Fast rounding error estimation for compute-intensive operations using standard floating-point arithmetic

Fabienne Jézéquel¹, Stef Graillat¹, Daichi Mukunoki², Toshiyuki Imamura², Roman Iakymchuk¹

¹LIP6, Sorbonne Université, CNRS, Paris, France

²RIKEN Center for Computational Science, Kobe, Japan

Rencontres Arithmétiques du GdR Informatique Mathématique (RAIM) 27-28 May 2021

⇒ Numerical validation is crucial

- \Rightarrow Numerical validation is crucial ...but costful \bigcirc
 - execution time overhead
 - development cost induced by the application of numerical validation methods to HPC codes

- \Rightarrow Numerical validation is crucial ...but costful \bigcirc
 - execution time overhead
 - development cost induced by the application of numerical validation methods to HPC codes

Can we address this cost problem ...and still get trustworthy results?

Yes, when the input data is affected by rounding and/or measurement errors.

- Estimation of rounding errors: Discrete Stochastic Arithmetic (DSA) and the CADNA library
- error induced by perturbed data
- Our approach: combining DSA and standard floating-point arithmetic
- Numerical experiments
- Pros and cons of our approach

Discrete Stochastic Arithmetic (DSA) [J. Vignes, 2004]

each operation executed 3 times with a random rounding mode

Discrete Stochastic Arithmetic (DSA) [J. Vignes, 2004]

- each operation executed 3 times with a random rounding mode
- number of correct digits in the results estimated using Student's test with the confidence level 95%

Discrete Stochastic Arithmetic (DSA) [J. Vignes, 2004]

- each operation executed 3 times with a random rounding mode
- number of correct digits in the results estimated using Student's test with the confidence level 95%
- operations executed synchronously
 - ⇒ detection of numerical instabilities

The CADNA library http://cadna.lip6.fr

CADNA enables one to estimate the numerical quality of results and detect numerical instabilities in C, C++ or Fortran codes.

The CADNA library http://cadna.lip6.fr

CADNA enables one to estimate the numerical quality of results and detect numerical instabilities in C, C++ or Fortran codes.

CADNA provides new numerical types, the stochastic types, which consist of:

- 3 floating point variables
- an integer variable to store the accuracy.

All operators and mathematical functions are redefined for these types. \Rightarrow CADNA requires only a few modifications in user programs.

CADNA usually used to control an entire scientific application.

Performance overhead: $\times 4$ memory, $\approx \times 10$ execution time

Discrete Stochastic Arithmetic (DSA) and the CADNA library

Error induced by perturbed data

3 Our approach: combining DSA and standard floating-point arithmetic

4 Numerical experiments

5 Pros and cons of our approach

Let y = f(x) be an exact result and $\hat{y} = \hat{f}(x)$ be the associated computed result.

- The forward error is the difference between y and \hat{y} .
- The backward analysis tries to seek for Δx s.t. ŷ = f(x + Δx).
 Δx is the backward error associated with ŷ.
 It measures the distance between the problem that is solved and the initial one.
- The condition number *C* of the problem is defined as:

$$C := \lim_{\varepsilon \to 0^+} \sup_{|\Delta x| \le \varepsilon} \left[\frac{|f(x + \Delta x) - f(x)|}{|f(x)|} / \frac{|\Delta x|}{|x|} \right].$$

It measures the effect on the result of data perturbation.

Error induced by perturbed data

The relative rounding error is denoted by u.

- *binary64* format (double precision): **u** = 2⁻⁵³
- *binary32* format (single precision): $\mathbf{u} = 2^{-24}$.

If the algorithm is backward-stable (*i.e.* the backward error is of the order of **u**)

 $|f(x) - \hat{f}(x)| / |f(x)| \lesssim C\mathbf{u}.$

If the input data are perturbed, *i.e.* the input data are not x but $\hat{x} = x(1+\delta)$, then one computes $\hat{f}(\hat{x})$ with

$$|f(x) - \hat{f}(\hat{x})| / |f(x)| \lesssim C(\mathbf{u} + |\delta|).$$

If $|\delta| \gg \mathbf{u}$, the rounding error generated by \hat{f} is negligible w.r.t. $C|\delta|$.

Error induced by perturbed data

The relative rounding error is denoted by u.

- *binary64* format (double precision): **u** = 2⁻⁵³
- *binary32* format (single precision): $\mathbf{u} = 2^{-24}$.

If the algorithm is backward-stable (*i.e.* the backward error is of the order of **u**)

 $|f(x) - \hat{f}(x)| / |f(x)| \lesssim C\mathbf{u}.$

If the input data are perturbed, *i.e.* the input data are not x but $\hat{x} = x(1+\delta)$, then one computes $\hat{f}(\hat{x})$ with

$$|f(x) - \hat{f}(\hat{x})| / |f(x)| \lesssim C(\mathbf{u} + |\delta|).$$

If $|\delta| \gg \mathbf{u}$, the rounding error generated by \hat{f} is negligible w.r.t. $C|\delta|$.

 \Rightarrow Estimating this rounding error may be avoided.

Discrete Stochastic Arithmetic (DSA) and the CADNA library

2 Error induced by perturbed data

Our approach: combining DSA and standard floating-point arithmetic

- 4 Numerical experiments
- 5 Pros and cons of our approach

- Computation routines are executed in a code that is controlled using DSA.
- Their input data are affected by errors (rounding errors and/or measurement errors).
- We compare 2 kinds of computation:
 - with a call to CADNA routines
 - with 3 calls to classic routines.

- *D* and *R* consist in stochastic arrays (each element is a triplet).
- Every arithmetic operation is performed 3 times with the random rounding mode.

Our approach: computation with 3 calls to classic routines

- input data: 3 classic floating-point arrays D_1, D_2, D_3 created from the triplets of D
- We get 3 classic floating-point arrays R'_1, R'_2, R'_3 .
- A stochastic array R' created from R'_1, R'_2, R'_3 can be used in the next parts of the code.

Our approach: computation with 3 calls to classic routines

- input data: 3 classic floating-point arrays D_1, D_2, D_3 created from the triplets of D
- We get 3 classic floating-point arrays R'_1, R'_2, R'_3 .
- A stochastic array *R*' created from *R*₁', *R*₂', *R*₃' can be used in the next parts of the code.
- \Rightarrow we compare the number of correct digits (estimated by CADNA) in *R* and *R'*

- Discrete Stochastic Arithmetic (DSA) and the CADNA library
- 2 Error induced by perturbed data
- 3 Our approach: combining DSA and standard floating-point arithmetic
- 4 Numerical experiments
- 5 Pros and cons of our approach

Each random input value is perturbed with a relative error δ .

For $i = 1, ..., n^2$ (matrix mult.) or for i = 1, ..., n (matrix-vector mult.) we analyze:

- the accuracy C_{R^i} of the element R^i of R
- the accuracy $C_{R'^i}$ of the element R'^i of R'

•
$$\Delta^i = \left| C_{R^i} - C_{R'^i} \right|$$

Accuracy comparison for matrix multiplication

Multiplication of square random matrices of size 500:

	accuracy		accuracy difference		
δ	of R		between R & R'		
	mean	min-max	mean	max	
double precision					
1.e-14	13.9	9-15	2.5e-02	2	
1.e-13	12.8	8-15	5.8e-03	1	
1.e-12	11.9	7-14	4.2e-04	1	
1.e-11	10.9	6-13	2.4e-05	1	
single precision					
1.e-6	5.6	1-7	2.3e-1	2	
1.e-5	4.8	0-7	1.9e-2	2	
1.e-4	3.7	0-6	2.8e-3	1	
1.e-3	2.8	0-5	2.8e-4	1	

- As the order of magnitude of $\delta \nearrow$ the mean accuracy \searrow by 1 digit
- High perturbation in single precision \Rightarrow low accuracy on the results
- Low difference between the accuracy of R & R'

Accuracy comparison for matrix-vector multiplication

Multiplication of a square random matrix of size 1000 with a vector:

	accuracy		accuracy difference		
δ	of R		between R & R'		
	mean	min-max	mean	max	
double precision					
1.e-14	13.9	12-15	4.6e-02	1	
1.e-13	12.7	11-14	7.0e-03	1	
1.e-12	11.8	10-13	0	0	
1.e-11	10.9	9-12	0	0	
single precision					
1.e-6	5.5	3-7	3.2e-1	2	
1.e-5	4.8	2-6	2.4e-2	1	
1.e-4	3.7	1-5	7.0e-3	1	
1.e-3	2.8	0-4	1.0e-3	1	

- As the order of magnitude of $\delta \nearrow$ the mean accuracy \searrow by 1 digit
- High perturbation in single precision \Rightarrow low accuracy on the results
- The accuracy difference between *R* & *R'* remains low (in double precision, all the results have the same accuracy if $\delta \ge 10^{-12}$)

• We compare the performance of the CADNA routine with codes using:

- a naive floating-point algorithm
- the Intel MKL implementation.

In both cases: sequential and OpenMP 4 cores

- Array copies except with CADNA
- Both computation and array copies parallelized in the OpenMP codes

Performance for matrix multiplication

Execution time including matrix multiplications and array copies:

- Despite memory copies, the codes using 3 classic matrix multiplications perform better than the CADNA routine.
- For matrices of size 2000, the MKL OpenMP implementation outperforms the CADNA routine by a factor 294.

Performance for matrix multiplication

Most of the execution time is spent in matrix multiplication.

Performance for matrix multiplication

CADNA vs our approach with MKL OMP

Core i7-8650U (1.9 GHz, 4 cores), n=2000:

	CADNA	Proposed w/	Speedup
		MKL OMP	
Comp	130	0.393	331x
Сору	_	0.0495	—
Total	130	0.4425	294x

Dual-socket Xeon Gold 6126 (2.6 GHz, 12 cores×2), n=5000:

	CADNA	Proposed w/	Speedup
		MKL OMP	
Comp	2520	0.563	4476x
Сору	_	0.0889	—
Total	2520	0.652	3865x

On large scale:

- the performance gain increases
- the array copy cost becomes visible

RAIM 2021

20/27

Performance for matrix-vector multiplication

Execution time including matrix-vector multiplications and array copies:

- The CADNA routine performs better than the other sequential codes.
- From a certain matrix size, the OpenMP codes that use classic floating-point arithmetic perform better than the CADNA code.

Performance for matrix-vector multiplication

- In the codes that use classic floating-point arithmetic the main part of the execution time is spent in array copies.
- Worst case here: if several BLAS routines continuously used, array copy cost w.r.t. total execution time ∖

Discrete Stochastic Arithmetic (DSA) and the CADNA library

- 2 Error induced by perturbed data
- 3 Our approach: combining DSA and standard floating-point arithmetic
- 4 Numerical experiments
- 5 Pros and cons of our approach

Pros

performance gain:

- DSA operations are avoided
- use of vendor optimized libraries
- applicability:
 - no code translation to a CADNA version

Cons

we lose CADNA features:

- instability detection
- accuracy improvement: in linear system solving, a non-significant element is not chosen as a pivot.

Instability detection

Without CADNA:

- numerical instabilities are not detected ^(C)
- ullet results with no correct digits appear as numerical noise igodot

Example: matrix multiplication with catastrophic cancellations

Input data: square matrices A & B of size 10 in double precision

- 1st line of A: [1,...,1,-1,...,-1] (1st half: 1, 2nd half: -1)
- each element of B set to 1
- A and B pertubed with a relative error $\delta = 10^{-12}$

Results: C = A * B with CADNA, C' = A * B without CADNA

• 1st line of C and C': @.0 (numerical noise, triplet with no common digits)

With CADNA:

• 10 catastrophic cancellations are detected.

Conclusions/Perspectives

- In a code controlled using CADNA, if computation-intensive routines are run with perturbed data
 - CADNA routines ⇒ classic BLAS routines with almost no accuracy difference on the results
 - high performance gain with BLAS routines from an optimized library
 - but we lose the instability detection.
- The same conclusions would be valid with an HPC code using MPI.
 In the same conditions (computation-intensive routines & perturbed data) CADNA-MPI routines ⇒ optimized floating-point MPI routines.
- Application of our approach to real-life examples with realistic data sets.

F. Jézéquel, S. Graillat, D. Mukunoki, T. Imamura, R. lakymchuk, Can we avoid rounding-error estimation in HPC codes and still get trustworthy results?, NSV'20

https://hal.archives-ouvertes.fr/hal-02925976v1

RAIM 2021

26/27

Thanks for your attention!