
Tight interval inclusions with compensated
algorithms

Stef Graillat & Fabienne Jézéquel
Sorbonne Université, Laboratoire d’Informatique de Paris 6 (LIP6), France

18th international symposium on Scientific Computing, Computer
Arithmetic and Validated Numerics (SCAN 2018)

Tokyo, Japan, 10-15 September 2018

S. Graillat & F. Jézéquel (LIP6) Tight interval inclusions with compensated algorithms 1 / 33

Introduction

Exascale barrier broken in June 2018: 1.8 1018 floating-point
operations per second. (Oak Ridge National Laboratory, analysis
of genomic data)

Increasing power of current computers
→ GPU accelerators, Intel Xeon Phi processors, etc.

Enable to solve more complex problems
→ Quantum field theory, supernova simulation, etc.

A high number of floating-point operations performed
→ Each of them can lead to a rounding error

⇒ Need for accuracy and validation

S. Graillat & F. Jézéquel (LIP6) Tight interval inclusions with compensated algorithms 2 / 33

Introduction

Exascale barrier broken in June 2018: 1.8 1018 floating-point
operations per second. (Oak Ridge National Laboratory, analysis
of genomic data)

Increasing power of current computers
→ GPU accelerators, Intel Xeon Phi processors, etc.

Enable to solve more complex problems
→ Quantum field theory, supernova simulation, etc.

A high number of floating-point operations performed
→ Each of them can lead to a rounding error

⇒ Need for accuracy and validation

S. Graillat & F. Jézéquel (LIP6) Tight interval inclusions with compensated algorithms 2 / 33

Key tools for accurate computation

fixed length expansions libraries: double-double (Briggs,
Bailey, Hida, Li), quad-double (Bailey, Hida, Li)
arbitrary length expansions libraries: Priest, Shewchuk,
Joldes-Muller-Popescu
arbitrary precision libraries: ARPREC, MPFR, MPIR
compensated algorithms (Kahan, Priest, Ogita-Rump-Oishi,...)
based on EFTs (Error Free Transformations)

EFTs: properties and algorithms to compute the generated
elementary rounding errors

Let a, b ∈ F, for the basic operation ◦ ∈ {+,−,×}, with rounding
to nearest,

a ◦ b = fl(a ◦ b) + e with e ∈ F

S. Graillat & F. Jézéquel (LIP6) Tight interval inclusions with compensated algorithms 3 / 33

Key tools for accurate computation

fixed length expansions libraries: double-double (Briggs,
Bailey, Hida, Li), quad-double (Bailey, Hida, Li)
arbitrary length expansions libraries: Priest, Shewchuk,
Joldes-Muller-Popescu
arbitrary precision libraries: ARPREC, MPFR, MPIR
compensated algorithms (Kahan, Priest, Ogita-Rump-Oishi,...)
based on EFTs (Error Free Transformations)

EFTs: properties and algorithms to compute the generated
elementary rounding errors

Let a, b ∈ F, for the basic operation ◦ ∈ {+,−,×}, with rounding
to nearest,

a ◦ b = fl(a ◦ b) + e with e ∈ F
S. Graillat & F. Jézéquel (LIP6) Tight interval inclusions with compensated algorithms 3 / 33

Numerical validation with interval arithmetic

Principle: replace numbers by intervals and compute.

Fundamental theorem of interval arithmetic: the exact result
belongs to the computed interval.

No result is lost, the computed interval is guaranteed to
contain every possible result.

How to compute tight interval inclusions
with compensated algorithms?

Assume floating-point arithmetic adhering to IEEE 754 with
rounding unit u (no underflow nor overflow).

S. Graillat & F. Jézéquel (LIP6) Tight interval inclusions with compensated algorithms 4 / 33

Numerical validation with interval arithmetic

Principle: replace numbers by intervals and compute.

Fundamental theorem of interval arithmetic: the exact result
belongs to the computed interval.

No result is lost, the computed interval is guaranteed to
contain every possible result.

How to compute tight interval inclusions
with compensated algorithms?

Assume floating-point arithmetic adhering to IEEE 754 with
rounding unit u (no underflow nor overflow).

S. Graillat & F. Jézéquel (LIP6) Tight interval inclusions with compensated algorithms 4 / 33

Numerical validation with interval arithmetic

Principle: replace numbers by intervals and compute.

Fundamental theorem of interval arithmetic: the exact result
belongs to the computed interval.

No result is lost, the computed interval is guaranteed to
contain every possible result.

How to compute tight interval inclusions
with compensated algorithms?

Assume floating-point arithmetic adhering to IEEE 754 with
rounding unit u (no underflow nor overflow).

S. Graillat & F. Jézéquel (LIP6) Tight interval inclusions with compensated algorithms 4 / 33

Outline

1 Error-free transformations (EFT) with rounding to nearest

2 Error-free transformations (EFT) with directed rounding

3 Compensated algorithm for summation with directed rounding

4 Compensated dot product with directed rounding

5 Compensated Horner scheme with directed rounding

S. Graillat & F. Jézéquel (LIP6) Tight interval inclusions with compensated algorithms 5 / 33

Outline

1 Error-free transformations (EFT) with rounding to nearest

2 Error-free transformations (EFT) with directed rounding

3 Compensated algorithm for summation with directed rounding

4 Compensated dot product with directed rounding

5 Compensated Horner scheme with directed rounding

S. Graillat & F. Jézéquel (LIP6) Tight interval inclusions with compensated algorithms 6 / 33

EFT for addition
x = a⊕ b ⇒ a+ b = x+ y with y ∈ F

Algorithm of Dekker (1971) and Knuth (1974)

Algorithm (EFT of the sum of 2 floating-point numbers
with |a| ≥ |b|)
function [x, y] = FastTwoSum(a, b)
x = a⊕ b
y = (a	 x)⊕ b

Algorithm (EFT of the sum of 2 floating-point numbers)
function [x, y] = TwoSum(a, b)
x = a⊕ b
z = x	 a
y = (a	 (x	 z))⊕ (b	 z)

S. Graillat & F. Jézéquel (LIP6) Tight interval inclusions with compensated algorithms 7 / 33

EFT for the product (1/3)

x = a⊗ b ⇒ a× b = x+ y with y ∈ F

Algorithm TwoProduct by Veltkamp and Dekker (1971)

a = x+ y and x and y non overlapping with |y| ≤ |x|.

Algorithm (Error-free split of a floating-point number
into two parts)
function [x, y] = Split(a)
factor = 2s + 1 % u = 2−p , s = dp/2e
c = factor⊗ a
x = c	 (c	 a)
y = a	 x

S. Graillat & F. Jézéquel (LIP6) Tight interval inclusions with compensated algorithms 8 / 33

EFT for the product (2/3)

Algorithm (EFT of the product of 2 floating-point
numbers)
function [x, y] = TwoProduct(a, b)
x = a⊗ b
[a1, a2] = Split(a)
[b1, b2] = Split(b)
y = a2 ⊗ b2 	 (((x	 a1 ⊗ b1)	 a2 ⊗ b1)	 a1 ⊗ b2)

S. Graillat & F. Jézéquel (LIP6) Tight interval inclusions with compensated algorithms 9 / 33

EFT for the product (3/3)

x = a⊗ b ⇒ a× b = x+ y with y ∈ F

Given a, b, c ∈ F,
FMA(a, b, c) is the nearest floating-point number to a× b+ c

Algorithm (EFT of the product of 2 floating-point
numbers)
function [x, y] = TwoProdFMA(a, b)
x = a⊗ b
y = FMA(a, b,−x)

FMA is available for example on PowerPC, Itanium, Cell, Xeon Phi,
AMD and Nvidia GPU, Intel (Haswell), AMD (Bulldozer)
processors.

S. Graillat & F. Jézéquel (LIP6) Tight interval inclusions with compensated algorithms 10 / 33

Outline

1 Error-free transformations (EFT) with rounding to nearest

2 Error-free transformations (EFT) with directed rounding

3 Compensated algorithm for summation with directed rounding

4 Compensated dot product with directed rounding

5 Compensated Horner scheme with directed rounding

S. Graillat & F. Jézéquel (LIP6) Tight interval inclusions with compensated algorithms 11 / 33

EFT for addition with directed rounding

x = fl*(a+ b) ⇒ a+ b = x+ e but possibly e /∈ F

Algorithm (EFT of the sum of 2 floating-point numbers
with |a| ≥ |b|)
function [x, y] = FastTwoSum(a, b)
x = fl*(a+ b)
y = fl*((a− x) + b)

Proposition
We have y = fl*(e) and so |e− y| ≤ 2u|e|. It yields |e− y| ≤ 4u2|x|
and |e− y| ≤ 4u2|a+ b|. Moreover

if ∗ = ∆, e ≤ y

if ∗ = ∇, y ≤ e
S. Graillat & F. Jézéquel (LIP6) Tight interval inclusions with compensated algorithms 12 / 33

EFT for addition with directed rounding

x = fl*(a+ b) ⇒ a+ b = x+ e but possibly e /∈ F

Algorithm (EFT of the sum of 2 floating-point numbers)
function [x, y] = TwoSum(a, b)
x = fl*(a+ b)
z = fl*(x− a)
y = fl*((a− (x− z)) + (b− z))

Proposition

We have |e− y| ≤ 4u2|a+ b| and |e− y| ≤ 4u2|x|. Moreover
if ∗ = ∆, e ≤ y

if ∗ = ∇, y ≤ e

S. Graillat & F. Jézéquel (LIP6) Tight interval inclusions with compensated algorithms 13 / 33

EFT for the product with directed rounding

x = fl*(a× b) ⇒ a× b = x+ y with y ∈ F

Given a, b, c ∈ F,
FMA(a, b, c) is the nearest floating-point number to a× b+ c

Algorithm (EFT of the product of 2 floating-point
numbers)
function [x, y] = TwoProdFMA(a, b)
x = fl*(a× b)
y = FMA(a, b,−x)

S. Graillat & F. Jézéquel (LIP6) Tight interval inclusions with compensated algorithms 14 / 33

EFT for the product with directed rounding
a = x+ y and x and y non overlapping with |y| ≤ |x|

Algorithm (Error-free split of a floating-point number
into two parts)
function [x, y] = Split(a)
factor = 2s + 1 % u = 2−p , s = dp/2e
c = fl*(factor× a)
x = fl*(c− (c− a))
y = fl*(a− x)

Proposition
We have a = x+ y. Moreover,

the significand of x fits in p− s bits;
the significand of y fits in s bits.

S. Graillat & F. Jézéquel (LIP6) Tight interval inclusions with compensated algorithms 15 / 33

EFT for the product with directed rounding
x = fl*(a× b) ⇒ a× b = x+ e with e ∈ F

Algorithm (EFT of the product of 2 floating-point
numbers)
function [x, y] = TwoProduct(a, b)
x = fl*(a× b)
[a1, a2] = Split(a) ; [b1, b2] = Split(b)
y = fl*(a2 × b2 − (((x− a1 × b1)− a2 × b1)− a1 × b2))

Proposition

We have |e− y| ≤ 8u2|a× b| and |e− y| ≤ 8u2|x|. Moreover
if ∗ = ∆, e ≤ y

if ∗ = ∇, y ≤ e

S. Graillat & F. Jézéquel (LIP6) Tight interval inclusions with compensated algorithms 16 / 33

Outline

1 Error-free transformations (EFT) with rounding to nearest

2 Error-free transformations (EFT) with directed rounding

3 Compensated algorithm for summation with directed rounding

4 Compensated dot product with directed rounding

5 Compensated Horner scheme with directed rounding

S. Graillat & F. Jézéquel (LIP6) Tight interval inclusions with compensated algorithms 17 / 33

Compensated algorithm for summation
Let p = {pi} be a vector of n floating-point numbers.

Algorithm (Ogita, Rump, Oishi (2005))
function res = CompSum(p)
π1 = p1 ; σ1 = 0
for i = 2 : n

[πi, qi] = TwoSum(πi−1, pi)
σi = fl*(σi−1 + qi)

res = fl*(πn + σn)

Proposition
Let us suppose CompSum is applied, with directed rounding, to
pi ∈ F, 1 ≤ i ≤ n. Let s :=

∑
pi and S :=

∑
|pi|. If nu < 1

2
, then

|res− s| ≤ 2u|s|+ 2(1 + 2u)γ2n(2u)S with γn(u) =
nu

1− nu
.

S. Graillat & F. Jézéquel (LIP6) Tight interval inclusions with compensated algorithms 18 / 33

Compensated algorithm for summation

Algorithm (Tight inclusion using INTLAB)

setround (-1)
Sinf = CompSump(p)
setround (1)
Ssup = CompSump(p)

Proposition
Let p = {pi} be a vector of n floating-point numbers. Then we have

Sinf ≤
n∑

i=1

pi ≤ Ssup.

S. Graillat & F. Jézéquel (LIP6) Tight interval inclusions with compensated algorithms 19 / 33

Numerical experiments

10
0

10
5

10
10

10
15

10
20

10
25

10
30

10
35

10
40

Condition number

10
-20

10
-15

10
-10

10
-5

10
0

10
5

R
a
d
iu

s
/m

id
p
o
in

t
Conditioning and radius/midpoint

classic summation

compensated summation

S. Graillat & F. Jézéquel (LIP6) Tight interval inclusions with compensated algorithms 20 / 33

Outline

1 Error-free transformations (EFT) with rounding to nearest

2 Error-free transformations (EFT) with directed rounding

3 Compensated algorithm for summation with directed rounding

4 Compensated dot product with directed rounding

5 Compensated Horner scheme with directed rounding

S. Graillat & F. Jézéquel (LIP6) Tight interval inclusions with compensated algorithms 21 / 33

Compensated dot product
Algorithm (Ogita, Rump and Oishi 2005)
function res = CompDot(x, y)

[p, s] = TwoProduct(x1, y1)
for i = 2 : n

[h, r] = TwoProduct(xi, yi)
[p, q] = TwoSum(p, h)
s = fl*(s+ (q + r))

end
res = fl*(p+ s)

Proposition
Let xi, yi ∈ F (1 ≤ i ≤ n) and res the result computed by CompDot

with directed rounding. If (n+ 1)u < 1
2
, then,

|res− xTy| ≤ 2u|xTy|+ 2γ2n+1(2u)|xT ||y|.

S. Graillat & F. Jézéquel (LIP6) Tight interval inclusions with compensated algorithms 22 / 33

Compensated dot product

Algorithm (Tight inclusion using INTLAB)

setround (-1)
Dinf = CompDot(x,y)
setround (1)
Dsup = CompDot(x,y)

Proposition
Let xi, yi ∈ F (1 ≤ i ≤ n) be given. Then we have

Dinf ≤ xTy ≤ Dsup.

S. Graillat & F. Jézéquel (LIP6) Tight interval inclusions with compensated algorithms 23 / 33

Numerical experiments

10
0

10
5

10
10

10
15

10
20

10
25

10
30

10
35

10
40

Condition number

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

R
a
d
iu

s
/m

id
p
o
in

t
Conditioning and radius/midpoint

classic dot product

compensated dot product

S. Graillat & F. Jézéquel (LIP6) Tight interval inclusions with compensated algorithms 24 / 33

Outline

1 Error-free transformations (EFT) with rounding to nearest

2 Error-free transformations (EFT) with directed rounding

3 Compensated algorithm for summation with directed rounding

4 Compensated dot product with directed rounding

5 Compensated Horner scheme with directed rounding

S. Graillat & F. Jézéquel (LIP6) Tight interval inclusions with compensated algorithms 25 / 33

Compensated Horner scheme

Let p(x) =
n∑

i=0

aix
i with x, ai ∈ F

Algorithm (Graillat, Langlois, Louvet, 2009)
function res = CompHorner(p, x)
sn = an
rn = 0
for i = n− 1 : −1 : 0

[pi, πi] = TwoProduct(si+1, x)
[si, σi] = TwoSum(pi, ai)
ri = fl*(ri+1 × x+ (πi + σi))

end
res = fl*(s0 + r0)

S. Graillat & F. Jézéquel (LIP6) Tight interval inclusions with compensated algorithms 26 / 33

Compensated Horner scheme

Theorem
Consider a polynomial p of degree n with floating-point coefficients,
and a floating-point value x. With directed rounding, the forward
error in the compensated Horner algorithm is such that

|CompHorner(p, x)− p(x)| ≤ 2u|p(x)|+ 2γ2n+1(2u)2p̃(|x|),

with p̃(x) =
∑n

i=0 |ai|xi.

S. Graillat & F. Jézéquel (LIP6) Tight interval inclusions with compensated algorithms 27 / 33

Compensated Horner scheme

Algorithm (x ≥ 0, Tight inclusion using INTLAB)

setround (-1)
Einf = CompHorner(p,x)
setround (1)
Esup = CompHorner(p,x)

If x ≤ 0, CompHorner(p̄,−x) is computed
with p̄(x) =

∑n
i=0 ai(−1)ixi.

Proposition
Consider a polynomial p of degree n with floating-point coefficients,
and a floating-point value x.

Einf ≤ p(x) ≤ Esup.

S. Graillat & F. Jézéquel (LIP6) Tight interval inclusions with compensated algorithms 28 / 33

Numerical experiments

10
0

10
5

10
10

10
15

10
20

10
25

10
30

10
35

10
40

Condition number

10
-20

10
-15

10
-10

10
-5

10
0

10
5

R
a
d
iu

s
/m

id
p
o
in

t
Conditioning and radius/midpoint

Classic Horner

Compensated Horner

S. Graillat & F. Jézéquel (LIP6) Tight interval inclusions with compensated algorithms 29 / 33

Conclusion and future work

Conclusion
Compensated methods are a fast way to get accurate results

They can be used efficiently with interval arithmetic to obtain
certified results with finite precision

Future work
Interval computations with K-fold compensated algorithms
using Priest’s EFT and FMA

S. Graillat & F. Jézéquel (LIP6) Tight interval inclusions with compensated algorithms 30 / 33

References I

[1] S. Boldo, S. Graillat, and J.-M. Muller.
On the robustness of the 2Sum and Fast2Sum algorithms.
ACM Trans. Math. Softw., 44(1):4:1–4:14, July 2017.

[2] S. Graillat, F. Jézéquel, and R. Picot.
Numerical validation of compensated summation algorithms
with stochastic arithmetic.
Electronic Notes in Theoretical Computer Science, 317:55–69,
2015.

[3] S. Graillat, F. Jézéquel, and R. Picot.
Numerical validation of compensated algorithms with stochastic
arithmetic.
Applied Mathematics and Computation, 329:339 – 363, 2018.

S. Graillat & F. Jézéquel (LIP6) Tight interval inclusions with compensated algorithms 31 / 33

References II

[4] S. Graillat, Ph. Langlois, and N. Louvet.
Algorithms for accurate, validated and fast polynomial
evaluation.
Japan J. Indust. Appl. Math., 2-3(26):191–214, 2009.

[5] T. Ogita, S. M. Rump, and S. Oishi.
Accurate sum and dot product.
SIAM Journal on Scientific Computing, 26(6):1955–1988, 2005.

[6] D.M. Priest.
On Properties of Floating Point Arithmetics: Numerical
Stability and the Cost of Accurate Computations.
PhD thesis, Mathematics Department, University of California,
Berkeley, CA, USA, November 1992.

S. Graillat & F. Jézéquel (LIP6) Tight interval inclusions with compensated algorithms 32 / 33

Thank you for your attention

S. Graillat & F. Jézéquel (LIP6) Tight interval inclusions with compensated algorithms 33 / 33

	Error-free transformations (EFT) with rounding to nearest
	Error-free transformations (EFT) with directed rounding
	Compensated algorithm for summation with directed rounding
	Compensated dot product with directed rounding
	Compensated Horner scheme with directed rounding

