Can we avoid rounding-error estimation in HPC codes and still get trustworthy results?

Fabienne Jézéquel¹, Stef Graillat¹, Daichi Mukunoki², Toshiyuki Imamura², Roman Iakymchuk¹

¹LIP6, Sorbonne Université, CNRS, Paris, France

²RIKEN Center for Computational Science, Kobe, Japan

13th International Workshop on Numerical Software Verification 2020 20-21 July 2020

- Increasing power of current computers
 - → accelerators: GPUs, TPUs, FPGAs, etc.
- Enable to solve more complex problems
 - $\rightarrow~$ Quantum field theory, supernova simulation, etc.
- A high number of floating-point operations performed
 - $\rightarrow~$ Each of them can lead to a rounding error

- Increasing power of current computers
 - → accelerators: GPUs, TPUs, FPGAs, etc.
- Enable to solve more complex problems
 - $\rightarrow~$ Quantum field theory, supernova simulation, etc.
- A high number of floating-point operations performed
 - $\rightarrow~$ Each of them can lead to a rounding error

 \Rightarrow Numerical validation is crucial

- Increasing power of current computers
 - → accelerators: GPUs, TPUs, FPGAs, etc.
- Enable to solve more complex problems
 - $\rightarrow~$ Quantum field theory, supernova simulation, etc.
- A high number of floating-point operations performed
 - → Each of them can lead to a rounding error
- \Rightarrow Numerical validation is crucial ...but costful \bigcirc
 - execution time overhead
 - development cost induced by the application of numerical validation methods to HPC codes

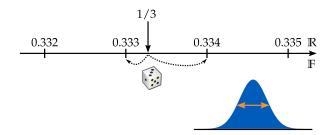
- Increasing power of current computers
 - → accelerators: GPUs, TPUs, FPGAs, etc.
- Enable to solve more complex problems
 - \rightarrow Quantum field theory, supernova simulation, etc.
- A high number of floating-point operations performed
 - → Each of them can lead to a rounding error
- \Rightarrow Numerical validation is crucial ...but costful \bigcirc
 - execution time overhead
 - development cost induced by the application of numerical validation methods to HPC codes

Can we address this cost problem ...and still get trustworthy results?

Yes, when the input data is affected by rounding and/or measurement errors.

- Estimation of rounding errors: Discrete Stochastic Arithmetic (DSA) and the CADNA library
- error induced by perturbed data
- Our approach: combining DSA and standard floating-point arithmetic
- Numerical experiments
- Pros and cons of our approach

Probabilistic approach for numerical validation



- operations are performed several times with random perturbations
 - → accuracy estimation
- analysis of the user code
 - → no specific numerical algorithms

Several tools:

CADNA [Chesneaux, 1990], MCAlib [Frechling et al., 2015], SAM [S. Graillat et al., 2011], VerifiCarlo [Denis et al., 2016], Verrou [Févotte et al., 2017]

NSV2020

Can we avoid rounding-error estimation in HPC codes and still get trustworthy results?

Discrete Stochastic Arithmetic (DSA) [J. Vignes, 2004]

Principles

- each operation is executed 3 times with a random rounding mode:
 R → (*R*₁, *R*₂, *R*₃) where each result *R_i* is rounded up or down with the same probability
- the number of correct digits in the results is estimated using Student's test with the confidence level 95%
- operations are executed synchronously
 - ⇒ detection of numerical instabilities Ex: if (A>B) with A-B numerical noise
 - \Rightarrow optimization of stopping criteria
 - Ex: stop when $x_n x_{n+1}$ is numerical noise

Discrete Stochastic Arithmetic (DSA) [J. Vignes, 2004]

Principles

- each operation is executed 3 times with a random rounding mode:
 R → (*R*₁, *R*₂, *R*₃) where each result *R_i* is rounded up or down with the same probability
- the number of correct digits in the results is estimated using Student's test with the confidence level 95%
- operations are executed synchronously
 - ⇒ detection of numerical instabilities Ex: if (A>B) with A-B numerical noise
 - ⇒ optimization of stopping criteria Ex: stop when $x_n - x_{n+1}$ is numerical noise

Implementations of DSA

- CADNA: for programs in double, single and/or half precision http://cadna.lip6.fr
- SAM: for arbitrary precision programs (based on MPFR) http://www-pequan.lip6.fr/~jezequel/SAM

NSV2020

Can we avoid rounding-error estimation in HPC codes and still get trustworthy results?

The CADNA library http://cadna.lip6.fr

CADNA allows one to estimate rounding error propagation in any scientific program written in C, C++ or Fortran.

CADNA enables one to estimate the numerical quality of any result and detect numerical instabilities.

The CADNA library http://cadna.lip6.fr

CADNA allows one to estimate rounding error propagation in any scientific program written in C, C++ or Fortran.

CADNA enables one to estimate the numerical quality of any result and detect numerical instabilities.

CADNA provides new numerical types, the stochastic types, which consist of:

- 3 floating point variables
- an integer variable to store the accuracy.

All operators and mathematical functions are redefined for these types.

 \Rightarrow CADNA requires only a few modifications in user programs.

Performance overhead: $\times 4$ memory, $\approx \times 10$ execution time

An example without/with CADNA

```
Computation of P(x, y) = 9x^4 - y^4 + 2y^2 [S.M. Rump, 1983]
```

```
#include <stdio.h>
double rump(double x, double y) {
  return 9.0*x*x*x - v*v*v*v + 2.0*v*v:
}
int main(int argc, char **argv) {
  double x, y;
  x = 10864.0:
  v = 18817.0:
 printf("P1=%.14en", rump(x, y));
 x = 1.0/3.0:
 v = 2.0/3.0:
  printf("P2=%.14e\n". rump(x. v)):
 return 0:
}
```

An example without/with CADNA

```
Computation of P(x, y) = 9x^4 - y^4 + 2y^2 [S.M. Rump, 1983]
```

```
#include <stdio.h>
double rump(double x, double y) {
 return 9.0*x*x*x*x - y*y*y*y + 2.0*y*y;
}
int main(int argc, char **argv) {
  double x, y;
  x = 10864.0:
  v = 18817.0:
  printf("P1=%.14e\n". rump(x. v)):
 x = 1.0/3.0:
 v = 2.0/3.0:
  printf("P2=%.14e\n". rump(x. v)):
  return 0:
3
P1=2.00000000000000000e+00
```

```
P2=8.02469135802469e-01
```

```
#include <stdio.h>
```

```
double rump(double x, double y) {
  return 9.0*x*x*x-y*y*y*y+2.0*y*y;
}
int main(int argc, char **argv) {
```

```
double x, y;
x=10864.0; y=18817.0;
printf("P1=%.14e\n", rump(x, y));"
x=1.0/3.0; y=2.0/3.0;
printf("P2=%.14e\n", rump(x, y));"
```

```
return 0;
```

```
}
```

```
#include <stdio.h>
#include <cadna.h>
double rump(double x, double y) {
  return 9.0*x*x*x*x-y*y*y*y+2.0*y*y;
}
int main(int argc, char **argv) {
  double x, y;
  x=10864.0; y=18817.0;
  printf("P1=%.14e\n", rump(x, y) );"
  x=1.0/3.0; y=2.0/3.0;
  printf("P2=%.14e\n", rump(x, y) );"
```

```
return 0;
```

```
}
```

```
#include <stdio.h>
#include <cadna.h>
double rump(double x, double y) {
  return 9.0*x*x*x*x-y*y*y*y+2.0*y*y;
}
int main(int argc, char **argv) {
    cadna_init(-1);
    double x, y;
    x=10864.0; y=18817.0;
    printf("P1=%.14e\n", rump(x, y) );"
    x=1.0/3.0; y=2.0/3.0;
    printf("P2=%.14e\n", rump(x, y) );"
```

```
return 0;
```

```
}
```

```
#include <stdio.h>
#include <cadna.h>
double rump(double x, double y) {
 return 9.0*x*x*x-y*y*y*y+2.0*y*y;
}
int main(int argc, char **argv) {
 cadna_init(-1);
 double x, y;
 x=10864.0; y=18817.0;
 printf("P1=%.14e\n", rump(x, y) );"
 x=1.0/3.0; y=2.0/3.0;
 printf("P2=%.14e\n", rump(x, y) );"
 cadna_end();
 return 0;
}
```

```
#include <stdio.h>
#include <cadna.h>
double rump(double x, double y) {
 return 9.0*x*x*x-y*y*y*y+2.0*y*y;
}
int main(int argc, char **argv) {
 cadna_init(-1);
 double x, y;
 x=10864.0; y=18817.0;
 printf("P1=%.14e\n", rump(x, y) );"
 x=1.0/3.0; y=2.0/3.0;
 printf("P2=%.14e\n", rump(x, y) );"
 cadna_end();
 return 0;
}
```

```
#include <stdio.h>
#include <cadna.h>
double_st rump(double_st x, double_st y) {
 return 9.0*x*x*x-y*y*y*y+2.0*y*y;
}
int main(int argc, char **argv) {
 cadna_init(-1);
 double_st x, y;
 x=10864.0; y=18817.0;
 printf("P1=%.14e\n", rump(x, y) );"
 x=1.0/3.0; y=2.0/3.0;
 printf("P2=%.14e\n", rump(x, y));"
 cadna_end();
 return 0;
}
```

```
#include <stdio.h>
#include <cadna.h>
double_st rump(double_st x, double_st y) {
 return 9.0*x*x*x*x-y*y*y*y+2.0*y*y;
}
int main(int argc, char **argv) {
 cadna_init(-1);
 double_st x, y;
 x=10864.0; y=18817.0;
 printf("P1=%.14e\n", rump(x, y) );"
 x=1.0/3.0; y=2.0/3.0;
 printf("P2=\%.14e\n", rump(x, y));"
 cadna_end();
 return 0;
}
```

```
#include <stdio.h>
#include <cadna.h>
double_st rump(double_st x, double_st y) {
 return 9.0*x*x*x*x-y*y*y*y+2.0*y*y;
}
int main(int argc, char **argv) {
 cadna_init(-1);
 double_st x, y;
 x=10864.0; y=18817.0;
 printf("P1=%s\n", strp(rump(x, y)));"
 x=1.0/3.0; y=2.0/3.0;
 printf("P2=%s\n", strp(rump(x, y)));"
 cadna_end();
 return 0;
}
```

only correct digits are displayed

Self-validation detection: ON Mathematical instabilities detection: ON Branching instabilities detection: ON Intrinsic instabilities detection: ON Cancellation instabilities detection: ON

P1= @.0 (no correct digits) P2= 0.802469135802469E+000

There are 2 numerical instabilities 2 LOSS(ES) OF ACCURACY DUE TO CANCELLATION(S)

A closer look at the floating-point values in P1 and P2:

P1=

-1.400000000000000e+01

-1.400000000000000e+01

2.000000000000000e+00

P2= 0.802469135802469e+00 0.802469135802469e+00

0.802469135802469e+00

Discrete Stochastic Arithmetic (DSA) and the CADNA library

Error induced by perturbed data

Our approach: combining DSA and standard floating-point arithmetic

4 Numerical experiments

5 Pros and cons of our approach

Let y = f(x) be an exact result and $\hat{y} = \hat{f}(x)$ be the associated computed result.

- The forward error is the difference between y and \hat{y} .
- The backward analysis tries to seek for Δx s.t. ŷ = f(x + Δx).
 Δx is the backward error associated with ŷ.
 It measures the distance between the problem that is solved and the initial one.
- The condition number *C* of the problem is defined as:

$$C := \lim_{\varepsilon \to 0^+} \sup_{|\Delta x| \le \varepsilon} \left[\frac{|f(x + \Delta x) - f(x)|}{|f(x)|} / \frac{|\Delta x|}{|x|} \right].$$

It measures the effect on the result of data perturbation.

Error induced by perturbed data

The relative rounding error is denoted by u.

- *binary64* format (double precision): $\mathbf{u} = 2^{-53}$
- *binary32* format (single precision): $\mathbf{u} = 2^{-24}$.

If the algorithm is backward-stable (*i.e.* the backward error is of the order of **u**)

 $|f(x) - \hat{f}(x)| / |f(x)| \lesssim C\mathbf{u}.$

If the input data are perturbed, *i.e.* the input data are not x but $\hat{x} = x(1+\delta)$, then one computes $\hat{f}(\hat{x})$ with

$$|f(x) - \hat{f}(\hat{x})| / |f(x)| \lesssim C(\mathbf{u} + |\delta|).$$

If $|\delta| \gg \mathbf{u}$, the rounding error generated by \hat{f} is negligible w.r.t. $C|\delta|$.

Error induced by perturbed data

The relative rounding error is denoted by u.

- binary64 format (double precision): u = 2⁻⁵³
- *binary32* format (single precision): $\mathbf{u} = 2^{-24}$.

If the algorithm is backward-stable (*i.e.* the backward error is of the order of **u**)

 $|f(x) - \hat{f}(x)| / |f(x)| \lesssim C\mathbf{u}.$

If the input data are perturbed, *i.e.* the input data are not x but $\hat{x} = x(1+\delta)$, then one computes $\hat{f}(\hat{x})$ with

$$|f(x) - \hat{f}(\hat{x})| / |f(x)| \lesssim C(\mathbf{u} + |\delta|).$$

If $|\delta| \gg \mathbf{u}$, the rounding error generated by \hat{f} is negligible w.r.t. $C|\delta|$.

 \Rightarrow Estimating this rounding error may be avoided.

Discrete Stochastic Arithmetic (DSA) and the CADNA library

2 Error induced by perturbed data

Our approach: combining DSA and standard floating-point arithmetic

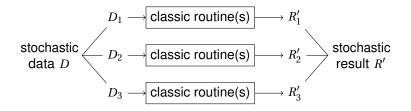
- 4 Numerical experiments
- 5 Pros and cons of our approach

- Computation routines are executed in a code that is controlled using DSA.
- Their input data are affected by errors (rounding errors and/or measurement errors).
- We compare 2 kinds of computation:
 - with a call to CADNA routines
 - with 3 calls to classic routines.



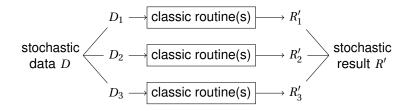
- D and R consist in stochastic arrays (each element is a triplet).
- Every arithmetic operation is performed 3 times with the random rounding mode.

Our approach: computation with 3 calls to classic routines



- input data: 3 classic floating-point arrays D_1, D_2, D_3 created from the triplets of D
- We get 3 classic floating-point arrays R'_1, R'_2, R'_3 .
- A stochastic array *R*' created from *R*₁', *R*₂', *R*₃' can be used in the next parts of the code.

Our approach: computation with 3 calls to classic routines



- input data: 3 classic floating-point arrays D_1, D_2, D_3 created from the triplets of D
- We get 3 classic floating-point arrays R'_1, R'_2, R'_3 .
- A stochastic array *R*' created from *R*₁', *R*₂', *R*₃' can be used in the next parts of the code.
- \Rightarrow we compare the number of correct digits (estimated by CADNA) in R and R'

- Discrete Stochastic Arithmetic (DSA) and the CADNA library
- 2 Error induced by perturbed data
- 3 Our approach: combining DSA and standard floating-point arithmetic
- 4 Numerical experiments
- 5 Pros and cons of our approach

Accuracy comparison

Data initialization

Each stochastic value is initialized as $\alpha 10^e$

- α : random variable uniformly distributed in [-1,1]
- e: integer randomly generated in $\{0, ..., E\}$ (DP: E = 20, SP: E = 3)
- \Rightarrow generation of random data with different orders of magnitude.

Data perturbation

Each input value is perturbed with a **relative error** δ using a CADNA function

Accuracy comparison

Data initialization

Each stochastic value is initialized as $\alpha 10^e$

- α : random variable uniformly distributed in [-1,1]
- e: integer randomly generated in {0,..., E} (DP: E = 20, SP: E = 3)
- \Rightarrow generation of random data with different orders of magnitude.

Data perturbation

Each input value is perturbed with a **relative error** δ using a CADNA function

Accuracy analysis

For $i = 1, ..., n^2$ (matrix mult.) or for i = 1, ..., n (matrix-vector mult.) we analyze:

- the accuracy C_{R^i} of the element R^i of R
- the accuracy $C_{R'^i}$ of the element R'^i of R'

•
$$\Delta^i = \left| C_{R^i} - C_{R'^i} \right|$$

Accuracy comparison for matrix multiplication

Multiplication of square random matrices of size 500:

	accuracy		accuracy difference			
δ	of R		between R & R'			
	mean	min-max	mean	max		
double precision						
1.e-14	13.9	9-15	2.5e-02	2		
1.e-13	12.8	8-15	5.8e-03	1		
1.e-12	11.9	7-14	4.2e-04	1		
1.e-11	10.9	6-13	2.4e-05	1		
single precision						
1.e-6	5.6	1-7	2.3e-1	2		
1.e-5	4.8	0-7	1.9e-2	2		
1.e-4	3.7	0-6	2.8e-3	1		
1.e-3	2.8	0-5	2.8e-4	1		

- As the order of magnitude of $\delta \nearrow$ the mean accuracy \searrow by 1 digit
- High perturbation in single precision \Rightarrow low accuracy on the results
- Low difference between the accuracy of R & R'

NSV2020

Accuracy comparison for matrix-vector multiplication

Multiplication of a square random matrix of size 1000 with a vector:

	accuracy		accuracy difference			
δ	of R		between R & R'			
	mean	min-max	mean	max		
double precision						
1.e-14	13.9	12-15	4.6e-02	1		
1.e-13	12.7	11-14	7.0e-03	1		
1.e-12	11.8	10-13	0	0		
1.e-11	10.9	9-12	0	0		
single precision						
1.e-6	5.5	3-7	3.2e-1	2		
1.e-5	4.8	2-6	2.4e-2	1		
1.e-4	3.7	1-5	7.0e-3	1		
1.e-3	2.8	0-4	1.0e-3	1		

- As the order of magnitude of $\delta \nearrow$ the mean accuracy \searrow by 1 digit
- High perturbation in single precision \Rightarrow low accuracy on the results
- The accuracy difference between *R* & *R'* remains low (in double precision, all the results have the same accuracy if $\delta \ge 10^{-12}$)

NSV2020

Matrix and matrix-vector multiplication

We analyze the performance of various double precision codes.

• "CADNA":

naive sequential multiplication with CADNA

"naive seq":

our approach using a sequential naive multiplication

• "naive OMP":

our approach using a naive parallel (OpenMP, 4 cores) multiplication

"MKL seq":

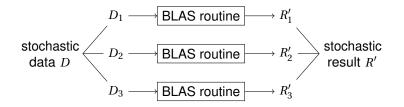
our approach using a sequential BLAS routine from the Intel MKL library

• "MKL OMP":

our approach using a parallel (OpenMP, 4 cores) MKL BLAS routine

Array copies except with CADNA

Array copies in our experiments

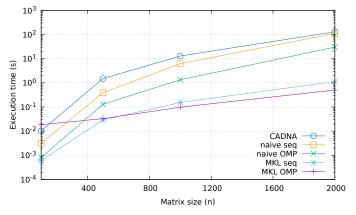


Conversions: array-of-structures ↔ structure-of-arrays

- before the BLAS routine: stochastic array → 3 classic arrays
- after the BLAS routine: 3 classic arrays \rightarrow stochastic array
- Worst case (maximum array copy cost in total execution time)
 BLAS routines continuously used
 ⇒ array copies only before and after them
- Both computation and array copies parallelized in the OpenMP codes

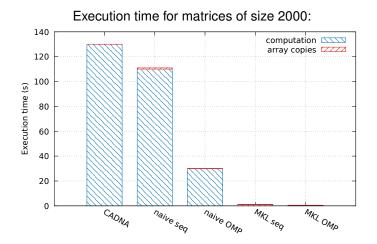
Performance for matrix multiplication

Execution time including matrix multiplications and array copies:



- Despite memory copies, the codes using 3 classic matrix multiplications perform better than the CADNA routine.
- For matrices of size 2000, the MKL OpenMP implementation outperforms the CADNA routine by a factor 294.

Performance for matrix multiplication



Most of the execution time is spent in matrix multiplication.

NSV2020

Performance for matrix multiplication

CADNA vs our approach with MKL OMP

Core i7-8650U (1.9 GHz, 4 cores), n=2000:

	CADNA	Proposed w/	Speedup
		MKL OMP	
Comp	130	0.393	331x
Сору	_	0.0495	—
Total	130	0.4425	294x

Dual-socket Xeon Gold 6126 (2.6 GHz, 12 cores×2), n=5000:

	CADNA	Proposed w/	Speedup
		MKL OMP	
Comp	2520	0.563	4476x
Сору	_	0.0889	—
Total	2520	0.652	3865x

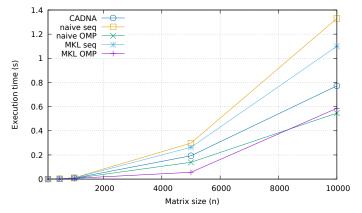
On large scale:

- the performance gain increases
- the array copy cost becomes visible

NSV2020

Performance for matrix-vector multiplication

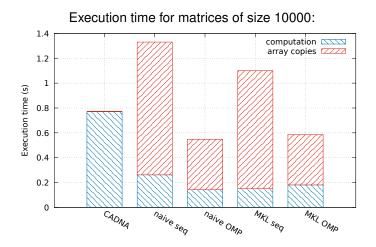
Execution time including matrix-vector multiplications and array copies:



- The CADNA routine performs better than the other sequential codes.
- From a certain matrix size, the OpenMP codes that use classic floating-point arithmetic perform better than the CADNA code.

NSV2020

Performance for matrix-vector multiplication



 In the sequential codes that use classic floating-point arithmetic the main part of the execution time is spent in array copies.

Discrete Stochastic Arithmetic (DSA) and the CADNA library

- 2 Error induced by perturbed data
- 3 Our approach: combining DSA and standard floating-point arithmetic
- 4 Numerical experiments
- 5 Pros and cons of our approach

Pros

• performance gain:

- DSA operations are avoided
- use of vendor optimized libraries
- applicability:
 - no code translation to a CADNA version

Cons

we lose CADNA features:

- instability detection
- accuracy improvement

Instability detection

Without CADNA:

- numerical instabilities are not detected ^(C)
- ullet results with no correct digits appear as numerical noise igodot

Example: matrix multiplication with catastrophic cancellations

Input data: square matrices A & B of size 10 in double precision

- 1st line of A: [1,...,1,-1,...,-1] (1st half: 1, 2nd half: -1)
- each element of B set to 1
- A and B pertubed with a relative error $\delta = 10^{-12}$

Results: C = A * B with CADNA, C' = A * B without CADNA

• 1st line of C and C': @.0 (numerical noise, triplet with no common digits)

With CADNA:

• 10 catastrophic cancellations are detected.

Accuracy improvement with CADNA

Example: Gauss algorithm with pivoting

Input data:

We solve in single precision the system Ax = b with

$$A = \begin{pmatrix} 21 & 130 & 0 & 2.1 \\ 13 & 80 & 4.74 & 10^8 & 752 \\ 0 & -0.4 & 3.9816 & 10^8 & 4.2 \\ 0 & 0 & 1.7 & 9 & 10^{-9} \end{pmatrix} \quad b = \begin{pmatrix} 153.1 \\ 849.74 \\ 7.7816 \\ 2.6 & 10^{-8} \end{pmatrix}$$

A and b perturbed with a relative error $\delta = 10^{-6}$

Results: x with CADNA, x' without CADNA

$$x = \begin{pmatrix} 0.100 \pm +001 \\ 0.999 \pm +000 \\ 0.999999 \pm -008 \\ 0.999999 \pm +000 \end{pmatrix} \quad x' = \begin{pmatrix} @.0 \\ @.0 \\ @.0 \\ 0.999999 \pm +000 \end{pmatrix} \quad x_{exact} = \begin{pmatrix} 1 \\ 1 \\ 10^{-8} \\ 1 \end{pmatrix}$$

Accuracy improvement with CADNA

Example: Gauss algorithm with pivoting

Results: x with CADNA, x' without CADNA

$$x = \begin{pmatrix} 0.100 \text{E} + 001 \\ 0.999 \text{E} + 000 \\ 0.999999 \text{E} - 008 \\ 0.9999999 \text{E} + 000 \end{pmatrix} \quad x' = \begin{pmatrix} @.0 \\ @.0 \\ @.0 \\ 0.999999 \text{E} + 000 \end{pmatrix} \quad x_{exact} = \begin{pmatrix} 1 \\ 1 \\ 10^{-8} \\ 1 \end{pmatrix}$$

Test for pivoting: if $(|A_{i,j}| > p_{max})$...

With CADNA a non-significant element is not chosen as a pivot.

Instabilities detected by CADNA:

There are 3 numerical instabilities

- 1 UNSTABLE BRANCHING(S)
- 1 UNSTABLE INTRINSIC FUNCTION(S)
- 1 LOSS(ES) OF ACCURACY DUE TO CANCELLATION(S)

- In a code controlled using CADNA, if computation-intensive routines are run with perturbed data,
 - classic BLAS routines can be executed 3 times instead of the CADNA routines with almost no accuracy difference on the results
 - the performance gain can be high with BLAS routines from an optimized library
 - but we lose the instability detection.
- The same conclusions would be valid with an HPC code using MPI.
 In the same conditions (computation-intensive routines & perturbed data) CADNA-MPI routine ⇒ optimized floating-point MPI routines.
- Application of our approach to real-life examples with realistic data sets.

Thanks for your attention!