
Fast rounding error estimation for
compute-intensive operations using standard

floating-point arithmetic

Fabienne Jézéquel1, Stef Graillat1, Daichi Mukunoki2, Toshiyuki Imamura2,
Roman Iakymchuk1

1LIP6, Sorbonne Université, CNRS, Paris, France

2RIKEN Center for Computational Science, Kobe, Japan

Rencontres Arithmétiques du GdR Informatique Mathématique (RAIM)
27-28 May 2021

RAIM 2021 Fast rounding error estimation for compute-intensive operations using standard floating-point arithmetic 1 / 27

Introduction

Current computers: a high number of floating-point operations performed ,
Each of them can lead to a rounding error /

⇒ Numerical validation is crucial ...but costful /
execution time overhead
development cost induced by the application of numerical validation
methods to HPC codes

Can we address this cost problem
...and still get trustworthy results?

Yes, when the input data is affected by rounding and/or measurement errors.

RAIM 2021 Fast rounding error estimation for compute-intensive operations using standard floating-point arithmetic 2 / 27

Introduction

Current computers: a high number of floating-point operations performed ,
Each of them can lead to a rounding error /

⇒ Numerical validation is crucial

...but costful /
execution time overhead
development cost induced by the application of numerical validation
methods to HPC codes

Can we address this cost problem
...and still get trustworthy results?

Yes, when the input data is affected by rounding and/or measurement errors.

RAIM 2021 Fast rounding error estimation for compute-intensive operations using standard floating-point arithmetic 2 / 27

Introduction

Current computers: a high number of floating-point operations performed ,
Each of them can lead to a rounding error /

⇒ Numerical validation is crucial ...but costful /
execution time overhead
development cost induced by the application of numerical validation
methods to HPC codes

Can we address this cost problem
...and still get trustworthy results?

Yes, when the input data is affected by rounding and/or measurement errors.

RAIM 2021 Fast rounding error estimation for compute-intensive operations using standard floating-point arithmetic 2 / 27

Introduction

Current computers: a high number of floating-point operations performed ,
Each of them can lead to a rounding error /

⇒ Numerical validation is crucial ...but costful /
execution time overhead
development cost induced by the application of numerical validation
methods to HPC codes

Can we address this cost problem
...and still get trustworthy results?

Yes, when the input data is affected by rounding and/or measurement errors.

RAIM 2021 Fast rounding error estimation for compute-intensive operations using standard floating-point arithmetic 2 / 27

Overview

1 Estimation of rounding errors:
Discrete Stochastic Arithmetic (DSA) and the CADNA library

2 Error induced by perturbed data

3 Our approach: combining DSA and standard floating-point arithmetic

4 Numerical experiments

5 Pros and cons of our approach

RAIM 2021 Fast rounding error estimation for compute-intensive operations using standard floating-point arithmetic 3 / 27

Discrete Stochastic Arithmetic (DSA) [J. Vignes, 2004]

Classic arithmetic

A ⊕B R

R =3.14237654356891

Stochastic arithmetic

A1 ⊕B1

A2 ⊕B2

A3 ⊕B3

Random
rounding

R1

R2

R3

R1 =3.141354786390989
R2 =3.143689456834534
R3 =3.142579087356598

each operation executed 3 times with a random rounding mode

number of correct digits in the results estimated using Student’s test with
the confidence level 95%
operations executed synchronously
⇒ detection of numerical instabilities

RAIM 2021 Fast rounding error estimation for compute-intensive operations using standard floating-point arithmetic 4 / 27

Discrete Stochastic Arithmetic (DSA) [J. Vignes, 2004]

Classic arithmetic

A ⊕B R

R =3.14237654356891

Stochastic arithmetic

A1 ⊕B1

A2 ⊕B2

A3 ⊕B3

Random
rounding

R1

R2

R3

R1 =3.141354786390989
R2 =3.143689456834534
R3 =3.142579087356598

each operation executed 3 times with a random rounding mode
number of correct digits in the results estimated using Student’s test with
the confidence level 95%

operations executed synchronously
⇒ detection of numerical instabilities

RAIM 2021 Fast rounding error estimation for compute-intensive operations using standard floating-point arithmetic 4 / 27

Discrete Stochastic Arithmetic (DSA) [J. Vignes, 2004]

Classic arithmetic

A ⊕B R

R =3.14237654356891

Stochastic arithmetic

A1 ⊕B1

A2 ⊕B2

A3 ⊕B3

Random
rounding

R1

R2

R3

R1 =3.141354786390989
R2 =3.143689456834534
R3 =3.142579087356598

each operation executed 3 times with a random rounding mode
number of correct digits in the results estimated using Student’s test with
the confidence level 95%
operations executed synchronously
⇒ detection of numerical instabilities

RAIM 2021 Fast rounding error estimation for compute-intensive operations using standard floating-point arithmetic 4 / 27

The CADNA library http://cadna.lip6.fr

CADNA enables one to estimate the numerical quality of results and detect
numerical instabilities in C, C++ or Fortran codes.

CADNA provides new numerical types, the stochastic types, which consist of:
3 floating point variables
an integer variable to store the accuracy.

All operators and mathematical functions are redefined for these types.
⇒ CADNA requires only a few modifications in user programs.

CADNA usually used to control an entire scientific application.

Performance overhead: ×4 memory, ≈×10 execution time

RAIM 2021 Fast rounding error estimation for compute-intensive operations using standard floating-point arithmetic 5 / 27

http://cadna.lip6.fr

The CADNA library http://cadna.lip6.fr

CADNA enables one to estimate the numerical quality of results and detect
numerical instabilities in C, C++ or Fortran codes.

CADNA provides new numerical types, the stochastic types, which consist of:
3 floating point variables
an integer variable to store the accuracy.

All operators and mathematical functions are redefined for these types.
⇒ CADNA requires only a few modifications in user programs.

CADNA usually used to control an entire scientific application.

Performance overhead: ×4 memory, ≈×10 execution time
RAIM 2021 Fast rounding error estimation for compute-intensive operations using standard floating-point arithmetic 5 / 27

http://cadna.lip6.fr

Outline

1 Discrete Stochastic Arithmetic (DSA) and the CADNA library

2 Error induced by perturbed data

3 Our approach: combining DSA and standard floating-point arithmetic

4 Numerical experiments

5 Pros and cons of our approach

RAIM 2021 Fast rounding error estimation for compute-intensive operations using standard floating-point arithmetic 6 / 27

Error induced by perturbed data
Definitions

Let y = f (x) be an exact result and ŷ = f̂ (x) be the associated computed result.

The forward error is the difference between y and ŷ .

The backward analysis tries to seek for ∆x s.t. ŷ = f (x +∆x).
∆x is the backward error associated with ŷ .
It measures the distance between the problem that is solved and the initial
one.

The condition number C of the problem is defined as:

C := lim
ε→0+

sup
|∆x|≤ε

[| f (x +∆x)− f (x)|
| f (x)| /

|∆x|
|x|

]
.

It measures the effect on the result of data perturbation.

RAIM 2021 Fast rounding error estimation for compute-intensive operations using standard floating-point arithmetic 7 / 27

Error induced by perturbed data

The relative rounding error is denoted by u.

binary64 format (double precision): u = 2−53

binary32 format (single precision): u = 2−24.

If the algorithm is backward-stable (i.e. the backward error is of the order of u)

| f (x)− f̂ (x)|/| f (x)|.C u.

If the input data are perturbed, i.e. the input data are not x but x̂ = x(1+δ),
then one computes f̂ (x̂) with

| f (x)− f̂ (x̂)|/| f (x)|.C (u+|δ|).

If |δ|À u, the rounding error generated by f̂ is negligible w.r.t. C |δ|.
⇒ Estimating this rounding error may be avoided.

RAIM 2021 Fast rounding error estimation for compute-intensive operations using standard floating-point arithmetic 8 / 27

Error induced by perturbed data

The relative rounding error is denoted by u.

binary64 format (double precision): u = 2−53

binary32 format (single precision): u = 2−24.

If the algorithm is backward-stable (i.e. the backward error is of the order of u)

| f (x)− f̂ (x)|/| f (x)|.C u.

If the input data are perturbed, i.e. the input data are not x but x̂ = x(1+δ),
then one computes f̂ (x̂) with

| f (x)− f̂ (x̂)|/| f (x)|.C (u+|δ|).

If |δ|À u, the rounding error generated by f̂ is negligible w.r.t. C |δ|.
⇒ Estimating this rounding error may be avoided.

RAIM 2021 Fast rounding error estimation for compute-intensive operations using standard floating-point arithmetic 8 / 27

Outline

1 Discrete Stochastic Arithmetic (DSA) and the CADNA library

2 Error induced by perturbed data

3 Our approach: combining DSA and standard floating-point arithmetic

4 Numerical experiments

5 Pros and cons of our approach

RAIM 2021 Fast rounding error estimation for compute-intensive operations using standard floating-point arithmetic 9 / 27

Combining DSA and standard floating-point arithmetic

Computation routines are executed in a code that is controlled using DSA.

Their input data are affected by errors (rounding errors and/or measurement
errors).

We compare 2 kinds of computation:
with a call to CADNA routines
with 3 calls to classic routines.

RAIM 2021 Fast rounding error estimation for compute-intensive operations using standard floating-point arithmetic 10 / 27

Computation with a call to CADNA routines

stochastic
data D

CADNA
routine(s)

stochastic
result R

D and R consist in stochastic arrays (each element is a triplet).

Every arithmetic operation is performed 3 times with the random rounding
mode.

RAIM 2021 Fast rounding error estimation for compute-intensive operations using standard floating-point arithmetic 11 / 27

Our approach: computation with 3 calls to classic
routines

stochastic
data D

D2

D1

D3

classic routine(s)

classic routine(s)

classic routine(s)

R ′
2

R ′
1

R ′
3

stochastic
result R ′

input data: 3 classic floating-point arrays D1,D2,D3 created from the
triplets of D

We get 3 classic floating-point arrays R ′
1,R ′

2,R ′
3.

A stochastic array R ′ created from R ′
1,R ′

2,R ′
3 can be used in the next parts

of the code.

⇒ we compare the number of correct digits (estimated by CADNA) in R and R ′

RAIM 2021 Fast rounding error estimation for compute-intensive operations using standard floating-point arithmetic 12 / 27

Our approach: computation with 3 calls to classic
routines

stochastic
data D

D2

D1

D3

classic routine(s)

classic routine(s)

classic routine(s)

R ′
2

R ′
1

R ′
3

stochastic
result R ′

input data: 3 classic floating-point arrays D1,D2,D3 created from the
triplets of D

We get 3 classic floating-point arrays R ′
1,R ′

2,R ′
3.

A stochastic array R ′ created from R ′
1,R ′

2,R ′
3 can be used in the next parts

of the code.

⇒ we compare the number of correct digits (estimated by CADNA) in R and R ′

RAIM 2021 Fast rounding error estimation for compute-intensive operations using standard floating-point arithmetic 12 / 27

Outline

1 Discrete Stochastic Arithmetic (DSA) and the CADNA library

2 Error induced by perturbed data

3 Our approach: combining DSA and standard floating-point arithmetic

4 Numerical experiments

5 Pros and cons of our approach

RAIM 2021 Fast rounding error estimation for compute-intensive operations using standard floating-point arithmetic 13 / 27

Accuracy comparison
Experimental setup

Each random input value is perturbed with a relative error δ.

For i = 1, . . . ,n2 (matrix mult.) or for i = 1, ...,n (matrix-vector mult.)
we analyze:

the accuracy CR i of the element R i of R

the accuracy CR ′i of the element R ′i of R ′

∆i = ∣∣CR i −CR ′i
∣∣

RAIM 2021 Fast rounding error estimation for compute-intensive operations using standard floating-point arithmetic 14 / 27

Accuracy comparison for matrix multiplication

Multiplication of square random matrices of size 500:
accuracy accuracy difference

δ of R between R & R ′
mean min-max mean max

double precision
1.e-14 13.9 9-15 2.5e-02 2
1.e-13 12.8 8-15 5.8e-03 1
1.e-12 11.9 7-14 4.2e-04 1
1.e-11 10.9 6-13 2.4e-05 1

single precision
1.e-6 5.6 1-7 2.3e-1 2
1.e-5 4.8 0-7 1.9e-2 2
1.e-4 3.7 0-6 2.8e-3 1
1.e-3 2.8 0-5 2.8e-4 1

As the order of magnitude of δ ↗ the mean accuracy ↘ by 1 digit
High perturbation in single precision ⇒ low accuracy on the results
Low difference between the accuracy of R & R ′

RAIM 2021 Fast rounding error estimation for compute-intensive operations using standard floating-point arithmetic 15 / 27

Accuracy comparison for matrix-vector multiplication

Multiplication of a square random matrix of size 1000 with a vector:
accuracy accuracy difference

δ of R between R & R ′
mean min-max mean max

double precision
1.e-14 13.9 12-15 4.6e-02 1
1.e-13 12.7 11-14 7.0e-03 1
1.e-12 11.8 10-13 0 0
1.e-11 10.9 9-12 0 0

single precision
1.e-6 5.5 3-7 3.2e-1 2
1.e-5 4.8 2-6 2.4e-2 1
1.e-4 3.7 1-5 7.0e-3 1
1.e-3 2.8 0-4 1.0e-3 1

As the order of magnitude of δ ↗ the mean accuracy ↘ by 1 digit
High perturbation in single precision ⇒ low accuracy on the results
The accuracy difference between R & R ′ remains low
(in double precision, all the results have the same accuracy if δ≥ 10−12)
RAIM 2021 Fast rounding error estimation for compute-intensive operations using standard floating-point arithmetic 16 / 27

Performance comparison

We compare the performance of the CADNA routine with codes using:
a naive floating-point algorithm
the Intel MKL implementation.

In both cases: sequential and OpenMP 4 cores

Array copies except with CADNA

Both computation and array copies parallelized in the OpenMP codes

RAIM 2021 Fast rounding error estimation for compute-intensive operations using standard floating-point arithmetic 17 / 27

Performance for matrix multiplication

Execution time including matrix multiplications and array copies:

10-4

10-3

10-2

10-1

100

101

102

103

 400 800 1200 1600 2000

E
xe

cu
ti

o
n
 t

im
e
 (

s)

Matrix size (n)

CADNA
naive seq

naive OMP
MKL seq

MKL OMP

Despite memory copies, the codes using 3 classic matrix multiplications
perform better than the CADNA routine.
For matrices of size 2000, the MKL OpenMP implementation outperforms
the CADNA routine by a factor 294.
RAIM 2021 Fast rounding error estimation for compute-intensive operations using standard floating-point arithmetic 18 / 27

Performance for matrix multiplication

Execution time for matrices of size 2000:

 0

 20

 40

 60

 80

 100

 120

 140

CADNA
naive seq

naive OMP

MKL seq

MKL OMP

E
xe

cu
ti

o
n
 t

im
e
 (

s)

computation
array copies

Most of the execution time is spent in matrix multiplication.

RAIM 2021 Fast rounding error estimation for compute-intensive operations using standard floating-point arithmetic 19 / 27

Performance for matrix multiplication
CADNA vs our approach with MKL OMP

Core i7-8650U (1.9 GHz, 4 cores), n=2000:
CADNA Proposed w/ Speedup

MKL OMP
Comp 130 0.393 331x
Copy – 0.0495 –
Total 130 0.4425 294x

Dual-socket Xeon Gold 6126 (2.6 GHz, 12 cores×2), n=5000:
CADNA Proposed w/ Speedup

MKL OMP
Comp 2520 0.563 4476x
Copy – 0.0889 –
Total 2520 0.652 3865x

On large scale:
the performance gain increases
the array copy cost becomes visible
RAIM 2021 Fast rounding error estimation for compute-intensive operations using standard floating-point arithmetic 20 / 27

Performance for matrix-vector multiplication

Execution time including matrix-vector multiplications and array copies:

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 2000 4000 6000 8000 10000

E
xe

cu
ti

o
n
 t

im
e
 (

s)

Matrix size (n)

CADNA
naive seq

naive OMP
MKL seq

MKL OMP

The CADNA routine performs better than the other sequential codes.
From a certain matrix size, the OpenMP codes that use classic
floating-point arithmetic perform better than the CADNA code.

RAIM 2021 Fast rounding error estimation for compute-intensive operations using standard floating-point arithmetic 21 / 27

Performance for matrix-vector multiplication

Execution time for matrices of size 10000:

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

CADNA
naive seq

naive OMP

MKL seq

MKL OMP

E
xe

cu
ti

o
n
 t

im
e
 (

s)
computation
array copies

In the codes that use classic floating-point arithmetic the main part of the
execution time is spent in array copies.
Worst case here: if several BLAS routines continuously used, array copy
cost w.r.t. total execution time ↘
RAIM 2021 Fast rounding error estimation for compute-intensive operations using standard floating-point arithmetic 22 / 27

Outline

1 Discrete Stochastic Arithmetic (DSA) and the CADNA library

2 Error induced by perturbed data

3 Our approach: combining DSA and standard floating-point arithmetic

4 Numerical experiments

5 Pros and cons of our approach

RAIM 2021 Fast rounding error estimation for compute-intensive operations using standard floating-point arithmetic 23 / 27

Pros and cons

Pros
performance gain:

DSA operations are avoided
use of vendor optimized libraries

applicability:
no code translation to a CADNA version

Cons
we lose CADNA features:

instability detection
accuracy improvement:
in linear system solving, a non-significant element is not chosen as a pivot.

RAIM 2021 Fast rounding error estimation for compute-intensive operations using standard floating-point arithmetic 24 / 27

Instability detection

Without CADNA:
numerical instabilities are not detected /
results with no correct digits appear as numerical noise ,

Example: matrix multiplication with catastrophic cancellations

Input data: square matrices A & B of size 10 in double precision
1st line of A: [1, ...,1,−1, ...,−1] (1st half: 1, 2nd half: -1)
each element of B set to 1
A and B pertubed with a relative error δ= 10−12

Results: C = A∗B with CADNA, C ′ = A∗B without CADNA
1st line of C and C ′: @.0 (numerical noise, triplet with no common digits)

With CADNA:
10 catastrophic cancellations are detected.

RAIM 2021 Fast rounding error estimation for compute-intensive operations using standard floating-point arithmetic 25 / 27

Conclusions/Perspectives

In a code controlled using CADNA, if computation-intensive routines are
run with perturbed data

CADNA routines ⇒ classic BLAS routines
with almost no accuracy difference on the results

high performance gain with BLAS routines from an optimized library

but we lose the instability detection.

The same conclusions would be valid with an HPC code using MPI.
In the same conditions (computation-intensive routines & perturbed data)
CADNA-MPI routines ⇒ optimized floating-point MPI routines.

Application of our approach to real-life examples with realistic data sets.

q F. Jézéquel, S. Graillat, D. Mukunoki, T. Imamura, R. Iakymchuk, Can we avoid rounding-error
estimation in HPC codes and still get trustworthy results?, NSV’20
https://hal.archives-ouvertes.fr/hal-02925976v1

RAIM 2021 Fast rounding error estimation for compute-intensive operations using standard floating-point arithmetic 26 / 27

https://hal.archives-ouvertes.fr/hal-02925976v1

Thanks for your attention!

RAIM 2021 Fast rounding error estimation for compute-intensive operations using standard floating-point arithmetic 27 / 27

	Discrete Stochastic Arithmetic (DSA) and the CADNA library
	Error induced by perturbed data
	Our approach: combining DSA and standard floating-point arithmetic
	Numerical experiments
	Pros and cons of our approach

