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Introduction

Exascale barrier broken in June 2018: 1.8 1018 floating-point
operations per second. (Oak Ridge National Laboratory, analysis
of genomic data)

Increasing power of current computers
→ GPU accelerators, Intel Xeon Phi processors, etc.

Enable to solve more complex problems
→ Quantum field theory, supernova simulation, etc.

A high number of floating-point operations performed
→ Each of them can lead to a rounding error

⇒ Need for accuracy and validation
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Key tools for accurate computation

fixed length expansions libraries: double-double (Briggs,
Bailey, Hida, Li), quad-double (Bailey, Hida, Li)
arbitrary length expansions libraries: Priest, Shewchuk,
Joldes-Muller-Popescu
arbitrary precision libraries: ARPREC, MPFR, MPIR
compensated algorithms (Kahan, Priest, Ogita-Rump-Oishi,...)
based on EFTs (Error Free Transformations)

EFTs: properties and algorithms to compute the generated
elementary rounding errors

Let a, b ∈ F, for the basic operation ◦ ∈ {+,−,×}, with rounding
to nearest,

a ◦ b = fl(a ◦ b) + e with e ∈ F
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Numerical validation with interval arithmetic

Principle: replace numbers by intervals and compute.

Fundamental theorem of interval arithmetic: the exact result
belongs to the computed interval.

No result is lost, the computed interval is guaranteed to
contain every possible result.

How to compute tight interval inclusions
with compensated algorithms?

Assume floating-point arithmetic adhering to IEEE 754 with
rounding unit u (no underflow nor overflow).
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Outline

1 Error-free transformations (EFT) with rounding to nearest

2 Error-free transformations (EFT) with directed rounding

3 Compensated algorithm for summation with directed rounding

4 Compensated dot product with directed rounding

5 Compensated Horner scheme with directed rounding
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EFT for addition
x = a⊕ b ⇒ a+ b = x+ y with y ∈ F

Algorithm of Dekker (1971) and Knuth (1974)

Algorithm (EFT of the sum of 2 floating-point numbers
with |a| ≥ |b|)
function [x, y] = FastTwoSum(a, b)
x = a⊕ b
y = (a	 x)⊕ b

Algorithm (EFT of the sum of 2 floating-point numbers)
function [x, y] = TwoSum(a, b)
x = a⊕ b
z = x	 a
y = (a	 (x	 z))⊕ (b	 z)
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EFT for the product (1/3)

x = a⊗ b ⇒ a× b = x+ y with y ∈ F

Algorithm TwoProduct by Veltkamp and Dekker (1971)

a = x+ y and x and y non overlapping with |y| ≤ |x|.

Algorithm (Error-free split of a floating-point number
into two parts)
function [x, y] = Split(a)
factor = 2s + 1 % u = 2−p , s = dp/2e
c = factor⊗ a
x = c	 (c	 a)
y = a	 x
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EFT for the product (2/3)

Algorithm (EFT of the product of 2 floating-point
numbers)
function [x, y] = TwoProduct(a, b)
x = a⊗ b
[a1, a2] = Split(a)
[b1, b2] = Split(b)
y = a2 ⊗ b2 	 (((x	 a1 ⊗ b1)	 a2 ⊗ b1)	 a1 ⊗ b2)

S. Graillat & F. Jézéquel (LIP6) Tight interval inclusions with compensated algorithms 9 / 33



EFT for the product (3/3)

x = a⊗ b ⇒ a× b = x+ y with y ∈ F

Given a, b, c ∈ F,
FMA(a, b, c) is the nearest floating-point number to a× b+ c

Algorithm (EFT of the product of 2 floating-point
numbers)
function [x, y] = TwoProdFMA(a, b)
x = a⊗ b
y = FMA(a, b,−x)

FMA is available for example on PowerPC, Itanium, Cell, Xeon Phi,
AMD and Nvidia GPU, Intel (Haswell), AMD (Bulldozer)
processors.
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EFT for addition with directed rounding

x = fl*(a+ b) ⇒ a+ b = x+ e but possibly e /∈ F

Algorithm (EFT of the sum of 2 floating-point numbers
with |a| ≥ |b|)
function [x, y] = FastTwoSum(a, b)
x = fl*(a+ b)
y = fl*((a− x) + b)

Proposition
We have y = fl*(e) and so |e− y| ≤ 2u|e|. It yields |e− y| ≤ 4u2|x|
and |e− y| ≤ 4u2|a+ b|. Moreover

if ∗ = ∆, e ≤ y

if ∗ = ∇, y ≤ e
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EFT for the product with directed rounding
a = x+ y and x and y non overlapping with |y| ≤ |x|

Algorithm (Error-free split of a floating-point number
into two parts)
function [x, y] = Split(a)
factor = 2s + 1 % u = 2−p , s = dp/2e
c = fl*(factor× a)
x = fl*(c− (c− a))
y = fl*(a− x)

Proposition
We have a = x+ y. Moreover,

the significand of x fits in p− s bits;
the significand of y fits in s bits.
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EFT for the product with directed rounding
x = fl*(a× b) ⇒ a× b = x+ e with e ∈ F
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Compensated algorithm for summation
Let p = {pi} be a vector of n floating-point numbers.

Algorithm (Ogita, Rump, Oishi (2005))
function res = CompSum(p)
π1 = p1 ; σ1 = 0
for i = 2 : n

[πi, qi] = TwoSum(πi−1, pi)
σi = fl*(σi−1 + qi)

res = fl*(πn + σn)

Proposition
Let us suppose CompSum is applied, with directed rounding, to
pi ∈ F, 1 ≤ i ≤ n. Let s :=

∑
pi and S :=

∑
|pi|. If nu < 1

2
, then

|res− s| ≤ 2u|s|+ 2(1 + 2u)γ2n(2u)S with γn(u) =
nu

1− nu
.
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Compensated algorithm for summation

Algorithm (Tight inclusion using INTLAB)

setround (-1)
Sinf = CompSump(p)
setround (1)
Ssup = CompSump(p)

Proposition
Let p = {pi} be a vector of n floating-point numbers. Then we have

Sinf ≤
n∑

i=1

pi ≤ Ssup.
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Numerical experiments
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Compensated dot product
Algorithm (Ogita, Rump and Oishi 2005)
function res = CompDot(x, y)

[p, s] = TwoProduct(x1, y1)
for i = 2 : n

[h, r] = TwoProduct(xi, yi)
[p, q] = TwoSum(p, h)
s = fl*(s+ (q + r))

end
res = fl*(p+ s)

Proposition
Let xi, yi ∈ F (1 ≤ i ≤ n) and res the result computed by CompDot

with directed rounding. If (n+ 1)u < 1
2
, then,

|res− xTy| ≤ 2u|xTy|+ 2γ2n+1(2u)|xT ||y|.
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Compensated dot product

Algorithm (Tight inclusion using INTLAB)

setround (-1)
Dinf = CompDot(x,y)
setround (1)
Dsup = CompDot(x,y)

Proposition
Let xi, yi ∈ F (1 ≤ i ≤ n) be given. Then we have

Dinf ≤ xTy ≤ Dsup.
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Numerical experiments
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Compensated Horner scheme

Let p(x) =
n∑

i=0

aix
i with x, ai ∈ F

Algorithm (Graillat, Langlois, Louvet, 2009)
function res = CompHorner(p, x)
sn = an
rn = 0
for i = n− 1 : −1 : 0

[pi, πi] = TwoProduct(si+1, x)
[si, σi] = TwoSum(pi, ai)
ri = fl*(ri+1 × x+ (πi + σi))

end
res = fl*(s0 + r0)
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Compensated Horner scheme

Theorem
Consider a polynomial p of degree n with floating-point coefficients,
and a floating-point value x. With directed rounding, the forward
error in the compensated Horner algorithm is such that

|CompHorner(p, x)− p(x)| ≤ 2u|p(x)|+ 2γ2n+1(2u)2p̃(|x|),

with p̃(x) =
∑n

i=0 |ai|xi.
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Compensated Horner scheme

Algorithm (x ≥ 0, Tight inclusion using INTLAB)

setround (-1)
Einf = CompHorner(p,x)
setround (1)
Esup = CompHorner(p,x)

If x ≤ 0, CompHorner(p̄,−x) is computed
with p̄(x) =

∑n
i=0 ai(−1)ixi.

Proposition
Consider a polynomial p of degree n with floating-point coefficients,
and a floating-point value x.

Einf ≤ p(x) ≤ Esup.
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Conclusion and future work

Conclusion
Compensated methods are a fast way to get accurate results

They can be used efficiently with interval arithmetic to obtain
certified results with finite precision

Future work
Interval computations with K-fold compensated algorithms
using Priest’s EFT and FMA
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Thank you for your attention
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