Tight interval inclusions with compensated algorithms

Stef Graillat & Fabienne Jézéquel

Sorbonne Université, Laboratoire d'Informatique de Paris 6 (LIP6), France

18th international symposium on Scientific Computing, Computer Arithmetic and Validated Numerics (SCAN 2018)

Tokyo, Japan, 10-15 September 2018

Exascale barrier broken in June 2018: 1.8 10¹⁸ floating-point operations per second. (Oak Ridge National Laboratory, analysis of genomic data)

- Increasing power of current computers \rightarrow GPU accelerators, Intel Xeon Phi processors, etc.
- Enable to solve more complex problems
 - $\rightarrow~$ Quantum field theory, supernova simulation, etc.
- A high number of floating-point operations performed
 - $\rightarrow~$ Each of them can lead to a rounding error

Exascale barrier broken in June 2018: 1.8 10¹⁸ floating-point operations per second. (Oak Ridge National Laboratory, analysis of genomic data)

- Increasing power of current computers \rightarrow GPU accelerators, Intel Xeon Phi processors, etc.
- Enable to solve more complex problems
 - $\rightarrow~$ Quantum field theory, supernova simulation, etc.
- A high number of floating-point operations performed
 - $\rightarrow~$ Each of them can lead to a rounding error

\Rightarrow Need for accuracy and validation

Key tools for accurate computation

- fixed length expansions libraries: double-double (Briggs, Bailey, Hida, Li), quad-double (Bailey, Hida, Li)
- arbitrary length expansions libraries: Priest, Shewchuk, Joldes-Muller-Popescu
- arbitrary precision libraries: ARPREC, MPFR, MPIR
- compensated algorithms (Kahan, Priest, Ogita-Rump-Oishi,...) based on EFTs (Error Free Transformations)

Key tools for accurate computation

- fixed length expansions libraries: double-double (Briggs, Bailey, Hida, Li), quad-double (Bailey, Hida, Li)
- arbitrary length expansions libraries: Priest, Shewchuk, Joldes-Muller-Popescu
- arbitrary precision libraries: ARPREC, MPFR, MPIR
- compensated algorithms (Kahan, Priest, Ogita-Rump-Oishi,...) based on EFTs (Error Free Transformations)

EFTs: properties and algorithms to compute the generated elementary rounding errors

Let $a, b \in \mathbb{F}$, for the basic operation $\circ \in \{+, -, \times\}$, with rounding to nearest,

$$a \circ b = \mathrm{fl}(a \circ b) + e \text{ with } e \in \mathbb{F}$$

Numerical validation with interval arithmetic

- Principle: replace numbers by intervals and compute.
- Fundamental theorem of interval arithmetic: the exact result belongs to the computed interval.
- No result is lost, the computed interval is guaranteed to contain every possible result.

Numerical validation with interval arithmetic

- Principle: replace numbers by intervals and compute.
- Fundamental theorem of interval arithmetic: the exact result belongs to the computed interval.
- No result is lost, the computed interval is guaranteed to contain every possible result.

How to compute tight interval inclusions with compensated algorithms?

Numerical validation with interval arithmetic

- Principle: replace numbers by intervals and compute.
- Fundamental theorem of interval arithmetic: the exact result belongs to the computed interval.
- No result is lost, the computed interval is guaranteed to contain every possible result.

How to compute tight interval inclusions with compensated algorithms?

Assume floating-point arithmetic adhering to IEEE 754 with rounding unit \mathbf{u} (no underflow nor overflow).

- **1** Error-free transformations (EFT) with rounding to nearest
- 2 Error-free transformations (EFT) with directed rounding
- 3 Compensated algorithm for summation with directed rounding
- 4 Compensated dot product with directed rounding
- 6 Compensated Horner scheme with directed rounding

1 Error-free transformations (EFT) with rounding to nearest

- 2 Error-free transformations (EFT) with directed rounding
- **3** Compensated algorithm for summation with directed rounding
- (I) Compensated dot product with directed rounding
- **5** Compensated Horner scheme with directed rounding

EFT for addition

$$x = a \oplus b \ \Rightarrow \ a + b = x + y \quad \text{with } y \in \mathbb{F}$$

Algorithm of Dekker (1971) and Knuth (1974)

Algorithm (EFT of the sum of 2 floating-point numbers with $|a| \ge |b|$) function [x, y] = FastTwoSum(a, b) $x = a \oplus b$ $y = (a \oplus x) \oplus b$

Algorithm (EFT of the sum of 2 floating-point numbers)

function
$$[x, y] = \mathsf{TwoSum}(a, b)$$

 $x = a \oplus b$
 $z = x \oplus a$
 $y = (a \oplus (x \oplus z)) \oplus (b \oplus z)$

$$x = a \otimes b \Rightarrow a \times b = x + y \quad \text{with } y \in \mathbb{F}$$

Algorithm TwoProduct by Veltkamp and Dekker (1971)

a = x + y and x and y non overlapping with $|y| \le |x|$.

Algorithm (Error-free split of a floating-point number into two parts)

Algorithm (EFT of the product of 2 floating-point numbers)

$$egin{aligned} & ext{function} \; [x,y] = extsf{TwoProduct}(a,b) \ & x = a \otimes b \ & [a_1,a_2] = ext{Split}(a) \ & [b_1,b_2] = ext{Split}(b) \ & y = a_2 \otimes b_2 \ominus \left(((x \ominus a_1 \otimes b_1) \ominus a_2 \otimes b_1) \ominus a_1 \otimes b_2)
ight) \end{aligned}$$

$$x = a \otimes b \implies a \times b = x + y \quad \text{with } y \in \mathbb{F}$$

Given $a, b, c \in \mathbb{F}$,

• FMA(a,b,c) is the nearest floating-point number to $a \times b + c$

Algorithm (EFT of the product of 2 floating-point numbers)

$$\begin{array}{l} \text{function } [x,y] = \texttt{TwoProdFMA}(a,b) \\ x = a \otimes b \\ y = \texttt{FMA}(a,b,-x) \end{array}$$

FMA is available for example on PowerPC, Itanium, Cell, Xeon Phi, AMD and Nvidia GPU, Intel (Haswell), AMD (Bulldozer) processors.

D Error-free transformations (EFT) with rounding to nearest

- 2 Error-free transformations (EFT) with directed rounding
- **8** Compensated algorithm for summation with directed rounding
- (I) Compensated dot product with directed rounding
- **5** Compensated Horner scheme with directed rounding

EFT for addition with directed rounding

$$x = \mathrm{fl}_*(a+b) \implies a+b = x+e$$
 but possibly $e \notin \mathbb{F}$

Algorithm (EFT of the sum of 2 floating-point numbers with $|a| \ge |b|$)

$$\begin{aligned} & \text{function } [x,y] = \texttt{FastTwoSum}(a,b) \\ & x = \text{fl}*(a+b) \\ & y = \text{fl}*((a-x)+b) \end{aligned}$$

Proposition

We have $y = \mathrm{fl}_*(e)$ and so $|e - y| \le 2\mathbf{u}|e|$. It yields $|e - y| \le 4\mathbf{u}^2|x|$ and $|e - y| \le 4\mathbf{u}^2|a + b|$. Moreover

•
$$if * = \Delta, e \le y$$

• $if * = \nabla, y \le e$

EFT for addition with directed rounding

$$x = \mathrm{fl}_*(a+b) \implies a+b = x+e \quad \text{but possibly } e \notin \mathbb{F}$$

Algorithm (\overline{EFT} of the sum of 2 floating-point numbers)

$$\begin{aligned} & \operatorname{function} [x, y] = \mathsf{TwoSum}(a, b) \\ & x = \mathrm{fl}_*(a + b) \\ & z = \mathrm{fl}_*(x - a) \\ & y = \mathrm{fl}_*((a - (x - z)) + (b - z)) \end{aligned}$$

Proposition

We have
$$|e - y| \le 4\mathbf{u}^2 |a + b|$$
 and $|e - y| \le 4\mathbf{u}^2 |x|$. Moreover

•
$$if * = \Delta, e \leq y$$

• $if * = \nabla, y \leq e$

EFT for the product with directed rounding

$$x = \mathrm{fl}_*(a \times b) \implies a \times b = x + y \quad \text{with } y \in \mathbb{F}$$

Given $a, b, c \in \mathbb{F}$,

• FMA(a, b, c) is the nearest floating-point number to $a \times b + c$

Algorithm (EFT of the product of 2 floating-point numbers)

$$\begin{aligned} & \text{function } [x,y] = \texttt{TwoProdFMA}(a,b) \\ & x = \texttt{fl}*(a \times b) \\ & y = \texttt{FMA}(a,b,-x) \end{aligned}$$

EFT for the product with directed rounding

a = x + y and x and y non overlapping with $|y| \le |x|$

Algorithm (Error-free split of a floating-point number into two parts)

$$\begin{aligned} & \text{function } [x,y] = \texttt{Split}(a) \\ & \text{factor} = 2^s + 1 \\ & c = \texttt{fl}*(\texttt{factor} \times a) \\ & x = \texttt{fl}*(c - (c - a)) \\ & y = \texttt{fl}*(a - x) \end{aligned}$$

Proposition

We have a = x + y. Moreover,

- the significand of x fits in p-s bits;
- the significand of y fits in s bits.

EFT for the product with directed rounding

$$x = \mathrm{fl}_*(a \times b) \implies a \times b = x + e \quad \text{with } e \in \mathbb{F}$$

Algorithm (EFT of the product of 2 floating-point numbers)

$$\begin{aligned} & \text{function } [x,y] = \texttt{TwoProduct}(a,b) \\ & x = \texttt{fl}_*(a \times b) \\ & [a_1,a_2] = \texttt{Split}(a) \ ; \ [b_1,b_2] = \texttt{Split}(b) \\ & y = \texttt{fl}_*(a_2 \times b_2 - (((x-a_1 \times b_1) - a_2 \times b_1) - a_1 \times b_2)) \end{aligned}$$

Proposition

We have
$$|e - y| \le 8\mathbf{u}^2 |a \times b|$$
 and $|e - y| \le 8\mathbf{u}^2 |x|$. Moreover
• $if * = \Delta, \ e \le y$
• $if * = \nabla, \ y \le e$

- **1** Error-free transformations (EFT) with rounding to nearest
- 2 Error-free transformations (EFT) with directed rounding
- 3 Compensated algorithm for summation with directed rounding
- Ompensated dot product with directed rounding
- **6** Compensated Horner scheme with directed rounding

Compensated algorithm for summation

Let $p = \{p_i\}$ be a vector of n floating-point numbers.

Algorithm (Ogita, Rump, Oishi (2005))

 $\begin{array}{l} \text{function } \mathbf{res} = \texttt{CompSum}(p) \\ \pi_1 = p_1 \; ; \; \sigma_1 = 0 \\ \text{for } i = 2 : n \\ [\pi_i, q_i] = \texttt{TwoSum}(\pi_{i-1}, p_i) \\ \sigma_i = \texttt{fl}*(\sigma_{i-1} + q_i) \\ \textbf{res} = \texttt{fl}*(\pi_n + \sigma_n) \end{array}$

Proposition

Let us suppose CompSum is applied, with directed rounding, to $p_i \in \mathbb{F}, \ 1 \le i \le n$. Let $s := \sum p_i$ and $S := \sum |p_i|$. If $n\mathbf{u} < \frac{1}{2}$, then $|\mathbf{res} - s| \le 2\mathbf{u}|s| + 2(1+2\mathbf{u})\gamma_n^2(2\mathbf{u})S$ with $\gamma_n(\mathbf{u}) = \frac{n\mathbf{u}}{1-n\mathbf{u}}$.

Compensated algorithm for summation

Algorithm (Tight inclusion using INTLAB)

```
setround(-1)
Sinf = CompSump(p)
setround(1)
Ssup = CompSump(p)
```

Proposition

Let $p = \{p_i\}$ be a vector of n floating-point numbers. Then we have

$$\operatorname{Sinf} \leq \sum_{i=1}^{n} p_i \leq \operatorname{Ssup}.$$

Numerical experiments

- **1** Error-free transformations (EFT) with rounding to nearest
- 2 Error-free transformations (EFT) with directed rounding
- **3** Compensated algorithm for summation with directed rounding
- **4** Compensated dot product with directed rounding
- **6** Compensated Horner scheme with directed rounding

Compensated dot product

Algorithm (Ogita, Rump and Oishi 2005)

$$\begin{aligned} & \text{function } \texttt{res} = \texttt{CompDot}(x, y) \\ & [p, s] = \texttt{TwoProduct}(x_1, y_1) \\ & \text{for } i = 2:n \\ & [h, r] = \texttt{TwoProduct}(x_i, y_i) \\ & [p, q] = \texttt{TwoSum}(p, h) \\ & s = \texttt{fl}_*(s + (q + r)) \\ & \text{end} \\ & \texttt{res} = \texttt{fl}_*(p + s) \end{aligned}$$

Proposition

Let $x_i, y_i \in \mathbb{F}$ $(1 \leq i \leq n)$ and res the result computed by CompDot with directed rounding. If $(n+1)\mathbf{u} < \frac{1}{2}$, then,

$$res - x^{T}y| \le 2\mathbf{u}|x^{T}y| + 2\gamma_{n+1}^{2}(2\mathbf{u})|x^{T}||y|.$$

Algorithm (Tight inclusion using INTLAB)

```
setround(-1)
Dinf = CompDot(x,y)
setround(1)
Dsup = CompDot(x,y)
```

Proposition

Let $x_i, y_i \in \mathbb{F}$ $(1 \leq i \leq n)$ be given. Then we have

 $\text{Dinf} \leq x^T y \leq \text{Dsup}.$

Numerical experiments

- **1** Error-free transformations (EFT) with rounding to nearest
- 2 Error-free transformations (EFT) with directed rounding
- 3 Compensated algorithm for summation with directed rounding
- ① Compensated dot product with directed rounding

(5) Compensated Horner scheme with directed rounding

Compensated Horner scheme

Let
$$p(x) = \sum_{i=0}^{n} a_i x^i$$
 with $x, a_i \in \mathbb{F}$

Algorithm (Graillat, Langlois, Louvet, 2009)

function res = CompHorner(p, x)

$$s_n = a_n$$

$$r_n = 0$$

for $i = n - 1 : -1 : 0$

$$[p_i, \pi_i] = \texttt{TwoProduct}(s_{i+1}, x)$$

$$[s_i, \sigma_i] = \texttt{TwoSum}(p_i, a_i)$$

$$r_i = \texttt{fl}_*(r_{i+1} \times x + (\pi_i + \sigma_i))$$

end

$$\texttt{res} = \texttt{fl}_*(s_0 + r_0)$$

Theorem

Consider a polynomial p of degree n with floating-point coefficients, and a floating-point value x. With directed rounding, the forward error in the compensated Horner algorithm is such that

$$\operatorname{CompHorner}(p, x) - p(x)| \le 2\mathbf{u}|p(x)| + 2\gamma_{2n+1}(2\mathbf{u})^2 \widetilde{p}(|x|),$$

with $\widetilde{p}(x) = \sum_{i=0}^{n} |a_i| x^i$.

Compensated Horner scheme

Algorithm $(x \ge 0, \text{ Tight inclusion using INTLAB})$

```
setround(-1)
Einf = CompHorner(p,x)
setround(1)
Esup = CompHorner(p,x)
```

If $x \leq 0$, CompHorner $(\bar{\mathbf{p}}, -\mathbf{x})$ is computed with $\bar{p}(x) = \sum_{i=0}^{n} a_i (-1)^i x^i$.

Proposition

Consider a polynomial p of degree n with floating-point coefficients, and a floating-point value x.

$$\texttt{Einf} \leq p(x) \leq \texttt{Esup}.$$

Numerical experiments

Conclusion and future work

Conclusion

- Compensated methods are a fast way to get accurate results
- They can be used efficiently with interval arithmetic to obtain certified results with finite precision

Future work

 \bullet Interval computations with $K\mbox{-}{\rm fold}$ compensated algorithms using Priest's EFT and FMA

- S. Boldo, S. Graillat, and J.-M. Muller.
 On the robustness of the 2Sum and Fast2Sum algorithms. ACM Trans. Math. Softw., 44(1):4:1–4:14, July 2017.
- [2] S. Graillat, F. Jézéquel, and R. Picot. Numerical validation of compensated summation algorithms with stochastic arithmetic.

Electronic Notes in Theoretical Computer Science, 317:55–69, 2015.

[3] S. Graillat, F. Jézéquel, and R. Picot. Numerical validation of compensated algorithms with stochastic arithmetic.

Applied Mathematics and Computation, 329:339 – 363, 2018.

[4] S. Graillat, Ph. Langlois, and N. Louvet. Algorithms for accurate, validated and fast polynomial evaluation.

Japan J. Indust. Appl. Math., 2-3(26):191–214, 2009.

- [5] T. Ogita, S. M. Rump, and S. Oishi. Accurate sum and dot product. SIAM Journal on Scientific Computing, 26(6):1955–1988, 2005.
- [6] D.M. Priest.

On Properties of Floating Point Arithmetics: Numerical Stability and the Cost of Accurate Computations. PhD thesis, Mathematics Department, University of California, Berkeley, CA, USA, November 1992.

Thank you for your attention