the anomalies and determine if changes in the
code are required.

For every source code, the run time and also the memory required are only
multiplied by about three, what is quite reasonable according to the major
interest of validating numerical results. SAM is the only existing tool that
is able of a such performance.

Integrated with MPFR, SAM is able to set the decimal accuracy (precision
in bits) exactly to any valid value for each variable (including very small
precision).

The stochastic types and the overloaded or newly defined functions of the
library are presented in the next sections.

1.2 The DSA (Discrete Stochastic Arithmetic)

1.2.1 The CESTAC method

The CESTAC (Contrôle et Estimation Stochastique des Arrondis de Calcul)
method, which has been developed by La Porte and Vignes [29, 18, 21], en-
ables one to estimate the number of exact significant digits of any computed
result.

The basic idea of the method is defined in [34, 35] and consists of the fol-
lowing:

• to perform the same code N times with a different round-off error
propagation for each run,

7

• to estimate the common part of these results and to consider that this
part is representative of exact result.

In practice, these different round-off error propagations are obtained by us-
ing the random rounding mode defined below.

Each result ρ of a floating-point operation (assignment, arithmetical opera-
tion) which is not an exact floating-point value, is bounded by two floating-
point values, one by default ρ− and the other by excess ρ+.

The random rounding mode consists, at the level of each floating-point op-
eration or assignment, in choosing as a result randomly with an equal prob-
ability either ρ− or ρ+.

With this random rounding mode, the same program run several times pro-
vides different results, due to different round-off errors.

Let us consider a sequence of computations providing an exact result r.
When this sequence is performed with the CESTAC [25, 24, 18] method, N
results Rk, k = 1,...N are obtained. From the formalization of the round-off
errors of the floating-point arithmetic operations (+,−, ∗, /) a probabilistic
model for estimating the round-off error on the mean value R of the Rk,
considered as the computed result, has been established. This model is a
first order model. It means that the terms in 2−2p (p being the number of
bits of the mantissa) which appear in the expression of the round-off error of
the floating-point multiplications and divisions have been neglected. Only
the terms in 2−p are considered.

This model is based on two hypotheses.

• Hyp1.: The elementary round-off errors αi of the floating-point arith-
metic operations are random independent, centered and uniformly dis-
tributed variables.

• Hyp2.: The approximation of the first order in 2−p is legitimate.

It has been proved that if the two hypotheses hold then the Rk, k = 1,...N are
samples of the Gaussian distribution, centered on the exact result r. Thus
it is possible to use the Student’s test which allows to obtain a confident
interval of R with a (1− β) probability and then to estimate the number of
exact significant digits of R by the formula

CR = log10 (

√
N |R|
τβσ

) (1.1)

8

with

R =
1

N

N∑
i=1

Ri

and

σ2 =
1

N − 1

N∑
i=1

(Ri −R)2.

τβ is the value of the Student’s distribution for N − 1 degrees of freedom
and a probability level 1 − β. In practice N = 3, β = 0.05 and then τβ =
4.303.

The result provided by eq(1.1) is reliable when the two previous hypotheses
hold in practice [24, 36].

• Concerning Hyp1, with the use of random rounding, the αi are truly
independent random variables. However they are not exactly centered,
consequently the R is biaised. But because of the robustness of Stu-
dent’s test, Hyp1 still holds. This hypothesis is not an inconvenience
for the reliability of eq(1.1).

• Concerning Hyp2, it holds if the terms in 2−2p are negligible in compar-
ison to the terms in 2−p. It has been proved that this fact is satisfied
if

– the operands of any multiplication are both significant

– the divisor of any division is significant.

It is then absolutely necessary to control these two points during a run of
code.

Indeed if they are not satisfied, this means that the Hyp2 has been violated
and then the results obtained with eq(1.1) must be considered as not reliable.

This control is done with the concept of the informatical zero also named
computational zero or computed zero.

1.2.2 The computational zero

Each result provided by the CESTAC method is an informatical zero also
called ”computational zero” denoted by @.0 if one of the two following con-
ditions holds:

9

• ∀i, i = 1, ...N,Ri = 0

• CR ≤ 0 (CR obtained with eq(1.1))

When CR ≤ 0, then R is an insignificant value.
From the concept of computational zero, discrete stochastic relations have
been defined (equality and order relations).

1.2.3 Discrete stochastic relations

Let X and Y be N -samples provided by CESTAC method.

• Discrete stochastic equality denoted by s = is defined as:

Xs = Y if X − Y = @.0

• Discrete stochastic inequalites denoted by s > and s ≥ are defined as:

Xs > Y if X > Y and X − Y 6= @.0

Xs ≥ Y if X ≥ Y or X − Y = @.0

The Discrete Stochastic Arithmetic (DSA) [9, 36, 16] is defined from the
CESTAC method, the concept of informatical zero and the discrete stochas-
tic relations. With this DSA, it is possible to control the run of a scientific
code, to detect the numerical instabilities and the violation of the hypotheses
underlying the method.

10

Chapter 2

Reference guide

2.1 Stochastic type

SAM provides one new numerical type, the stochastic type:

mp st for stochastic variables in multiple-precision
stochastic type associated to mpfr t

2.2 Assignment

The operator “=” is overloaded and accepts stochastic types. It sets a
stochastic variable with different types of values such as float, double, long,
int, unsigned and MPFR object.

Also we have the fonction sam set str(stochastic argument, string) which sets
the stochastic argument to the value of the string in base 10, rounded in the
direction MPFR RNDN, and returns the value of the stochastic argument.

2.3 Intrinsic functions

We present here how the intrinsic functions defined in C have been extended
for stochastic types.

2.3.1 Conversion functions

The float, double, long, unsigned and int cast operators:
They act on variables of stochastic type and work like for numerical prede-
fined types. Thus the result is of classical type and the knowledge of the

11

accuracy is lost.
If X is a stochastic variable consisting in N samples Xi, for instance

• (int) X is computed as (int)(
∑N

i=1Xi

N).

2.3.2 Numerical functions

The fabs function:
Given a mp st argument, this function returns a positive mp st value.

The floor, ceil and rint functions:
These functions accept stochastic arguments and work like on the classical
types.

The pow function:
This function accepts both classical or stochastic types. If at least one ar-
gument is a stochastic variable, the ouput value is of stochastic type.

2.3.3 Mathematical functions

These are the following functions: sqrt, exp, log, log10, sin, cos, tan, asin,
acos, atan, atan2, sinh, cosh, tanh, hypot. They accept arguments of mp st
stochastic type. The output value has the same type as the argument. If
the function has two arguments, they must be of the stochastic type.

2.4 Relational operators

Comparison operators are overloaded and accept stochastic types and a
mixture of classical types and stochastic types. They take into account the
accuracy of the operands.
Thus when the expression a == 0.0 is true, it means that a is a computational
zero, i.e.

• a is a mathematical zero or

• a has no exact significant digit.

Similarly, when the expression a >= b is true, it means that

• a-b is a computational zero or

•
∑N

i=1 ai
N >

∑N
i=1 bi
N ,

12

and, when the expression a > b is true, it means that

• a-b is NOT a computational zero, i.e. has at least one exact significant
digit, and

•
∑N

i=1 ai
N >

∑N
i=1 bi
N .

2.5 SAM specific functions

The previous part described how some classical C statements are slightly
affected when using the SAM tool. Now we present functions that are spe-
cific to the library. Note that the functions SAM init and SAM end have to
appear, respectively to initialize and to close the library. The other func-
tions SAM enable, SAM disable, self validation only, computedzero, data st,
nb significant digit, str and strp will appear in some applications.

2.5.1 Initializing and closing the library

The SAM init function has to be called once, early in the main program,
before any kind of declaration.
This function has five integer arguments:
SAM init(numb instability, SAM instability, cancel level, init random, precision).
The first and the last argument must always be present.

The user chooses the maximum number of numerical instabilities that will
be detected.

• if numb instability = −1, all the instabilities will be detected

• if numb instability = 0, no instability will be detected

• if numb instability = M (strictly positive M), the first M instabilities
will be detected.

The last argument is an integer which represents the precision in bits.
For example, a number presented using 53 bits has 15 decimal significant
digits.

The other arguments are optional.

The second argument allows the user to determine what kind of instabil-
ities will be enabled or disabled.

13

There are 7 integer parameters in the library:
SAM BRANCHING,
SAM CANCEL,
SAM DIV,
SAM INTRINSIC,
SAM MATH,
SAM MUL,
SAM POWER.
By default, the detection of all types of instability is enabled. The
user has only to specify what kind of instability is to be disabled by pass-
ing, as the second argument, the addition of the chosen parameters.

The third argument is an integer which is used to initialize some internal
variables for random arithmetic. The default value for this argument is 51.

The fourth argument corresponds to the following. An unstable cancellation
is pointed out when the difference between the number of exact significant
digits (i.e. digits which are not affected by round-off errors) of the result
of an addition or a subtraction and the minimimum of the number of exact
significant digits of the two operands is greater than the cancel level argu-
ment. The default value of this argument is 4. In other words, when one
loses more than cancel level significant digits in one addition or subtraction,
SAM considers that a catastrophic cancellation has been detected (if the
detection of this kind of instability is enabled).

The SAM end function “closes” the library and prints to the standard
output the result of the detection of numerical instabilities.

2.5.2 Obtaining a string from a result with its evaluated ac-
curacy

The str function has a string argument and a stochastic argument. It returns
a pointer to the first argument. This output string contains the scientific
notation of the stochastic argument; only the exact significant digits appear
in the string. Thus accuracy is easy to read.

When the argument has no exact significant digit, the string that is returned
is @.0.

To avoid the use of the string parameter, a special implementation of the
str function has been written. It must be used only with the family of printf

14

functions. The name of this new function is strp. Using this function, the
allocation of the string is dynamically managed by the function itself. The
only restriction is that it is not possible to have more than 256 calls to the
strp function in one call to the printf function.

For C++ programmers, the classical c.out and >> notations have been over-
loaded for the stochastic types. No modification is needed.

Example:

Let us consider the following instructions:
int i;
double a;
...
printf(“iteration %d a=%lf\n”,i,a);
...

Using SAM, the corresponding instructions in C can be:
int i;
mp st a;
char s[25];
...
printf(“iteration %d a=%s\n”,i,str(s,a));
...

Or using the strp function:
int i;
mp st a;
...
printf(“iteration %d a=%s \n”,i,strp(a));
...

In C++, it is simpler:
int i;
mp st a;
...
cout << “iteration “ << i << “a=” << a << endl;

...

2.5.3 Obtaining the number of exact significant digits of a
stochastic variable

The nb significant digit method returns an integer giving the number of exact
significant decimal digits of a stochastic variable when the method is called.

At some point x.nb significant digit() may return 7; later during the run

15

it may return 5. If x becomes non-significant then x.nb significant digit()
returns 0.

2.5.4 Obtaining the triplet associated with a stochastic vari-
able

The display method prints the triplet associated with a stochastic variable.
For instance, let d be a multiple-precision stochastic variable. The following
instructions

printf("%s\n",strp(d));

d.display();

may provide

0.30E-64

3.0217133019536030e-65 -- 3.0133146666062181e-65 -- 3.0248565827034563e-65

The three multiple-precision values associated to d have 2 common signifi-
cant digits.

2.5.5 Testing if a variable is a computational zero

The computedzero method acts on a stochastic variable and returns 0 or 1.
The computedzero method returns 1 if this stochastic variable is a compu-
tational zero, i.e. it is a mathematical zero or it has no exact significant
digit.

2.5.6 Reducing accuracy of initial data

Initial data are often known with less significant digits than provided by their
internal representation. The data st method allows the user to introduce
some effective uncertainties on these data, reducing their initial accuracy.
So the accuracy of results depends in some way on the accuracy of initial
data.
The data st method acts on a stochastic variable X and has two optional
arguments: X.data st(ERX,IER);
The first argument is an optional double argument that contains the rel-
ative or absolute uncertainty of the stochastic variable X. The second ar-
gument determines the kind of the uncertainty: relative or absolute. If X
is a stochastic variable and ERX is a double value strictly less than 1, the
X.data st(ERX,IER); instruction modifies the values of the N samples in X
according to the following formula:

16

Xi = Xi ∗ (1 + ERX ∗ALEA) for i = 1 to N if IER = 0

Xi = Xi + ERX ∗ALEA for i = 1 to N if IER = 1

ALEA is a random variable uniformly distributed between -1 and 1.
If ERX is 0, no perturbation takes place as if the statement was suppressed.
If ERX is absent, perturbation will concern only the last bit of the mantissa.
If IER is absent, it is like IER = 0. The data st method without ERX must
be used when data are considered as exact but cannot be exactly coded in
the memory.

17

18

Chapter 3

User’s guide

The use of the SAM library involves seven steps:

• declaration of the SAM library for the compiler,

• initialization of the SAM library,

• substitution of the type float or double by stochastic type mp st in
variable declarations,

• possible changes in the input data if perturbation is desired, to take
into account uncertainty in initial values,

• change of output statements to print stochastic results with their ac-
curacy,

• possible use of SAM functions to evaluate the number of exact signif-
icant digits,

• termination of the SAM library.

The reader may refer to the sample program given in 3.9 with two versions,
i.e. the initial C code and the code modified to be compiled with the SAM
library.

3.1 Declaration of the SAM library

The following pseudo-statement
#include <SAM.h>

must take place in any file which contains declarations of stochastic variables
or SAM functions to be found by the compiler.

19

3.2 Initialization of the SAM library

The SAM init function has to be called once, early in the main program,
before any kind of declaration, to initialize random arithmetic and to set
the default precision. The choice of the default precision is global.
Note that double variables are 53-bit mantissa length numbers and that float
variables are 24-bit mantissa length numbers in IEEE standard floating-
point arithmetic [39].

For more information about the arguments of the SAM init function, see
2.5.1.

3.3 Declaration of variables

3.3.1 Changes in the type of variables

To control the numerical quality of a variable, just replace its standard type
by the stochastic type.
Example:

standard declarations SAM declarations
float a, b; mp st a, b;
double c; mp st c;
float d[6], e, f; mp st d[6], e, f;

3.4 Changes in assignments or arithmetic opera-
tions

3.4.1 Conversions between usual types and the stochastic
type

In assignment statements, conversions are implicit from C float, int or double
types to and from the stochastic type mp st (because the = operator has
been overloaded), but for conversions from the stochastic type mp st
to standard types, the knowledge of accuracy is lost.

With the following declarations:
mp st a, b;
float r;

the assignments a = r;, b = 2; and r = a; are correct but there is, of course,
no information on the accuracy of r.

20

When a variable is set to a value which cannot be exactly coded on a com-
puter, the sam set str function should be used.

Example:

Initial C statements Modified C statements
for SAM

#include <SAM.h>
float x, y; mp st x, y;
x=1.234; sam set str(x,“1.234”);
y=-3.0; y=-3.0;

3.4.2 Classical arithmetic operators

As previously described, all arithmetic operators on floating-point variables
are overloaded and arithmetic expressions without functions do not have
to be modified. Expressions may contain a mixture of the stochastic type,
classical types and integer types.

With the following declarations:
mp st a, b;
double c;

the statement a = b * c + 3; needs no change.

The result of expressions containing stochastic terms will be of stochastic
type.

3.5 Changes in reading statements

The family of scanf functions is adapted to classical floating-point variables,
which must be transformed into stochastic variables.

Example:

Initial C statements Modified C statements
for SAM

#include <SAM.h>
float x; char xaux[100];

mp st x;
.....
scanf(“x = %14.7e \n”, &x); scanf(“%s”, xaux);

sam set str(x, xaux);

21

Note that initial data read from a file or from keyboard may have sometimes
to be duplicated in some way, because they are read as classical variables
which are then assigned to stochastic variables with controled uncertainty.

3.6 Changes in printing statements

Before printing each stochastic variable, it must be transformed into a string
by the str or strp function. The required length is 15 for a mp st variable of
24 bits precision and 25 for a mp st variable of 53 bits precision. Therefore
formats should be modified.

For example, if a float variable x becomes a mp st variable, the printing
instruction can be modified as follows:

Initial C statements Modified C statements
for SAM

#include <SAM.h>
float x; mp st x;
... ...
printf(“x = %14.7e”, x); printf(“x = %s”, strp(x));

3.7 Constants passed as function arguments

Function definitions and function calls must sometimes be adapted because
stochastic parameters of functions must not be passed by value.

Example:

Initial C statements Modified C statements
for SAM

#include <SAM.h>
float a; mp st aux, a;

aux=2.0;
a=3.14*f(2.0); a=3.14*f(aux);
... ...

float f(x) mp st f(x)
{ {
float x; mp st x;
... ...
} }

22

3.8 Termination of the SAM library

The call to the SAM end function must be the last program statement.

3.9 An example of numerical code and its modified
version

The following source codes use the Gauss-Jordan method to invert a matrix.

3.9.1 Standard C source code

#include <stdio.h>

#define N 4

// Initialization:

void InitMat(float M[N][N]){

int i,j;

for(i=0;i<N;i++)

for(j=0;j<N;j++) scanf("%e",&M[i][j]);

}

// Inversion using the Gauss-Jordan method:

void InvertMat(float M[N][N]){

int i,j,k;

float temp;

for(k=0;k<N;k++)

{temp = M[k][k];

M[k][k] = 1.0;

for(j=0;j<N;j++) M[k][j]/=temp;

for(i=0;i<N;i++)

if(i!=k)

{temp=M[i][k];

M[i][k] = 0.0;

for(j=0;j<N;j++) M[i][j] -= temp*M[k][j];

};

};

}

// Display of a matrix:

23

void DisplayMat(float M[N][N]){

int i,j;

for(i=0;i<N;i++)

{for(j=0;j<N;j++)

printf("%14.7e ",M[i][j]);

printf("\n");

}

}

void main(){

float M[N][N];

printf("Initial matrix:\n");

InitMat(M);

DisplayMat(M);

InvertMat(M);

printf("Inverted matrix:\n");

DisplayMat(M);

}

3.9.2 Source code using the SAM library

#include "SAM.h"

#include <stdio.h>

#define N 4

// Initialization:

void InitMat(mp_st M[N][N]){

char aux[100];

int i,j;

for(i=0;i<N;i++)

for(j=0;j<N;j++) {scanf("%s",aux); sam_set_str(M[i][j],aux);};

}

// Inversion using the Gauss-Jordan method:

void InvertMat(mp_st M[N][N]){

int i,j,k;

mp_st temp;

for(k=0;k<N;k++)

{temp = M[k][k];

M[k][k] = 1.0;

24

for(j=0;j<N;j++) M[k][j]/=temp;

for(i=0;i<N;i++)

if(i!=k)

{temp=M[i][k];

M[i][k]=0.0;

for(j=0;j<N;j++) M[i][j] -=temp*M[k][j];

};

};

}

// Display of a matrix:

void DisplayMat(mp_st M[N][N]){

int i,j;

for(i=0;i<N;i++)

{for(j=0;j<N;j++)

printf("%s ",strp(M[i][j]));

printf("\n");

}

}

main(){

SAM_init(-1,24);

mp_st M[N][N];

printf("Initial matrix:\n");

InitMat(M);

DisplayMat(M);

InvertMat(M);

printf("Inverted matrix:\n");

DisplayMat(M);

SAM_end();

}

3.9.3 Example of execution without SAM

Initial matrix:

1.0000000e+00 2.0000000e+03 5.0000000e-01 4.0000000e+00

2.9999999e-05 1.0000000e+00 2.0000000e+00 8.0000000e+00

4.0000000e+00 5.0000000e-01 2.9999999e-08 2.0000000e+00

2.0000000e+00 3.0000000e+00 5.0000000e-01 5.0000000e+09

Inverted matrix:

25

-6.2576764e-05 -8.1558341e-05 2.5001565e-01 -9.9964599e-11

5.0009380e-04 -1.2504448e-04 -1.2502252e-04 -1.4995290e-13

-2.5004597e-04 5.0006253e-01 5.8761423e-05 -7.9992352e-10

-2.4999515e-13 -4.9991469e-11 -9.9937121e-11 2.0000000e-10

3.9.4 Example of execution with SAM

Initial matrix:

0.1000000E+1 0.1999999E+4 0.5000000 0.4000000E+1

0.300000E-4 0.1000000E+1 0.2000000E+1 0.8000000E+1

0.4000000E+1 0.5000000 0.2999999E-7 0.2000000E+1

0.2000000E+1 0.3000000E+1 0.5000000 0.500000E+10

Inverted matrix:

-0.63E-4 @.0 0.250016 -0.10E-9

0.500094E-3 -0.124812E-3 -0.125023E-3 -0.15E-12

-0.2500459E-3 0.500063 0.587614E-4 -0.799924E-9

-0.249E-12 -0.49E-10 -0.999371E-10 0.200000E-9

3.10 Numerical debugging with SAM

One can enable the detection of the following instabilities:
UNSTABLE DIVISION(S),
UNSTABLE POWER FUNCTION(S),
UNSTABLE MULTIPLICATION(S),
UNSTABLE BRANCHING(S),
UNSTABLE MATHEMATICAL FUNCTION(S),
UNSTABLE INTRINSIC FUNCTION(S),
LOSS OF ACCURACY DUE TO CANCELLATION(S).

The library counts the number of detections for each instability. The global
information for these detections is printed out with the SAM end function,
see 2.5.1.

The accuracy estimated by SAM is valid if there is no deep numerical
anomaly during the computation, i.e. no UNSTABLE DIVISION, UNSTA-
BLE POWER FUNCTION and UNSTABLE MULTIPLICATION, see [23, 15, 9].

The meaning of the message is:

• unstable division: the divisor is non-significant

26

• unstable power function: one operand of the power function is
non-significant

• unstable multiplication: both operands are non-significant

• unstable branching: the difference between the two operands is
non-significant (a computational zero).

The chosen branching statement is associated with the equality.

• unstable mathematical function:

in the log, sqrt, exp or log10 function, the argument is non-significant.

• unstable intrinsic function:

– when using integer cast functions, the integral part of the argu-
ment can not be exactly determined due to the round-off error
propagation;

– in the fabs function: the argument is non-significant;

– the floor, ceil or trunc function returns different values for each
component of the stochastic argument.

• loss of accuracy due to cancellation: as explained in 2.5.1, an
unstable cancellation is pointed out when the difference between the
number of exact significant digits (i.e. digits which are not affected
by round-off errors) of the result of an addition or a subtraction and
the minimimum of the number of exact significant digits of the two
operands is greater than the cancel level argument. The default value
of this argument is 4. In other words, when one loses more than can-
cel level significant digits in one addition or subtraction, SAM consid-
ers that a catastrophic cancellation has been detected (if the detection
of this kind of instability is enabled).

To perform actual numerical debugging, it is necessary, for each instability,
to identify the statement in the code that generates this instability. This
can be performed directly using a symbolic debugger like gdb with Linux
or as a background task using special input and output files.
In both cases, one has to put a breakpoint at the entry of the instability
internal function of the SAM library. This function is called each time a
numerical instability is detected. To get the right label for this system and
compiler dependent function, one can use the following statement:

nm name of the binary code | grep instability

27

For instance, using gdb with Linux, the general statement which enables
the detection of all the instabilities in a single run is

nohup gdb name of the binary code < gdb.in >! gdb.out &
The gdb.in file may contain

break instability

run

while 1

where

cont

end

where prints out the complete trace of the instability which has stopped
the run and cont makes the execution going on.
P.S.: nohup allows to keep the process alive even when logging off.
The gdb.out file will contain all the traces of instabilities.

28

Chapter 4

Test runs

You first need to install GMP (GNU Multiprecision Library), MPFR and
MPFI for running all the tests.
We present, with the examples included in the distribution, an illustration
of the use of the SAM library and the benefits of the DSA. For each example,
we describe the results obtained using the standard floating-point arithmetic
and then the results provided by the SAM library.
The results reported in this section have been obtained using the darwin
g++ compiler on an Macbook pro running MAC OS. Different results may
be obtained with another processor or another compiler, especially when the
digits printed out using the standard floating-point arithmetic are affected
by round-off errors. With SAM, only the exact significant digits appear in
the results.

4.1 Example 1: a rational fraction function of two
variables

In the following example [26], the rational fraction

F (x, y) = 333.75y6 + x2(11x2y2 − y6 − 121y4 − 2) + 5.5y8 +
x

2y

is computed with x = 77617, y = 33096. The first 30 digits of the exact
result are -0.827396059946821368141165095479.
Using IEEE double precision arithmetic with rounding to the nearest, one
obtains: res = 5.764607523034235E+17.
With SAM, we obtain the exact result when the default precision is set to
more than 121 bits. So using SAM in 122 bits, one obtains:

29

--

SAM software --- University P. et M. Curie --- LIP6

Self-validation detection: ON

Mathematical instabilities detection: ON

Branching instabilities detection: ON

Intrinsic instabilities detection: ON

Cancellation instabilities detection: ON

--

--

| Polynomial function of two variables |

| with SAM |

--

res=-0.827396059946821368141165095479816292

--

SAM software --- University P. et M. Curie --- LIP6

No instability detected

--

4.2 Example 2: solving a second order equation

The roots of the following second order equation are computed:

0.3x2 − 2.1x+ 3.675 = 0.

The exact results are: Discriminant d=0, x1=x2=3.5.
Using IEEE single precision arithmetic with rounding to the nearest, one
obtains:

| Second order equation |

| without SAM |

d = -2.861023e-06

There are two complex solutions.

z1 = +3.500000e+00 + i * +8.457279e-04

z2 = +3.500000e+00 + i * -8.457279e-04

and using SAM in 100 bits, one obtains:

--

SAM software --- University P. et M. Curie --- LIP6

30

Self-validation detection: ON

Mathematical instabilities detection: ON

Branching instabilities detection: ON

Intrinsic instabilities detection: ON

Cancellation instabilities detection: ON

--

| Second order equation |

| with SAM |

d = @.0

Discriminant is zero.

The double solution is 0.349999999999999999999999999999E+1

--

SAM software --- University P. et M. Curie --- LIP6

There is 1 numerical instability

1 LOSS OF ACCURACY DUE TO CANCELLATION(S)

--

The standard floating-point arithmetic cannot detect that d=0. The wrong
branching is performed and the result is false.

The SAM software takes into account the accuracy of operands in the order
relations or in the equality relation and, therefore, the correct branching is
performed and the exact result is obtained.

4.3 Example 3: computing a determinant

The determinant of Hilbert’s matrix of size 11 is computed using Gaussian
elimination without pivoting strategy. The determinant is the product of
the different pivots. Hilbert’s matrix is defined by: a(i, j) = 1/(i + j − 1),
1 ≤ i ≤ 11, 1 ≤ j ≤ 11. All the pivots and the determinant are printed out.

The first exact digits of the determinant are 3.0190953344493 ∗ 10−65.

Using IEEE double precision arithmetic with rounding to the nearest, one
obtains a determinant that has only two exact significant digits.

--

| Computation of the determinant of Hilbert’s matrix |

| using Gaussian elimination without SAM |

31

--

Pivot number 0 = 1.000000000000000e+00

Pivot number 1 = 8.333333333333331e-02

Pivot number 2 = 5.555555555555526e-03

Pivot number 3 = 3.571428571428830e-04

Pivot number 4 = 2.267573696145566e-05

Pivot number 5 = 1.431549050529594e-06

Pivot number 6 = 9.009749264103679e-08

Pivot number 7 = 5.659971084095516e-09

Pivot number 8 = 3.551369635569034e-10

Pivot number 9 = 2.226762517485834e-11

Pivot number 10 = 1.399228241996033e-12

Determinant = 3.028594438809703e-65

and using SAM in 100 bits, one obtains:

--

SAM software --- University P. et M. Curie --- LIP6

Self-validation detection: ON

Mathematical instabilities detection: ON

Branching instabilities detection: ON

Intrinsic instabilities detection: ON

Cancellation instabilities detection: ON

--

--

| Computation of the determinant of Hilbert’s matrix |

| using Gaussian elimination with SAM |

--

Pivot number 0 = 0.100000000000000000000000000000E+1

Pivot number 1 = 0.8333333333333333333333333333E-1

Pivot number 2 = 0.555555555555555555555555556E-2

Pivot number 3 = 0.35714285714285714285714286E-3

Pivot number 4 = 0.226757369614512471655329E-4

Pivot number 5 = 0.14315490505966696442887E-5

Pivot number 6 = 0.9009749269489529229789E-7

Pivot number 7 = 0.5659970694935729900763E-8

Pivot number 8 = 0.3551354161528301114E-9

Pivot number 9 = 0.222646816628322283E-10

Pivot number 10 = 0.13950301793754529E-11

Determinant = 0.30190953344493529E-64

--

32

SAM software --- University P. et M. Curie --- LIP6

No instability detected

--

4.4 Example 4: computing a second order recur-
rent sequence

This sequence was proposed by J.-M. Muller [22]. The first 30 iterations of
the following recurrent sequence are computed:

Un+1 = 111− 1130

Un
+

3000

UnUn−1

with U0 = 5.5 and U1 =
61

11
. The exact limit is 6.

Using IEEE double precision arithmetic with rounding to the nearest, one
obtains:

| A second order recurrent sequence |

| without SAM |

U(3) = +5.590163934426237e+00

U(4) = +5.633431085044127e+00

U(5) = +5.674648620512615e+00

U(6) = +5.713329052423919e+00

U(7) = +5.749120920462043e+00

U(8) = +5.781810933690098e+00

U(9) = +5.811314466602178e+00

U(10) = +5.837660476543959e+00

U(11) = +5.861018785996283e+00

U(12) = +5.882524608269310e+00

U(13) = +5.918655323805488e+00

U(14) = +6.243961815306110e+00

U(15) = +1.120308737284091e+01

U(16) = +5.302171264499677e+01

U(17) = +9.473842279276452e+01

U(18) = +9.966965087355071e+01

U(19) = +9.998025776093678e+01

U(20) = +9.999882245337588e+01

U(21) = +9.999992970745579e+01

33

U(22) = +9.999999580049865e+01

U(23) = +9.999999974893262e+01

U(24) = +9.999999998498109e+01

U(25) = +9.999999999910112e+01

U(26) = +9.999999999994618e+01

U(27) = +9.999999999999677e+01

U(28) = +9.999999999999980e+01

U(29) = +9.999999999999999e+01

U(30) = +1.000000000000000e+02

The exact limit is 6.

and using SAM in double precision (53 bits), one obtains:

--

SAM software --- University P. et M. Curie --- LIP6

Self-validation detection: ON

Mathematical instabilities detection: ON

Branching instabilities detection: ON

Intrinsic instabilities detection: ON

Cancellation instabilities detection: ON

--

| A second order recurrent sequence |

| with SAM |

U(3) = 0.5590163934426E+1

U(4) = 0.563343108504E+1

U(5) = 0.56746486205E+1

U(6) = 0.571332905E+1

U(7) = 0.57491209E+1

U(8) = 0.5781811E+1

U(9) = 0.581131E+1

U(10) = 0.58376E+1

U(11) = 0.586E+1

U(12) = 0.59E+1

U(13) = 0.6E+1

U(14) = @.0

U(15) = @.0

U(16) = @.0

U(17) = @.0

U(18) = 0.9E+2

34

U(19) = 0.99E+2

U(20) = 0.999E+2

U(21) = 0.99999E+2

U(22) = 0.999999E+2

U(23) = 0.9999999E+2

U(24) = 0.99999999E+2

U(25) = 0.999999999E+2

U(26) = 0.99999999999E+2

U(27) = 0.999999999999E+2

U(28) = 0.9999999999999E+2

U(29) = 0.99999999999999E+2

U(30) = 0.100000000000000E+3

The exact limit is 6.

--

SAM software --- University P. et M. Curie --- LIP6

CRITICAL WARNING: the self-validation detects major problem(s).

The results are NOT guaranteed.

There are 12 numerical instabilities

9 UNSTABLE DIVISION(S)

3 UNSTABLE MULTIPLICATION(S)

--

and using SAM with 100 bits, one obtains:

--

SAM software --- University P. et M. Curie --- LIP6

Self-validation detection: ON

Mathematical instabilities detection: ON

Branching instabilities detection: ON

Intrinsic instabilities detection: ON

Cancellation instabilities detection: ON

--

| A second order recurrent sequence |

| with SAM |

U(3) = 0.559016393442622950819672131E+1

U(4) = 0.56334310850439882697947214E+1

U(5) = 0.5674648620510150963040083E+1

35

U(6) = 0.571332905238051554903219E+1

U(7) = 0.5749120919702638043705E+1

U(8) = 0.578181092048561557947E+1

U(9) = 0.58113142382939957232E+1

U(10) = 0.5837656548958711962E+1

U(11) = 0.586095152251613197E+1

U(12) = 0.5881377215841419E+1

U(13) = 0.589915390579007E+1

U(14) = 0.59145249506789E+1

U(15) = 0.5927741407777E+1

U(16) = 0.59390504855E+1

U(17) = 0.5948687492E+1

U(18) = 0.595687073E+1

U(19) = 0.59637987E+1

U(20) = 0.596965E+1

U(21) = 0.59746E+1

U(22) = 0.5979E+1

U(23) = 0.598E+1

U(24) = 0.59E+1

U(25) = @.0

U(26) = @.0

U(27) = @.0

U(28) = @.0

U(29) = 0.9E+2

U(30) = 0.99E+2

U(31) = 0.999E+2

U(32) = 0.99999E+2

U(33) = 0.999999E+2

U(34) = 0.9999999E+2

U(35) = 0.99999999E+2

U(36) = 0.9999999999E+2

U(37) = 0.99999999999E+2

U(38) = 0.999999999999E+2

U(39) = 0.9999999999999E+2

U(40) = 0.999999999999999E+2

U(41) = 0.9999999999999999E+2

U(42) = 0.99999999999999999E+2

U(43) = 0.999999999999999999E+2

U(44) = 0.9999999999999999999E+2

U(45) = 0.999999999999999999999E+2

36

U(46) = 0.9999999999999999999999E+2

U(47) = 0.99999999999999999999999E+2

U(48) = 0.999999999999999999999999E+2

U(49) = 0.9999999999999999999999999E+2

U(50) = 0.999999999999999999999999999E+2

U(51) = 0.9999999999999999999999999999E+2

U(52) = 0.100000000000000000000000000000E+3

The exact limit is 6.

--

SAM software --- University P. et M. Curie --- LIP6

CRITICAL WARNING: the self-validation detects major problem(s).

The results are NOT guaranteed.

There are 12 numerical instabilities

9 UNSTABLE DIVISION(S)

3 UNSTABLE MULTIPLICATION(S)

--

The traces UNSTABLE DIVISION(S) are generated by divisions where the
denominator is a computational zero. Such operations make the computed
trajectory turn off the exact trajectory and then, the estimation of accuracy
is not possible any more. Even using the multiple-precision (100 bits), the
computer cannot give any significant result after the iteration number 24.

4.5 Example 5: computing a root of a polynomial

This example deals with the improvement and optimization of an iterative
algorithm by using new tools which are contained in SAM. This program
computes a root of the polynomial

f(x) = 1.47x3 + 1.19x2 − 1.83x+ 0.45

by Newton’s method. The sequence is initialized with x = 0.5.

The iterative algorithm xn+1 = xn −
f(xn)

f ′(xn)
is stopped with the criterion

|xn − xn−1| < 10−12.

37

Using IEEE double precision arithmetic with rounding to the nearest, one
obtains:

| Computation of a root of a polynomial by Newton’s method |

| without SAM |

x(66) = +4.285714325273430e-01

x(67) = +4.285714325273430e-01

and using SAM in 100 bits (30 decimal digits), one obtains:

--

SAM software --- University P. et M. Curie --- LIP6

Self-validation detection: ON

Mathematical instabilities detection: ON

Branching instabilities detection: ON

Intrinsic instabilities detection: ON

Cancellation instabilities detection: ON

--

| Computation of a root of a polynomial by Newton’s method |

| with SAM |

x(36) = 0.428571428572503043

x(37) = 0.428571428571965807

--

SAM software --- University P. et M. Curie --- LIP6

There are 87 numerical instabilities

87 LOSS OF ACCURACY DUE TO CANCELLATION(S)

--

With SAM, one can see that 12 significant decimal digits were lost. SAM
allows to stop the algorithm when the subtraction xn − xn−1 is insignifi-
cant (there is no more information to compute at the next iteration). In
Newton’s method, a division by a computational zero may suggest a dou-
ble root. One can simplify the fraction. When these two transforma-
tions are performed, the code is stabilized and the results are obtained
with the best accuracy of the computer. The exact value of the root is
xsol = 3/7 = 0.428571428571428571... Now, we obtain:

--

38

SAM software --- University P. et M. Curie --- LIP6

Self-validation detection: ON

Mathematical instabilities detection: ON

Branching instabilities detection: ON

Intrinsic instabilities detection: ON

Cancellation instabilities detection: ON

--

| Computation of a root of a polynomial by Newton’s method |

| with optimisation and SAM |

x(95) = 0.42857142857142857142857142857

x(96) = 0.42857142857142857142857142857

--

SAM software --- University P. et M. Curie --- LIP6

No instability detected

--

4.6 Example 6: solving a linear system

In this example, SAM is able to provide correct results which were impossible
to be obtained with the standard floating-point arithmetic. The following
linear system Ax = b is solved using Gaussian elimination with partial
pivoting.

21 130 0 2.1
13 80 4.74 108 752
0 −0.4 3.9816 108 4.2
0 0 1.7 9 10−9

 . x =

153.1
849.74
7.7816

2.6 10−8

The exact solution is xtsol =

(
1, 1, 10−8, 1

)
.

Using IEEE single precision arithmetic with rounding to the nearest, one
obtains:

--

| Solving a linear system using Gaussian elimination |

| by partial pivoting without SAM |

--

x_sol(0) = +6.261988e+01 (exact solution: xsol(0)= +1.000000e+00)

x_sol(1) = -8.953979e+00 (exact solution: xsol(1)= +1.000000e+00)

39

x_sol(2) = +0.000000e+00 (exact solution: xsol(2)= +1.000000e-08)

x_sol(3) = +1.000000e+00 (exact solution: xsol(3)= +1.000000e+00)

and using SAM in 53 bits, one obtains:

--

SAM software --- University P. et M. Curie --- LIP6

Self-validation detection: ON

Mathematical instabilities detection: ON

Branching instabilities detection: ON

Intrinsic instabilities detection: ON

Cancellation instabilities detection: ON

--

--

| Solving a linear system using Gaussian elimination |

| with partial pivoting |

--

x_sol(0) = 0.10000000000E+1 (exact solution: xsol(0)= 0.100000000000000E+1)

x_sol(1) = 0.999999999999 (exact solution: xsol(1)= 0.100000000000000E+1)

x_sol(2) = 0.100000000000000E-7 (exact solution: xsol(2)= 0.100000000000000E-7)

x_sol(3) = 0.999999999999999 (exact solution: xsol(3)= 0.100000000000000E+1)

--

SAM software --- University P. et M. Curie --- LIP6

There is 1 numerical instability

1 LOSS OF ACCURACY DUE TO CANCELLATION(S)

--

Using standard floating-point arithmetic, during the reduction of the third
column, the matrix element A(3, 3) is equal to 4864. But the exact value
of A(3, 3) is zero. The standard floating-point arithmetic cannot detect
that a(3,3) is insignificant. This value is chosen as pivot. That leads to
erroneous results. SAM detects the non-significant value of A(3, 3). This
value is eliminated as pivot. That leads to satisfactory results.

4.7 Example 7: when SAM fails

SAM is based on a probabilistic model. It should never be forgotten that all
the estimations computed by SAM are probabilistic, even if the probability
is close to 1. Moreover, the theoretical model shows that SAM is able to
estimate the round-off errors to the first order. If they represent the global

40

round-off errors, SAM works well but, if they are dominated by terms of
greater order, SAM may fail.
In the present example, we have the same behaviour but only with additions
and subtractions, so without any warning of numerical instability. Let us
perform the following computation:

x=6.83561e+5;

y=6.83560e+5;

z=1.00000000007;

r = z - x;

r1 = z - y;

r = r + y;

r1 = r1 + x;

r1 = r1 - 2;

r = r + r1;

// r = ((z-x)+y) + ((z-y)+x-2)

The exact result is 1.4 10−10. The result obtained using IEEE double preci-
sion arithmetic with rounding to the nearest is 2.32830643653870E-10.

With SAM in double precision (53 bits), because we essentially performed
the same computation, ((z − x) + y) and ((z − y) + x − 2), we find that if
the same rounding mode is chosen for both parts, the final result appears as
exact but it is wrong. It happens in one case in three and the result provided
by SAM is then 0.116415321826935E-009 with 15 exact significant digits. If
computations are performed 100000 times using SAM, one may obtain:

--

SAM software --- University P. et M. Curie --- LIP6

Self-validation detection: ON

Mathematical instabilities detection: ON

Branching instabilities detection: ON

Intrinsic instabilities detection: ON

Cancellation instabilities detection: ON

--

Enter the number of iterations: 100000

r = @.0 ierr = 37557

--

SAM software --- University P. et M. Curie --- LIP6

There are 150790 numerical instabilities

150790 LOSS OF ACCURACY DUE TO CANCELLATION(S)

41

--

The last value of r is printed out, and also ierr the number of times when
the result was wrong.

42

Bibliography

[1] J.-M. Chesneaux, F. Jézéquel, J.-L. Lamotte, Stochastic arithmetic and
verification of mathematical models In Uncertainties in environmental
modelling and consequences for policy making, P. Baveye, J. Mysiak,
M. Laba Eds., NATO Science for Peace and Security Series - C: Envi-
ronmental Security, Springer, pages 101-125, 2009.

[2] J.-M. Chesneaux, S. Graillat, F. Jézéquel, Numerical validation and
assessment of numerical accuracy, Oxford e-Research Centre, overview
article, 44 pages, march 2009.
http://cpc.cs.qub.ac.uk/oerc numerical accuracy.pdf

[3] J.-M. Chesneaux, S. Graillat, F. Jézéquel, Rounding errors, invited
paper, In Wiley Encyclopedia of Computer Science and Engineering
(Benjamin Wah, ed.) Hoboken: John Wiley & Sons, vol. 4, pages 2480-
2494, 2009.

[4] F. Jézéquel, J.-M. Chesneaux, CADNA: a library for estimating round-
off error propagation, Computer Physics Communications, 178(12),
pages 933-955, 2008.

[5] N.S. Scott, F. Jézéquel, C. Denis, J.-M. Chesneaux, Numerical ’health
check’ for scientific codes: the CADNA approach, Computer Physics
Communications, 176(8), pages 507-521, 2007.

[6] F. Jézéquel, A dynamical strategy for approximation methods, C. R.
Acad. Sci. Paris - Mecanique, 334, pages 362-367, 2006.

[7] F. Jézéquel, F. Rico, J.-M. Chesneaux, M. Charikhi, Reliable compu-
tation of a multiple integral involved in the neutron star theory, Math-
ematics and Computers in Simulation, 71(1), pages 44-61, 2006.

[8] F. Jézéquel, Dynamical control of approximation methods, Habilitation
à diriger des recherches, Université Pierre et Marie Curie, Paris, 2005.

43

[9] J. Vignes, Discrete Stochastic Arithmetic for Validating Results of Nu-
merical Software, Special Issue of Numerical Algorithms, 2004, 37, pp.
377-390

[10] F. Jézéquel, J.-M. Chesneaux, Computation of an infinite integral using
Romberg’s method, Numerical Algorithms, 36 (3): 265-283, July 2004.

[11] F. Jézéquel, Dynamical control of converging sequences computation,
Applied Numerical Mathematics, 50(2): 147-164, 2004.

[12] F. Jézéquel, J.-M. Chesneaux, For reliable and powerful scientific com-
putations, Sc. Comp. Val. Num., Krämer and Wolff von Gudenberg ed.,
Kluwer Academic/Plenum publishers (2001) 367-378,

[13] J.-M. Chesneaux, F. Jézéquel, Dynamical control of computations using
the Trapezoidal and Simpson’s rules Journal of Universal Computer
Science, Vol. 4 (1), 2-10, 1998.

[14] M. Pichat, J. Vignes, Validité des résultats numériques dans les pro-
cessus à comportement chaotique. Un outil d’évaluation : le logiciel
CADNA. CRAS, Paris, Tome 322, Série 2b, 1996, pp. 681-688.

[15] J.-M. Chesneaux, L’arithmétique stochastique et le logiciel CADNA,
Habilitation à diriger des recherches, Université Pierre et Marie Curie,
Paris, 1995.

[16] J.-M. Chesneaux, The equality relations in scientific computing, Num.
Algo 7, 1994, pp. 129-143.

[17] M. Pichat, J. Vignes, Ingéniérie du contrôle de la précision des calculs
sur ordinateur. Ed. Technip, Paris 1993.

[18] J. Vignes, A stochastic arithmetic for reliable scientific computation,
Math. and Comp. in Sim. 35, 1993, pp. 233-261.

[19] J.-M. Chesneaux, J. Vignes, Les fondements de l’arithmétique stochas-
tique, C.R Acad. Sci., Paris, Sér.I, 315, 1992, pp. 1435-1440.

[20] J.-M. Chesneaux, Study of the computing accuracy by using proba-
bilistic approach, Contribution to comp. arithmetic and Self-Validating
Numerical Methods, C. Ullrich ed., IMACS, New Brunswick, NJ, 1990,
pp. 19-30.

44

[21] J. Vignes, Estimation de la précision des résultats de logiciels
numériques. La Vie des Sciences, Comptes Rendus, série générale, 7,
1990, pp. 93-143.

[22] J.-M. Muller, Arithmétique des ordinateurs, Masson, 1989.

[23] J.-M. Chesneaux, Étude théorique et implémentation en ADA de la
méthode CESTAC, Thèse de l’université P. et M. Curie, Paris, 1988.

[24] J.-M. Chesneaux, J. Vignes, Sur la robustesse de la méthode CESTAC,
C.R. Acad. Sc. Paris, Sér. I Math. 307, 1988, pp. 855-860.

[25] J.-M. Chesneaux, Modélisation théorique et conditions de validité de
la méthode CESTAC, C.R.A.S., Paris, série 1, tome 307, 19881 pp.
417-422.

[26] S.M. Rump, Algorithms for Verified Inclusions - Theory and Practice. In
R.E. Moore, editor, Reliability in Computing, volume 19 of Perspectives
in Computing, pages 109-126. Academic Press, 1988.

[27] J. Vignes, Zéro mathématique et zéro informatique. La Vie des Sci-
ences, C.R. Acad. Sci., Paris, 4, 1, janvier 1987, pp. 1-13.

[28] J. Vignes, Implémentation des méthodes d’optimisation : test d’arrêt
optimal, contrôle et précision de la solution (I) R.A.I.R.O., 18, 1, février
1984, pp. 1-18; (II), R.A.I.R.O.18, 2, mai 1984, pp. 103-129.

[29] J. Vignes, M. La Porte, Error analysis in computing, Information Pro-
cessing 74, North-Holland, 1974.

[30] L.S. Yao, Computed chaos or numerical errors. Nonlinear Analysis:
Modelling and control 15(1), 2010, pp. 109-126

[31] Devaney, R.L.: An introduction to chaotic dynamical systems. Second
edn. Addison-Wesley Studies in Nonlinearity. Addison-Wesley Publish-
ing Company Advanced Book Program, Redwood City, CA, 1989

[32] D. Stott Parker, Monte Carlo Arithmetic: Exploiting Randomness in
floating-point arithmetic. Report of Computer Science Department,
UCLA Los Angeles, March 30, 1997.

[33] D. Stott Parker, Brad Pierce, P.R. Eggert, Monte Carlo Arithmetic:
How to Gamble with Floating Point and Win. Computing in Science
and Engineering 2000, pp. 58-68.

45

[34] J. Vignes, Error analysis in computing. International Federation for
Information Processing Congress, Stockholm, aug. 1974, pp. 610-614.

[35] J. Vignes, New Methods for evaluating the validity of the results of
mathematical computations. Math. and Comp. in Sim., 20, 1978, pp.
227-249.

[36] J. Vignes, A Stochastic Approach to the Analysis of Round-off Error
Propagation. A Survey of the CESTAC Method. Proceedings of Real
Numbers and Computer Conference. Marseille, 1996 pp. 233-251.

[37] W. Tucker, A rigorous ODE solver and Smale’s 14th problem, Founda-
tions of computational Mathematics, 2(1), pp.53-117, 2002

[38] S. Smale, Mathematical problems for the next century, Math. Intell.,
20, pp.7-15, 1998

[39] IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE
Standard 754-1985, Institute of Electrical and Electronics Engineers,
August, 1985, reprinted in SIGPLAN 22, 2, pp. 9-25.

46

