
Benefits of stochastic arithmetic
in high performance simulations

and arbitrary precision codes

Fabienne Jézéquel
LIP6, Sorbonne Université, France

http://www.lip6.fr/Fabienne.Jezequel

SCAN 2020 (19th International Symposium on Scientific Computing,
Computer Arithmetic, and Verified Numerical Computations)

13-15 Sept. 2021

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 1

http://www.lip6.fr/Fabienne.Jezequel

Jean Vignes
1933-2021

Jean Vignes passed away in August. He proposed the CESTAC method and
stochastic arithmetic for rounding error estimation.

Jean Vignes is at the origine of most results presented in this talk.

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 2

Rounding error analysis
Several approaches

Interval arithmetic
guaranteed bounds for each computed result
the error may be overestimated
specific algorithms
ex: INTLAB [Rump’99]

Static analysis
no execution, rigorous analysis, all possible input values taken into account
not suited to large programs
ex: FLUCTUAT [Goubault & al.’06], FLDLib [Jacquemin & al.’19]

Probabilistic approach
estimates the number of correct digits of any computed result
can be used in HPC programs
requires no algorithm modification
ex: CADNA [Chesneaux’90], VERIFICARLO [Denis & al.’16],
VERROU [Févotte & al.’17]

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 3

Outline

1 Discrete Stochastic Arithmetic (DSA) and related tools

2 Benefits of DSA for the computation of multiple polynomial roots

3 Fast numerical validation of HPC codes

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 4

The CESTAC method [Vignes & al’74], [Chesneaux & al’88]

Classic arithmetic

A ⊕B R

R =3.14237654356891

CESTAC method

A1 ⊕B1

A2 ⊕B2

A3 ⊕B3

Random
rounding

R1

R2

R3

R1 =3.141354786390989
R2 =3.143689456834534
R3 =3.142579087356598

each operation executed N = 3 times with a random rounding mode

number of correct digits in the result estimated using Student’s test with
the confidence level 95%

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 5

The CESTAC method [Vignes & al’74], [Chesneaux & al’88]

Classic arithmetic

A ⊕B R

R =3.14237654356891

CESTAC method

A1 ⊕B1

A2 ⊕B2

A3 ⊕B3

Random
rounding

R1

R2

R3

R1 =3.141354786390989
R2 =3.143689456834534
R3 =3.142579087356598

each operation executed N = 3 times with a random rounding mode
number of correct digits in the result estimated using Student’s test with
the confidence level 95%

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 5

How to optimize stopping criteria?

Let us consider a general iterative algorithm: Un+1 = F (Un).

while (fabs(X-Y) > EPSILON) {
X = Y;
Y = F(X);

}

ε too low =⇒ risk of infinite loop
ε too high =⇒ too early termination.

It would be optimal to stop when X −Y is numerical noise.

Such a stopping criterion
would enable one to develop new numerical algorithms
is possible thanks to the concept of computational zero.

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 6

How to optimize stopping criteria?

Let us consider a general iterative algorithm: Un+1 = F (Un).

while (fabs(X-Y) > EPSILON) {
X = Y;
Y = F(X);

}

ε too low =⇒ risk of infinite loop
ε too high =⇒ too early termination.

It would be optimal to stop when X −Y is numerical noise.

Such a stopping criterion
would enable one to develop new numerical algorithms
is possible thanks to the concept of computational zero.

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 6

The concept of computational zero [Vignes’86]

Definition
A result R computed using the CESTAC method (N -sample) is a computational
zero, denoted by @.0, if

∀i ,Ri = 0 (mathematical zero)
or R has no correct digits (numerical noise).

R is a computed result which, because of round-off errors, cannot be
distinguished from 0.

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 7

The stochastic definitions [Chesneaux’92]

An equality concept and order relations that take into account rounding errors
have been introduced:

Let X and Y be two results computed using the CESTAC method (N -samples).
X is stochastically equal to Y , noted X s= Y , iff

X −Y = @.0.

X is stochastically strictly greater than Y , noted X s> Y , iff

X > Y and X s=/ Y

X is stochastically greater than or equal to Y , noted X s≥ Y , iff

X ≥ Y or X s= Y

Ex: if X −Y is numerical noise, X s> Y is false, but X s≥ Y is true.

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 8

Discrete Stochastic Arithmetic

Discrete Stochastic Arithmetic (DSA) is the joint use of
the CESTAC method
the computational zero
the stochastic relation definitions.

[Chesneaux & al’92], [Vignes’93], [Vignes’04]

With DSA, operations are executed synchronously
⇒ detection of numerical instabilities

ex: if (A>B) with A-B numerical noise
⇒ optimization of stopping criteria

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 9

Discrete Stochastic Arithmetic

Discrete Stochastic Arithmetic (DSA) is the joint use of
the CESTAC method
the computational zero
the stochastic relation definitions.

[Chesneaux & al’92], [Vignes’93], [Vignes’04]

With DSA, operations are executed synchronously
⇒ detection of numerical instabilities

ex: if (A>B) with A-B numerical noise
⇒ optimization of stopping criteria

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 9

The CADNA library
cadna.lip6.fr

implements stochastic arithmetic for C/C++ or Fortran codes
provides stochastic types (3 floating-point variables and an integer)

half_st float_st double_st quad_st

all operators and mathematical functions overloaded
⇒ few modifications in user programs
overhead: 4× memory, ≈ 10× time
efforts to ↘ time overhead (ex: implicit rounding mode change)
support for MPI, OpenMP, GPU, vectorised codes

[Chesneaux’90], [Jézéquel & al’08], [Lamotte & al’10], [Eberhart & al’18],...
Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 10

cadna.lip6.fr

The SAM library
www-pequan.lip6.fr/~jezequel/SAM

SAM (Stochastic Arithmetic in Multiprecision) [Graillat & al.’11]

implements stochastic arithmetic in arbitrary precision (based on MPFR1)
mp_st stochastic type

recent improvement: control of operations mixing different precisions

Ex: mp_st<23> A; mp_st<47> B; mp_st<35> C;

C = A ⊕B

35 bits 23 bits 47 bits

⇒ accuracy estimation on FPGA

1www.mpfr.org
Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 11

www-pequan.lip6.fr/~jezequel/SAM
www.mpfr.org

The SAM library
www-pequan.lip6.fr/~jezequel/SAM

SAM (Stochastic Arithmetic in Multiprecision) [Graillat & al.’11]

implements stochastic arithmetic in arbitrary precision (based on MPFR1)
mp_st stochastic type

recent improvement: control of operations mixing different precisions

Ex: mp_st<23> A; mp_st<47> B; mp_st<35> C;

C = A ⊕B

35 bits 23 bits 47 bits

⇒ accuracy estimation on FPGA

1www.mpfr.org
Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 11

www-pequan.lip6.fr/~jezequel/SAM
www.mpfr.org

An example without/with CADNA

Computation of P (x, y) = 9x4 − y4 +2y2 [Rump’83]

#include <iostream >
using namespace std;
double rump(double x, double y) {
return 9.0*x*x*x*x - y*y*y*y + 2.0*y*y;

}
int main() {

cout.precision(15);
cout.setf(ios::scientific ,ios::floatfield);
double x, y;
x = 10864.0;
y = 18817.0;
cout<<"P1="<<rump(x, y)<< endl;
x = 1.0/3.0;
y = 2.0/3.0;
cout<<"P2="<<rump(x, y)<< endl;
return 0;

}

P1=2.00000000000000e+00
P2=8.02469135802469e–01

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 12

An example without/with CADNA

Computation of P (x, y) = 9x4 − y4 +2y2 [Rump’83]

#include <iostream >
using namespace std;
double rump(double x, double y) {
return 9.0*x*x*x*x - y*y*y*y + 2.0*y*y;

}
int main() {

cout.precision(15);
cout.setf(ios::scientific ,ios::floatfield);
double x, y;
x = 10864.0;
y = 18817.0;
cout<<"P1="<<rump(x, y)<< endl;
x = 1.0/3.0;
y = 2.0/3.0;
cout<<"P2="<<rump(x, y)<< endl;
return 0;

}

P1=2.00000000000000e+00
P2=8.02469135802469e–01

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 12

#include <iostream>

#include <cadna.h>

using namespace std;
double rump(double x, double y) {
return 9.0*x*x*x*x-y*y*y*y+2.0*y*y;

}
int main() {
cout.precision(15);
cout.setf(ios::scientific,ios::floatfield);

cadna_init(-1);

double x, y;
x=10864.0; y=18817.0;
cout«"P1="«rump(x, y)«endl;
x=1.0/3.0; y=2.0/3.0;
cout«"P2="«rump(x, y)«endl;

cadna_end();

return 0;
}

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 13

#include <iostream>
#include <cadna.h>
using namespace std;
double rump(double x, double y) {
return 9.0*x*x*x*x-y*y*y*y+2.0*y*y;

}
int main() {
cout.precision(15);
cout.setf(ios::scientific,ios::floatfield);
cadna_init(-1);
double x, y;
x=10864.0; y=18817.0;
cout«"P1="«rump(x, y)«endl;
x=1.0/3.0; y=2.0/3.0;
cout«"P2="«rump(x, y)«endl;
cadna_end();
return 0;

}

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 13

#include <iostream>
#include <cadna.h>
using namespace std;
double rump(double x, double y) {
return 9.0*x*x*x*x-y*y*y*y+2.0*y*y;

}
int main() {
cout.precision(15);
cout.setf(ios::scientific,ios::floatfield);
cadna_init(-1);
double x, y;
x=10864.0; y=18817.0;
cout«"P1="«rump(x, y)«endl;
x=1.0/3.0; y=2.0/3.0;
cout«"P2="«rump(x, y)«endl;
cadna_end();
return 0;

}

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 13

#include <iostream>
#include <cadna.h>
using namespace std;
double_st rump(double_st x, double_st y) {
return 9.0*x*x*x*x-y*y*y*y+2.0*y*y;

}
int main() {
cout.precision(15);
cout.setf(ios::scientific,ios::floatfield);
cadna_init(-1);
double_st x, y;
x=10864.0; y=18817.0;
cout«"P1="«rump(x, y)«endl;
x=1.0/3.0; y=2.0/3.0;
cout«"P2="«rump(x, y)«endl;
cadna_end();
return 0;

}

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 13

Results with CADNA
only correct digits are displayed

CADNA_C software
Self-validation detection: ON
Mathematical instabilities detection: ON
Branching instabilities detection: ON
Intrinsic instabilities detection: ON
Cancellation instabilities detection: ON
—————————————————————
P1= @.0 (no correct digits)
P2= 0.802469135802469E+000
—————————————————————
There are 2 numerical instabilities
2 LOSS(ES) OF ACCURACY DUE TO CANCELLATION(S)

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 14

PROMISE (PRecision OptiMISE)
promise.lip6.fr

provides a mixed precision code (half, single, double, quad)
taking into account a required accuracy
uses CADNA to validate a type configuration
uses the Delta Debug algorithm [Zeller’09] to search for a valid type
configuration with a mean complexity of O(n log(n)) for n variables.

[Graillat & al.’19], [Jézéquel & al.’21]

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 15

promise.lip6.fr

Outline

1 Discrete Stochastic Arithmetic (DSA) and related tools

2 Computation of multiple polynomial roots using DSA

3 Fast numerical validation of HPC codes

q S. Graillat, F. Jézéquel, E. Queiros Martins, M. Spyropoulos, Computing multiple roots of
polynomials in stochastic arithmetic with Newton method and approximate GCD, 2021.
http://hal.archives-ouvertes.fr/hal-03274453

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 16

http://hal.archives-ouvertes.fr/hal-03274453

Newton based methods

To compute a root with multiplicity m of a polynomial P from an initial
approximation x0:

Newton method

xn+1 = xn − P (xn)

P ′(xn)

single root (m = 1): quadratic convergence ,

multiple root (m > 1): linear convergence /

modified Newton method

xn+1 = xn −m
P (xn)

P ′(xn)

quadratic convergence for m > 1 ,

m is required /

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 17

Computation of the (multiple) roots of a polynomial P

Algorithm based on GCD and Newton method
1 G(x) = g cd(P (x),P ′(x))
2 P (x)/G(x) has single roots → Newton method

Computing multiple polynomial roots and polynomial GCD: ill-posed problems
in floating-point arithmetic B

Effects of a perturbation ε
Let Pε(x) = (x −1)2 −ε

ε= 0: 1 double root, ε> 0: 2 single roots 1± p
ε

Let Q(x) = (x −1)

ε= 0: gcd(Pε(x),Q(x)) = x −1, ε, 0: gcd(Pε(x),Q(x)) = 1

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 18

In floating-point arithmetic...

approximate GCD, quasi-GCD
[Schönhage’85], [Noda& al’91], [Emiris & al’97], [Beckermann & al’98], [Chin & al’98],
[Karmarkar’98], [Pan’01], [Zeng’11], [Nagasaka’21]

related to the computation of the exact GCD of close polynomials
costful /

We propose stochastic versions of

polynomial GCD
polynomial Euclidean division
Newton method

that lead to accurate computation of (possibly multiple) polynomial roots.

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 19

Newton method in classic floating-point arithmetic

Newton iterations: xn+1 = xn −P (xn)/P ′(xn)

Algorithm 1: Newton method in classic floating-point arithmetic
x = x0

do
y = x
x = y −P (y)/P ′(y)

while |x − y | > ε ← suitable ε?

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 20

Newton method in stochastic arithmetic
Newton iterations: xn+1 = xn −P (xn)/P ′(xn)

Algorithm 2: stochastic Newton method: st-Newton
x = x0

do
y = x
x = y −P (y)/P ′(y)

while x s, y ← optimal stopping criterion

When xn s= xn+1

the digits in xn and xn+1 not affected by rounding errors are the same
xn −xn+1 is numerical noise, so we avoid useless iterations.

xn+1

xn

rounding errors

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 21

Number of exact digits on the computed result

Theorem [Graillat & al’16]

If xn and xn+1 be two successive approximations computed using Newton
method of a polynomial single root α, Cxn ,xn+1 ∼∞ Cxn ,α.

Ca,b : number of significant digits common to a and b.

⇒ In the convergence zone, the digits common to xn and xn+1 are also in
common with the exact root α.

In stochastic arithmetic
When xn s= xn+1, the digits in xn and xn+1 not affected by rounding errors are
the same and are in common with the exact root α.

xn+1

xn

α rounding errors

⇒ In the computed result, the digits estimated correct by DSA are those of α.
Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 22

Algorithm 3: Stochastic polynomial Euclidean division: st-Euclidean-div
Data: polynomial A of degree n, polynomial B of degree m, with 0≤m≤ n
Result: polynomials Q and R s.t. A = B ∗Q +R
R = A
for i = n −m to 0 do

if l c(R) s, 0 ← we discard numerical noise then
// tests if deg r ee(R) = m + i, l c(R): leading coefficient of R

qi = lc(R)/lc(B)

R = R −qi xi B
end
else

qi = 0
end

end
return Q =∑n−m

i=0 qi xi and R

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 23

Algorithm 4: stochastic polynomial GCD: st-gcd
Data: polynomials A and B
Result: stochastic GCD of A and B
R0 = A
R1 = B
i = 1
while Ri s, 0 do

Ri+1 =remainder (st-Euclidean-div(Ri−1, Ri)) // Ri+1 = Ri−1 Mod Ri

i = i +1
end
return Ri−1

Computation of g cd(P,P ′) with P (x) = (3x −1)n

R2 should be null, and the returned result should be R1 = P ′ of degree n −1.

In classic floating-point arithmetic, R2 may have non-zero coefficients with
different orders of magnitude (stopping criterion ?)
⇒ unexpected iterations, incorrect results
In stochastic arithmetic, R2 coefficients are @.0
⇒ returned polynomial with correct degree.

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 24

Algorithm 5: Computation of polynomial roots based on st-gcd and st-
Newton
Data: a polynomial P and an array X0 of initial approximations of its roots
Result: an array X of approximations of the roots
G =st-gcd(P,P ′)
Q =quotient(st-Euclidean-div(P , G))
d =degree(Q)
if d ≤ 4 then

computation of X using adequate formulas
// Cardan’s method if d is 3, Ferrari’s if d is 4 [Kurosh’88]

end
else

for i=1 to d do
X [i]=st-Newton(Q, X0[i])

end
end

Q computed once whatever the number of roots.
If d ≥ 5, Newton method applied to a (low-degree) polynomial having only
single roots.

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 25

Comparison with modified Newton method
Computation of multiple roots based on modified Newton iterations:

xn+1 = xn −m
P (xn)

P ′(xn)

⇒ m is required

Proposition [Yakoubsohn’03]

Let (xn) be the sequence of approximations computed using Newton method of
the root α of multiplicity m of a polynomial. Then

lim
i→∞

xi+2 −xi+1

xi+1 −xi
= 1− 1

m
.

⇒ m can be estimated from 3 successive iterates of Newton method

Algorithm in stochastic arithmetic [Graillat & al’16]

Newton method ⇒ m
modified Newton applied iteratively
working precision doubled at each iteration

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 26

Numerical experiments
Carried out using SAM

Working precision (refers also to the initial precision in [Graillat & al’16])
Precision = Requested_accuracy ∗ Rate with Rate> 1

Examples of tested polynomials (more in [Graillat & al’21])

Qn(x) = (3x −2)n1 (7x −3)n2 (13x −4)n3 (19x −2)n4 (23x −1)n5

Roots denoted as β1 = 2/3, β2 = 3/7, β3 = 4/13, β4 = 2/19, and β5 = 1/23

Degrees of polynomials Qn :
n =∑5

i=1 ni n1 n2 n3 n4 n5

55 13 12 11 10 9
105 18 19 21 22 25
5000 1000

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 27

Computation based on st-gcd and st-Newton

Poly. #Digits Rate Performance
Requested Exact Time (s) Ratio

Q55

100 109-111 1.3 3.63E-3 5.8e+01
500 530-532 1.1 8.51E-3 1.1e+03

1000 1079-1081 1.1 1.60E-2 3.5e+03

Q105

100 107-109 1.3 5.04e-03 1.8e+02
500 577-579 1.2 1.36e-02 5.6e+03

1000 1276-1278 1.3 2.26e-02 2.3e+04

Q5000

100 104-106 1.5 1.77e-01 N.A.
500 503-506 1.1 3.35e-01 N.A.

1000 1054-1056 1.1 6.40e-01 N.A.
5000 5454-5456 1.1 5.00e+00 N.A.

Exact: #decimal digits in common with the exact roots
= #digits estimated by DSA, depends on the root
Rate: minimum rate s.t. accuracy requirement satisfied
(determined starting from 1.1 and increasing by steps of 0.1)
Time to compute all the roots
Performance ratio: w.r.t. modified Newton method

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 28

Computation using modified Newton method
In [Graillat & al’16]: polynomial with at most 4 roots of degree 52.

Poly. Root #Digits Rate Time (s)Requested Exact

Q105

β1

100

100 2.7 1.01e-01
β2 100 2.9 1.20e-01
β3 100 4.1 2.48e-01
β4 102 3.1 1.64e-01
β5 102 4.1 2.63e-01
β1

500

506 3.8 8.33e+00
β2 507 3.9 9.04e+00
β3 508 5.1 1.75e+01
β4 506 5.0 1.70e+01
β5 501 5.8 2.48e+01

Exact: #decimal digits in common with the exact roots
, #digits estimated by DSA
higher working precision, depends on the root
higher execution time
fails for some polynomials (necessary working precision too high)

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 29

To sum up

The proposed algorithm efficiently and accurately computes multiple
polynomial roots

Thanks to DSA
numerical noise discarded
optimal stopping criteria
digits estimated correct by DSA in common with the exact roots

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 30

Outline

1 Discrete Stochastic Arithmetic (DSA) and related tools

2 Computation of multiple polynomial roots using DSA

3 Fast numerical validation of HPC codes

q F. Jézéquel, S. Graillat, D. Mukunoki, T. Imamura, R. Iakymchuk, Can we avoid rounding-error
estimation in HPC codes and still get trustworthy results?, NSV’20, LNCS, 12549, p. 163–177,
2020.
http://hal.archives-ouvertes.fr/hal-02925976

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 31

http://hal.archives-ouvertes.fr/hal-02925976

How to reduce the cost of numerical validation?

Numerical validation is crucial... but it may be costful /
execution time overhead
development cost induced by the application of numerical validation
methods to HPC codes

Can we address this cost problem
...and still get trustworthy results?

Yes, when the input data is affected by rounding and/or measurement errors.

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 32

How to reduce the cost of numerical validation?

Numerical validation is crucial... but it may be costful /
execution time overhead
development cost induced by the application of numerical validation
methods to HPC codes

Can we address this cost problem
...and still get trustworthy results?

Yes, when the input data is affected by rounding and/or measurement errors.

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 32

Definitions

Let y = f (x) be an exact result and ŷ = f̂ (x) be the associated computed result.

The forward error is the difference between y and ŷ .

The backward analysis tries to seek for ∆x s.t. ŷ = f (x +∆x).
∆x is the backward error associated with ŷ .
It measures the distance between the problem that is solved and the initial
one.

The condition number C of the problem is defined as:

C := lim
ε→0+

sup
|∆x|≤ε

[| f (x +∆x)− f (x)|
| f (x)| /

|∆x|
|x|

]
.

It measures the effect on the result of data perturbation.

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 33

Error induced by perturbed data

The relative rounding error is denoted by u.

binary64 format (double precision): u = 2−53

binary32 format (single precision): u = 2−24.

If the algorithm is backward-stable (i.e. the backward error is of the order of u)

| f (x)− f̂ (x)|/| f (x)|.C u.

If the input data are perturbed, i.e. the input data are not x but x̂ = x(1+δ),
then one computes f̂ (x̂) with

| f (x)− f̂ (x̂)|/| f (x)|.C (u+|δ|).

If |δ|À u, the rounding error generated by f̂ is negligible w.r.t. C |δ|.
⇒ Estimating this rounding error may be avoided.

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 34

Error induced by perturbed data

The relative rounding error is denoted by u.

binary64 format (double precision): u = 2−53

binary32 format (single precision): u = 2−24.

If the algorithm is backward-stable (i.e. the backward error is of the order of u)

| f (x)− f̂ (x)|/| f (x)|.C u.

If the input data are perturbed, i.e. the input data are not x but x̂ = x(1+δ),
then one computes f̂ (x̂) with

| f (x)− f̂ (x̂)|/| f (x)|.C (u+|δ|).

If |δ|À u, the rounding error generated by f̂ is negligible w.r.t. C |δ|.
⇒ Estimating this rounding error may be avoided.

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 34

Combining DSA and standard floating-point arithmetic
Computation routines are executed in a code that is controlled using DSA.

Their input data are affected by errors (rounding errors and/or measurement
errors).

⇒ we compare the number of correct digits (estimated by CADNA) in R and R ′

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 35

Combining DSA and standard floating-point arithmetic
Computation routines are executed in a code that is controlled using DSA.

Their input data are affected by errors (rounding errors and/or measurement
errors).

Computation with a call to CADNA routines:

stochastic
data D

CADNA
routine(s)

stochastic
result R

D and R consist in stochastic arrays (each element is a triplet).

⇒ we compare the number of correct digits (estimated by CADNA) in R and R ′
Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 35

Combining DSA and standard floating-point arithmetic
Computation routines are executed in a code that is controlled using DSA.

Their input data are affected by errors (rounding errors and/or measurement
errors).

Computation with 3 calls to classic routines:

stochastic
data D

D2

D1

D3

classic routine(s)

classic routine(s)

classic routine(s)

R ′
2

R ′
1

R ′
3

stochastic
result R ′

input data: 3 classic floating-point arrays D1,D2,D3 created from the
triplets of D
We get 3 classic floating-point arrays R ′

1,R ′
2,R ′

3.
A stochastic array R ′ created from R ′

1,R ′
2,R ′

3 can be used in the next parts
of the code.

⇒ we compare the number of correct digits (estimated by CADNA) in R and R ′
Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 35

Combining DSA and standard floating-point arithmetic
Computation routines are executed in a code that is controlled using DSA.

Their input data are affected by errors (rounding errors and/or measurement
errors).

Computation with 3 calls to classic routines:

stochastic
data D

D2

D1

D3

classic routine(s)

classic routine(s)

classic routine(s)

R ′
2

R ′
1

R ′
3

stochastic
result R ′

input data: 3 classic floating-point arrays D1,D2,D3 created from the
triplets of D
We get 3 classic floating-point arrays R ′

1,R ′
2,R ′

3.
A stochastic array R ′ created from R ′

1,R ′
2,R ′

3 can be used in the next parts
of the code.

⇒ we compare the number of correct digits (estimated by CADNA) in R and R ′
Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 35

Accuracy comparison
Experimental setup

Each random input value is perturbed with a relative error δ.

For i = 1, . . . ,n2 (matrix mult.) or for i = 1, ...,n (matrix-vector mult.)
we analyze:

the accuracy CR i of the element R i of R

the accuracy CR ′i of the element R ′i of R ′

∆i = ∣∣CR i −CR ′i
∣∣

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 36

Accuracy comparison
in double precision

accuracy accuracy difference
δ of R between R & R ′

mean min-max mean max
Multiplication of matrices of size 500

1.e-14 13.9 9-15 2.5e-02 2
1.e-13 12.8 8-15 5.8e-03 1
1.e-12 11.9 7-14 4.2e-04 1
1.e-11 10.9 6-13 2.4e-05 1
Multiplication of a matrix of size 1000 with a vector
1.e-14 13.9 12-15 4.6e-02 1
1.e-13 12.7 11-14 7.0e-03 1
1.e-12 11.8 10-13 0 0
1.e-11 10.9 9-12 0 0

As the order of magnitude of δ ↗ the mean accuracy ↘ by 1 digit.
Low difference between the accuracy of R & R ′

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 37

Performance comparison

We compare the performance of the CADNA routine with codes using:
a naive floating-point algorithm
the Intel MKL implementation.

In both cases: sequential and OpenMP 4 cores

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 38

Performance for matrix multiplication

Execution time including matrix multiplications and array copies:

10-4

10-3

10-2

10-1

100

101

102

103

 400 800 1200 1600 2000

E
xe

cu
ti

o
n
 t

im
e
 (

s)

Matrix size (n)

CADNA
naive seq

naive OMP
MKL seq

MKL OMP

The codes using 3 classic matrix multiplications perform better than the
CADNA routine.
For matrices of size 2000, the MKL OpenMP implementation outperforms
the CADNA routine by a factor 294 (this gain increases on many-cores).

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 39

Performance for matrix multiplication

Execution time for matrices of size 2000:

 0

 20

 40

 60

 80

 100

 120

 140

CADNA
naive seq

naive OMP

MKL seq

MKL OMP

E
xe

cu
ti

o
n
 t

im
e
 (

s)

computation
array copies

Most of the execution time is spent in matrix multiplication.

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 40

Performance for matrix-vector multiplication

Execution time including matrix-vector multiplications and array copies:

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 2000 4000 6000 8000 10000

E
xe

cu
ti

o
n
 t

im
e
 (

s)

Matrix size (n)

CADNA
naive seq

naive OMP
MKL seq

MKL OMP

The CADNA routine performs better than the other sequential codes.

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 41

Performance for matrix-vector multiplication

Execution time for matrices of size 10000:

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

CADNA
naive seq

naive OMP

MKL seq

MKL OMP

E
xe

cu
ti

o
n
 t

im
e
 (

s)
computation
array copies

Except with the CADNA routine, the main part of the execution time is
spent in array copies.

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 42

To sum up

In a code controlled using CADNA, if computation-intensive routines are
run with data affected by errors,

classic BLAS routines can be executed 3 times instead of the CADNA
routines with almost no accuracy difference on the results
the performance gain can be high with BLAS routines from an optimized
library
but we lose the instability detection.

The same conclusions would be valid with an HPC code using MPI.
CADNA-MPI routines ⇒ optimized floating-point MPI routines.

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 43

Conclusion/Perspectives

Advantages of DSA
In one execution: accuracy of any result, complete list of numerical
instabilities
Detection of numerical noise ⇒ optimal stopping criteria
Easily applied to real life applications
Support for wide range of codes (vectorised, GPU, MPI, OpenMP)

Perspectives
Extend our approach (3 × classic routines) to large simulation codes
Computation of multiple polynomial roots: optimal working precision?
Floating-point autotuning in arbitrary precision
Combine mixed precision algorithms and floating-point autotuning

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 44

References
On Discrete Stochastic Arithmetic (DSA):
q J. Vignes, Discrete Stochastic Arithmetic for Validating Results of Numerical Software, Num.
Algo., 37, 1–4, p. 377–390, 2004.

On the computation of multiple roots of polynomials with DSA:
q S. Graillat, F. Jézéquel, E. Queiros Martins, M. Spyropoulos, Computing multiple roots of
polynomials in stochastic arithmetic with Newton method and approximate GCD, 2021.
http://hal.archives-ouvertes.fr/hal-03274453

q S. Graillat, F. Jézéquel, and M. S. Ibrahim, Dynamical Control of Newton’s Method for Multiple
Roots of Polynomials, Reliable Computing, 21, p. 117–139, 2016.
http://hal.archives-ouvertes.fr/hal-01363961

On the numerical validation of BLAS routines with perturbed data:
q F. Jézéquel, S. Graillat, D. Mukunoki, T. Imamura, R. Iakymchuk, Can we avoid rounding-error
estimation in HPC codes and still get trustworthy results?, NSV’20, LNCS, 12549, p. 163–177,
2020.
http://hal.archives-ouvertes.fr/hal-02925976

Tools related to DSA:

CADNA: http://cadna.lip6.fr
SAM: http://www-pequan.lip6.fr/~jezequel/SAM
PROMISE: http://promise.lip6.fr

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 45

http://hal.archives-ouvertes.fr/hal-03274453
http://hal.archives-ouvertes.fr/hal-01363961
http://hal.archives-ouvertes.fr/hal-02925976
http://cadna.lip6.fr
http://www-pequan.lip6.fr/~jezequel/SAM
http://promise.lip6.fr

Thanks for your attention!

Benefits of stochastic arithmetic in HPC and arbitrary precision codes 13-15 Sept. 2021 46

	Discrete Stochastic Arithmetic (DSA) and related tools
	Computation of multiple polynomial roots using DSA
	Fast numerical validation of HPC codes

