Benefits of stochastic arithmetic in high performance simulations and arbitrary precision codes

Fabienne Jézéquel LIP6, Sorbonne Université, France http://www.lip6.fr/Fabienne.Jezequel

SCAN 2020 (19th International Symposium on Scientific Computing, Computer Arithmetic, and Verified Numerical Computations) 13-15 Sept. 2021

Benefits of stochastic arithmetic in HPC and arbitrary precision codes

Jean Vignes 1933-2021

Jean Vignes passed away in August. He proposed the CESTAC method and stochastic arithmetic for rounding error estimation.

Jean Vignes is at the origine of most results presented in this talk.

Several approaches

Interval arithmetic

- guaranteed bounds for each computed result
- the error may be overestimated
- specific algorithms
- ex: INTLAB [Rump'99]

Static analysis

- no execution, rigorous analysis, all possible input values taken into account
- not suited to large programs
- ex: FLUCTUAT [Goubault & al.'06], FLDLib [Jacquemin & al.'19]

Probabilistic approach

- estimates the number of correct digits of any computed result
- can be used in HPC programs
- requires no algorithm modification
- ex: CADNA [Chesneaux'90], VERIFICARLO [Denis & al.'16], VERROU [Févotte & al.'17]

- Discrete Stochastic Arithmetic (DSA) and related tools
- Benefits of DSA for the computation of multiple polynomial roots
- Fast numerical validation of HPC codes

The CESTAC method [Vignes & al'74], [Chesneaux & al'88]

each operation executed N = 3 times with a random rounding mode

The CESTAC method [Vignes & al'74], [Chesneaux & al'88]

each operation executed N = 3 times with a random rounding mode

 number of correct digits in the result estimated using Student's test with the confidence level 95%

How to optimize stopping criteria?

Let us consider a general iterative algorithm: $U_{n+1} = F(U_n)$.

```
while (fabs(X-Y) > EPSILON) {
    X = Y;
    Y = F(X);
}
```

 ε too low \Longrightarrow risk of infinite loop ε too high \Longrightarrow too early termination.

How to optimize stopping criteria?

Let us consider a general iterative algorithm: $U_{n+1} = F(U_n)$.

```
while (fabs(X-Y) > EPSILON) {
    X = Y;
    Y = F(X);
}
```

 ε too low \implies risk of infinite loop ε too high \implies too early termination.

It would be optimal to stop when X - Y is numerical noise.

Such a stopping criterion

- would enable one to develop new numerical algorithms
- is possible thanks to the concept of *computational zero*.

Definition

A result *R* computed using the CESTAC method (*N*-sample) is a computational zero, denoted by @.0, if

- $\forall i, R_i = 0$ (mathematical zero)
- or *R* has no correct digits (numerical noise).

R is a computed result which, because of round-off errors, cannot be distinguished from 0.

The stochastic definitions [Chesneaux'92]

An equality concept and order relations that take into account rounding errors have been introduced:

Let X and Y be two results computed using the CESTAC method (N-samples).

X is stochastically equal to Y, noted X s= Y, iff

X - Y = @.0.

• X is stochastically strictly greater than Y, noted X s> Y, iff

 $\overline{X} > \overline{Y}$ and $X \not = Y$

X is stochastically greater than or equal to Y, noted X s≥ Y, iff

 $\overline{X} \ge \overline{Y}$ or $X \mathrel{s=} Y$

Ex: if X - Y is numerical noise, $X \gg Y$ is false, but $X \gg Y$ is true.

Discrete Stochastic Arithmetic (DSA) is the joint use of

- the CESTAC method
- the computational zero
- the stochastic relation definitions.

[Chesneaux & al'92], [Vignes'93], [Vignes'04]

Discrete Stochastic Arithmetic (DSA) is the joint use of

- the CESTAC method
- the computational zero
- the stochastic relation definitions.

[Chesneaux & al'92], [Vignes'93], [Vignes'04]

With DSA, operations are executed synchronously

- ⇒ detection of numerical instabilities ex: if (A>B) with A-B numerical noise
- ⇒ optimization of stopping criteria

The CADNA library

cadna.lip6.fr

- implements stochastic arithmetic for C/C++ or Fortran codes
- provides stochastic types (3 floating-point variables and an integer) half_st float_st double_st quad_st
- all operators and mathematical functions overloaded
 ⇒ few modifications in user programs
- overhead: $4 \times$ memory, $\approx 10 \times$ time
- efforts to \ time overhead (ex: implicit rounding mode change)
- support for MPI, OpenMP, GPU, vectorised codes

[Chesneaux'90], [Jézéquel & al'08], [Lamotte & al'10], [Eberhart & al'18],...

SAM (Stochastic Arithmetic in Multiprecision) [Graillat & al.'11]

 implements stochastic arithmetic in arbitrary precision (based on MPFR¹) mp_st stochastic type SAM (Stochastic Arithmetic in Multiprecision) [Graillat & al.'11]

- implements stochastic arithmetic in arbitrary precision (based on MPFR¹) mp_st stochastic type
- recent improvement: control of operations mixing different precisions

Ex: mp st<23> A; mp st<47> B; mp st<35> C;

⇒ accuracy estimation on FPGA

Benefits of stochastic arithmetic in HPC and arbitrary precision codes

¹www.mpfr.org

An example without/with CADNA

```
Computation of P(x, y) = 9x^4 - y^4 + 2y^2 [Rump'83]
```

```
#include <iostream>
using namespace std:
double rump(double x, double y) {
  return 9.0*x*x*x*x - v*v*v*v + 2.0*v*v:
}
int main() {
  cout.precision(15):
  cout.setf(ios::scientific,ios::floatfield);
  double x, y;
  x = 10864.0:
  y = 18817.0;
  cout << "P1="<< rump(x, v) << endl:
  x = 1.0/3.0;
  y = 2.0/3.0;
  cout << "P2="<< rump(x, v) << endl:
  return 0;
}
```

An example without/with CADNA

```
Computation of P(x, y) = 9x^4 - y^4 + 2y^2 [Rump'83]
```

```
#include <iostream>
using namespace std:
double rump(double x, double y) {
  return 9.0^{*}x^{*}x^{*}x - y^{*}y^{*}y + 2.0^{*}y^{*}y;
}
int main() {
  cout.precision(15):
  cout.setf(ios::scientific,ios::floatfield);
  double x, y;
  x = 10864.0:
  y = 18817.0;
  cout << "P1="<< rump(x, v) << endl:
  x = 1.0/3.0;
  y = 2.0/3.0;
  cout << "P2="<< rump(x, v) << endl:
  return 0;
}
P1=2.0000000000000000e+00
P2=8.02469135802469e-01
```

```
#include <iostream>
```

```
using namespace std;
double rump(double x. double v) {
 return 9.0*x*x*x*x-y*y*y*y+2.0*y*y;
}
int main() {
 cout.precision(15);
 cout.setf(ios::scientific,ios::floatfield);
 double x, y;
 x=10864.0; y=18817.0;
 cout«"P1="«rump(x, y)«endl;
 x=1.0/3.0; y=2.0/3.0;
 cout«"P2="«rump(x, y)«endl;
 return 0;
```

```
}___
```

```
#include <iostream>
#include <cadna.h>
using namespace std;
double rump(double x. double v) {
  return 9.0*x*x*x*x-y*y*y*y+2.0*y*y;
}
int main() {
  cout.precision(15);
  cout.setf(ios::scientific,ios::floatfield);
  cadna_init(-1);
  double x, y;
  x=10864.0; y=18817.0;
  cout«"P1="«rump(x, y)«endl;
  x=1.0/3.0; y=2.0/3.0;
  cout«"P2="«rump(x, y)«endl;
  cadna_end();
  return 0:
```

}

```
#include <iostream>
#include <cadna.h>
using namespace std;
double rump(double x. double v) {
  return 9.0*x*x*x*x-y*y*y*y+2.0*y*y;
}
int main() {
  cout.precision(15);
  cout.setf(ios::scientific,ios::floatfield);
  cadna_init(-1);
  double x, y;
  x=10864.0; y=18817.0;
  cout«"P1="«rump(x, y)«endl;
  x=1.0/3.0; y=2.0/3.0;
  cout«"P2="«rump(x, y)«endl;
  cadna end():
  return 0:
```

}

```
#include <iostream>
#include <cadna.h>
using namespace std;
double st rump(double st x. double st y) {
  return 9.0*x*x*x*x-y*y*y*y+2.0*y*y;
}
int main() {
  cout.precision(15);
  cout.setf(ios::scientific,ios::floatfield);
  cadna_init(-1);
  double_st x, y;
  x=10864.0; y=18817.0;
  cout«"P1="«rump(x, y)«endl;
  x=1.0/3.0; y=2.0/3.0;
  cout«"P2="«rump(x, y)«endl;
  cadna end():
  return 0:
```

}

only correct digits are displayed

CADNA_C software Self-validation detection: ON Mathematical instabilities detection: ON Branching instabilities detection: ON Intrinsic instabilities detection: ON Cancellation instabilities detection: ON

P1= @.0 (no correct digits) P2= 0.802469135802469E+000

There are 2 numerical instabilities 2 LOSS(ES) OF ACCURACY DUE TO CANCELLATION(S)

PROMISE (PRecision OptiMISE)

promise.lip6.fr

PROMISE

- provides a mixed precision code (half, single, double, quad) taking into account a required accuracy
- uses CADNA to validate a type configuration
- uses the Delta Debug algorithm [Zeller'09] to search for a valid type configuration with a mean complexity of $O(n\log(n))$ for *n* variables.

[Graillat & al.'19], [Jézéquel & al.'21]

Discrete Stochastic Arithmetic (DSA) and related tools

2 Computation of multiple polynomial roots using DSA

3 Fast numerical validation of HPC codes

S. Graillat, F. Jézéquel, E. Queiros Martins, M. Spyropoulos, Computing multiple roots of polynomials in stochastic arithmetic with Newton method and approximate GCD, 2021. http://hal.archives-ouvertes.fr/hal-03274453

Newton based methods

To compute a root with multiplicity m of a polynomial P from an initial approximation x_0 :

Newton method

$$x_{n+1} = x_n - \frac{P(x_n)}{P'(x_n)}$$

single root (m = 1): quadratic convergence ☺

multiple root (m > 1): linear convergence ☺

modified Newton method

$$x_{n+1} = x_n - m \frac{P(x_n)}{P'(x_n)}$$

- quadratic convergence for m > 1 ☺
- *m* is required ③

Computation of the (multiple) roots of a polynomial P

Algorithm based on GCD and Newton method

- $\bigcirc \quad G(x) = gcd(P(x), P'(x))$
- 2 P(x)/G(x) has single roots \rightarrow Newton method

Computing multiple polynomial roots and polynomial GCD: ill-posed problems in floating-point arithmetic $\underline{\wedge}$

Effects of a perturbation ε

Let $P_{\varepsilon}(x) = (x-1)^2 - \varepsilon$ • $\varepsilon = 0$: 1 double root, $\varepsilon > 0$: 2 single roots $1 \pm \sqrt{\varepsilon}$ Let Q(x) = (x-1)• $\varepsilon = 0$: $gcd(P_{\varepsilon}(x), Q(x)) = x - 1$, $\varepsilon \neq 0$: $gcd(P_{\varepsilon}(x), Q(x)) = 1$

approximate GCD, quasi-GCD

[Schönhage'85], [Noda& al'91], [Emiris & al'97], [Beckermann & al'98], [Chin & al'98], [Karmarkar'98], [Pan'01], [Zeng'11], [Nagasaka'21]

- related to the computation of the exact GCD of close polynomials
- costful 🙂

We propose stochastic versions of

- polynomial GCD
- polynomial Euclidean division
- Newton method

that lead to accurate computation of (possibly multiple) polynomial roots.

Newton iterations: $x_{n+1} = x_n - P(x_n)/P'(x_n)$

Algorithm 1: Newton method in classic floating-point arithmetic

 $x = x_0$ do y = x x = y - P(y) / P'(y)while $|x - y| > \varepsilon \leftarrow suitable \varepsilon$?

Newton method in stochastic arithmetic

Newton iterations: $x_{n+1} = x_n - P(x_n)/P'(x_n)$

Algorithm 2: stochastic Newton method: st-Newton

 $x = x_0$ do y = x x = y - P(y) / P'(y)while $x \neq y \leftarrow optimal stopping criterion$

When $x_n = x_{n+1}$

- the digits in x_n and x_{n+1} not affected by rounding errors are the same
- $x_n x_{n+1}$ is numerical noise, so we avoid useless iterations.

Number of exact digits on the computed result

Theorem [Graillat & al'16]

If x_n and x_{n+1} be two successive approximations computed using Newton method of a polynomial single root α , $C_{x_n,x_{n+1}} \sim_{\infty} C_{x_n,\alpha}$.

 $C_{a,b}$: number of significant digits common to *a* and *b*.

⇒ In the convergence zone, the digits common to x_n and x_{n+1} are also in common with the exact root α .

In stochastic arithmetic

When $x_n = x_{n+1}$, the digits in x_n and x_{n+1} not affected by rounding errors are the same and are in common with the exact root α .

 \Rightarrow In the computed result, the digits estimated correct by DSA are those of α .

Algorithm 3: Stochastic polynomial Euclidean division: st-Euclidean-div

```
Data: polynomial A of degree n, polynomial B of degree m, with 0 \le m \le n
Result: polynomials Q and R s.t. A = B * Q + R
R = A
for i = n - m to 0 do
   if lc(R) \neq 0 \leftarrow we discard numerical noise then
       // tests if degree(R) = m + i, lc(R): leading coefficient of R
       q_i = lc(R)/lc(B)
       R = R - q_i x^i B
   end
   else
       q_i = 0
   end
end
return Q = \sum_{i=0}^{n-m} q_i x^i and R
```

Algorithm 4: stochastic polynomial GCD: st-gcd

```
Data: polynomials A and B

Result: stochastic GCD of A and B

R_0 = A

R_1 = B

i = 1

while R_i \not > 0 do

\begin{vmatrix} R_{i+1} = \text{remainder} (\text{st-Euclidean-div}(R_{i-1}, R_i)) // R_{i+1} = R_{i-1} \mod R_i

i = i + 1

end
```

return R_{i-1}

Computation of gcd(P, P') with $P(x) = (3x - 1)^n$

 R_2 should be null, and the returned result should be $R_1 = P'$ of degree n-1.

- In classic floating-point arithmetic, R₂ may have non-zero coefficients with different orders of magnitude (stopping criterion ?)
 ⇒ unexpected iterations, incorrect results
- In stochastic arithmetic, R₂ coefficients are @.0
 ⇒ returned polynomial with correct degree.

Algorithm 5: Computation of polynomial roots based on st-gcd and st-Newton

Data: a polynomial P and an array X_0 of initial approximations of its roots **Result:** an array X of approximations of the roots

```
G = \mathsf{st-gcd}(P, P')
```

```
Q =quotient(st-Euclidean-div(P, G))
```

- d = degree(Q)
- if $d \le 4$ then

computation of X using adequate formulas

```
// Cardan's method if d is 3, Ferrari's if d is 4 [Kurosh'88]
```

end

else

```
for i=1 to d do

| X[i]=st-Newton(Q, X_0[i])

end
```

end

- Q computed once whatever the number of roots.
- If *d* ≥ 5, Newton method applied to a (low-degree) polynomial having only single roots.

Comparison with modified Newton method

Computation of multiple roots based on modified Newton iterations:

$$x_{n+1} = x_n - m \frac{P(x_n)}{P'(x_n)}$$

 \Rightarrow *m* is required

Proposition [Yakoubsohn'03]

Let (x_n) be the sequence of approximations computed using Newton method of the root α of multiplicity *m* of a polynomial. Then

$$\lim_{i \to \infty} \frac{x_{i+2} - x_{i+1}}{x_{i+1} - x_i} = 1 - \frac{1}{m}.$$

 \Rightarrow m can be estimated from 3 successive iterates of Newton method

Algorithm in stochastic arithmetic [Graillat & al'16]

- Newton method ⇒ m
- modified Newton applied iteratively working precision doubled at each iteration

Benefits of stochastic arithmetic in HPC and arbitrary precision codes

Carried out using SAM

Working precision (refers also to the initial precision in [Graillat & al'16])

Precision = Requested_accuracy * Rate with Rate>1

Examples of tested polynomials (more in [Graillat & al'21])

 $Q_n(x) = (3x-2)^{n_1}(7x-3)^{n_2}(13x-4)^{n_3}(19x-2)^{n_4}(23x-1)^{n_5}$

Roots denoted as $\beta_1 = 2/3$, $\beta_2 = 3/7$, $\beta_3 = 4/13$, $\beta_4 = 2/19$, and $\beta_5 = 1/23$

		,		C <i>n</i>	
$n = \sum_{i=1}^{5} n_i$	n_1	n_2	n_3	n_4	n_5
55	13	12	11	10	9
105	18	19	21	22	25
5000	1000				

Degrees of polynomials Q_n :

Computation based on st-gcd and st-Newton

Doly	#Digits		Pata	Performance	
FOIY.	Requested	Exact	nale	Time (s)	Ratio
Q55	100	109-111	1.3	3.63E-3	5.8e+01
	500	530-532	1.1	8.51E-3	1.1e+03
	1000	1079-1081	1.1	1.60E-2	3.5e+03
Q ₁₀₅	100	107-109	1.3	5.04e-03	1.8e+02
	500	577-579	1.2	1.36e-02	5.6e+03
	1000	1276-1278	1.3	2.26e-02	2.3e+04
Q ₅₀₀₀	100	104-106	1.5	1.77e-01	N.A.
	500	503-506	1.1	3.35e-01	N.A.
	1000	1054-1056	1.1	6.40e-01	N.A.
	5000	5454-5456	1.1	5.00e+00	N.A.

- Exact: #decimal digits in common with the exact roots = #digits estimated by DSA, depends on the root
- Rate: minimum rate s.t. accuracy requirement satisfied (determined starting from 1.1 and increasing by steps of 0.1)
- Time to compute all the roots
- Performance ratio: w.r.t. modified Newton method

Computation using modified Newton method

In [Graillat & al'16]: polynomial with at most 4 roots of degree 52.

Poly	Root	#Digits		Pata	Time (c)
FOIy.		Requested	Exact	nale	11110 (5)
Q105	β_1		100	2.7	1.01e-01
	β_2	100	100	2.9	1.20e-01
	β_3		100	4.1	2.48e-01
	β_4		102	3.1	1.64e-01
	β_5		102	4.1	2.63e-01
	β_1		506	3.8	8.33e+00
	β_2	500	507	3.9	9.04e+00
	β_3		508	5.1	1.75e+01
	β_4		506	5.0	1.70e+01
	β_5		501	5.8	2.48e+01

- Exact: #decimal digits in common with the exact roots
 # #digits estimated by DSA
- higher working precision, depends on the root
- higher execution time
- fails for some polynomials (necessary working precision too high)

- The proposed algorithm efficiently and accurately computes multiple polynomial roots
- Thanks to DSA
 - numerical noise discarded
 - optimal stopping criteria
 - digits estimated correct by DSA in common with the exact roots

- Discrete Stochastic Arithmetic (DSA) and related tools
- 2 Computation of multiple polynomial roots using DSA
- 3 Fast numerical validation of HPC codes

F. Jézéquel, S. Graillat, D. Mukunoki, T. Imamura, R. lakymchuk, Can we avoid rounding-error estimation in HPC codes and still get trustworthy results?, NSV'20, LNCS, 12549, p. 163–177, 2020.

http://hal.archives-ouvertes.fr/hal-02925976

Numerical validation is crucial... but it may be costful \odot

- execution time overhead
- development cost induced by the application of numerical validation methods to HPC codes

Numerical validation is crucial... but it may be costful \odot

- execution time overhead
- development cost induced by the application of numerical validation methods to HPC codes

Can we address this cost problem ...and still get trustworthy results?

Yes, when the input data is affected by rounding and/or measurement errors.

Let y = f(x) be an exact result and $\hat{y} = \hat{f}(x)$ be the associated computed result.

- The forward error is the difference between y and \hat{y} .
- The backward analysis tries to seek for Δx s.t. ŷ = f(x + Δx).
 Δx is the backward error associated with ŷ.
 It measures the distance between the problem that is solved and the initial one.
- The condition number *C* of the problem is defined as:

$$C := \lim_{\varepsilon \to 0^+} \sup_{|\Delta x| \le \varepsilon} \left[\frac{|f(x + \Delta x) - f(x)|}{|f(x)|} / \frac{|\Delta x|}{|x|} \right].$$

It measures the effect on the result of data perturbation.

Error induced by perturbed data

The relative rounding error is denoted by u.

- binary64 format (double precision): u = 2⁻⁵³
- *binary32* format (single precision): $\mathbf{u} = 2^{-24}$.

If the algorithm is backward-stable (*i.e.* the backward error is of the order of **u**)

 $|f(x) - \widehat{f}(x)| / |f(x)| \lesssim C\mathbf{u}.$

If the input data are perturbed, *i.e.* the input data are not x but $\hat{x} = x(1+\delta)$, then one computes $\hat{f}(\hat{x})$ with

$$|f(x) - \widehat{f}(\widehat{x})| / |f(x)| \lesssim C(\mathbf{u} + |\delta|).$$

If $|\delta| \gg \mathbf{u}$, the rounding error generated by \hat{f} is negligible w.r.t. $C|\delta|$.

 \Rightarrow Estimating this rounding error may be avoided.

Error induced by perturbed data

The relative rounding error is denoted by u.

- *binary64* format (double precision): $\mathbf{u} = 2^{-53}$
- *binary32* format (single precision): $\mathbf{u} = 2^{-24}$.

If the algorithm is backward-stable (*i.e.* the backward error is of the order of **u**)

 $|f(x) - \widehat{f}(x)| / |f(x)| \lesssim C\mathbf{u}.$

If the input data are perturbed, *i.e.* the input data are not x but $\hat{x} = x(1+\delta)$, then one computes $\hat{f}(\hat{x})$ with

$$|f(x) - \widehat{f}(\widehat{x})| / |f(x)| \lesssim C(\mathbf{u} + |\delta|).$$

If $|\delta| \gg \mathbf{u}$, the rounding error generated by \hat{f} is negligible w.r.t. $C|\delta|$.

 \Rightarrow Estimating this rounding error may be avoided.

Computation routines are executed in a code that is controlled using DSA.

Their input data are affected by errors (rounding errors and/or measurement errors).

Computation routines are executed in a code that is controlled using DSA. Their input data are affected by errors (rounding errors and/or measurement errors).

Computation with a call to CADNA routines:

• D and R consist in stochastic arrays (each element is a triplet).

 \Rightarrow we compare the number of correct digits (estimated by CADNA) in R and R'

Computation routines are executed in a code that is controlled using DSA. Their input data are affected by errors (rounding errors and/or measurement errors).

Computation with 3 calls to classic routines:

- input data: 3 classic floating-point arrays D_1, D_2, D_3 created from the triplets of D
- We get 3 classic floating-point arrays R'_1, R'_2, R'_3 .
- A stochastic array R' created from R'_1, R'_2, R'_3 can be used in the next parts of the code.

 \Rightarrow we compare the number of correct digits (estimated by CADNA) in R and R'

Computation routines are executed in a code that is controlled using DSA. Their input data are affected by errors (rounding errors and/or measurement errors).

Computation with 3 calls to classic routines:

- input data: 3 classic floating-point arrays D_1, D_2, D_3 created from the triplets of D
- We get 3 classic floating-point arrays R'_1, R'_2, R'_3 .
- A stochastic array R' created from R'_1, R'_2, R'_3 can be used in the next parts of the code.
- \Rightarrow we compare the number of correct digits (estimated by CADNA) in R and R'

Each random input value is perturbed with a relative error δ .

For $i = 1, ..., n^2$ (matrix mult.) or for i = 1, ..., n (matrix-vector mult.) we analyze:

- the accuracy C_{R^i} of the element R^i of R
- the accuracy $C_{R'^i}$ of the element R'^i of R'

•
$$\Delta^i = \left| C_{R^i} - C_{R'^i} \right|$$

Accuracy comparison

in double precision

	accu	iracy	accuracy difference			
δ	δ of R		between R & R'			
	mean	min-max	mean	max		
Multiplication of matrices of size 500						
1.e-14	13.9	9-15	2.5e-02	2		
1.e-13	12.8	8-15	5.8e-03	1		
1.e-12	11.9	7-14	4.2e-04	1		
1.e-11	10.9	6-13	2.4e-05	1		
Multiplication of a matrix of size 1000 with a vector						
1.e-14	13.9	12-15	4.6e-02	1		
1.e-13	12.7	11-14	7.0e-03	1		
1.e-12	11.8	10-13	0	0		
1.e-11	10.9	9-12	0	0		

- As the order of magnitude of $\delta \nearrow$ the mean accuracy \searrow by 1 digit.
- Low difference between the accuracy of R & R'

We compare the performance of the CADNA routine with codes using:

- a naive floating-point algorithm
- the Intel MKL implementation.

In both cases: sequential and OpenMP 4 cores

Performance for matrix multiplication

Execution time including matrix multiplications and array copies:

- The codes using 3 classic matrix multiplications perform better than the CADNA routine.
- For matrices of size 2000, the MKL OpenMP implementation outperforms the CADNA routine by a factor 294 (this gain increases on many-cores).

Benefits of stochastic arithmetic in HPC and arbitrary precision codes

13-15 Sept. 2021

Performance for matrix multiplication

Most of the execution time is spent in matrix multiplication.

Performance for matrix-vector multiplication

Execution time including matrix-vector multiplications and array copies:

The CADNA routine performs better than the other sequential codes.

Performance for matrix-vector multiplication

 Except with the CADNA routine, the main part of the execution time is spent in array copies.

- In a code controlled using CADNA, if computation-intensive routines are run with data affected by errors,
 - classic BLAS routines can be executed 3 times instead of the CADNA routines with almost no accuracy difference on the results
 - the performance gain can be high with BLAS routines from an optimized library
 - but we lose the instability detection.
- The same conclusions would be valid with an HPC code using MPI.
 CADNA-MPI routines ⇒ optimized floating-point MPI routines.

Advantages of DSA

- In one execution: accuracy of any result, complete list of numerical instabilities
- Detection of numerical noise ⇒ optimal stopping criteria
- Easily applied to real life applications
- Support for wide range of codes (vectorised, GPU, MPI, OpenMP)

Perspectives

- Extend our approach (3 × classic routines) to large simulation codes
- Computation of multiple polynomial roots: optimal working precision?
- Floating-point autotuning in arbitrary precision
- Combine mixed precision algorithms and floating-point autotuning

References

On Discrete Stochastic Arithmetic (DSA):

J. Vignes, Discrete Stochastic Arithmetic for Validating Results of Numerical Software, Num. Algo., 37, 1–4, p. 377–390, 2004.

On the computation of multiple roots of polynomials with DSA:

S. Graillat, F. Jézéquel, E. Queiros Martins, M. Spyropoulos, Computing multiple roots of polynomials in stochastic arithmetic with Newton method and approximate GCD, 2021. http://hal.archives-ouvertes.fr/hal-03274453

S. Graillat, F. Jézéquel, and M. S. Ibrahim, Dynamical Control of Newton's Method for Multiple Roots of Polynomials, Reliable Computing, 21, p. 117–139, 2016. http://hal.archives-ouvertes.fr/hal-01363961

On the numerical validation of BLAS routines with perturbed data:

F. Jézéquel, S. Graillat, D. Mukunoki, T. Imamura, R. lakymchuk, Can we avoid rounding-error estimation in HPC codes and still get trustworthy results?, NSV'20, LNCS, 12549, p. 163–177, 2020.

http://hal.archives-ouvertes.fr/hal-02925976

Tools related to DSA:

- CADNA: http://cadna.lip6.fr
- SAM: http://www-pequan.lip6.fr/~jezequel/SAM
- PROMISE: http://promise.lip6.fr

Thanks for your attention!