
Principles of Discrete Stochastic Arithmetic (DSA)
The CADNA & PROMISE tools

Fabienne Jézéquel
Sorbonne Université, Laboratoire d’Informatique de Paris 6 (LIP6), France

Workshop on Large-scale Parallel Numerical Computing Technology
RIKEN Center for Computational Science, Kobe, Japan, 6-8 June 2019

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 1



Floating-point arithmetic

Finite precision of the floating-point representation
[our example] decimal, 3 significant digits: 42.0, 0.123
[float] binary, 24 significant bits (' 10−7)
[double] binary, 53 significant bits (' 10−15)

Consequences: floating-point computation , real computation

Ï rounding a ⊕b , a +b

Ï no more associativity (a ⊕b)⊕ c , a ⊕ (b ⊕ c)
⇒ reproducibility problems

How to efficiently estimate rounding errors?

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 2



Floating-point arithmetic

Finite precision of the floating-point representation
[our example] decimal, 3 significant digits: 42.0, 0.123
[float] binary, 24 significant bits (' 10−7)
[double] binary, 53 significant bits (' 10−15)

Consequences: floating-point computation , real computation

Ï rounding a ⊕b , a +b

Ï no more associativity (a ⊕b)⊕ c , a ⊕ (b ⊕ c)
⇒ reproducibility problems

How to efficiently estimate rounding errors?
Principles of DSA - The CADNA & PROMISE tools 06 June 2019 2



Overview

Rounding error analysis

Discrete Stochastic Arithmetic (DSA) and the CADNA software

Contributions of CADNA in numerical methods

Numerical validation of HPC simulations with CADNA

Precision auto-tuning: the PROMISE software

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 3



Round-off error model

r ∈ IR: exact result of n elementary arithmetic operations

The computed result R can be modeled, at the 1st order w.r.t. 2−p , by

R ≈ r +
sn∑

i=1
gi 2−p αi

p: number of bits used for the representation including the hidden bit
(p = 24 in bi nar y32, p = 53 in bi nar y64)
the number of terms sn depends on n (for n = 1, sn = 3 if data are not
exactly encoded)
gi are coefficients depending only on data and on the algorithm
αi are the round-off errors.

Remark: we have assumed that exponents and signs of intermediate results
do not depend on αi .

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 4



A theorem on numerical accuracy

The number of significant bits in common between R and r is

CR ≈− log2

∣∣∣∣R − r

r

∣∣∣∣= p − log2

∣∣∣∣∣ sn∑
i=1

gi
αi

r

∣∣∣∣∣
The last part corresponds to the accuracy which has been lost in the
computation of R, we can note that it is independent of p.

Theorem
The loss of accuracy during a numerical computation is independent of the
precision used.

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 5



Round-off error analysis
Several approaches

Inverse analysis
based on the “ Wilkinson principle”: the computed solution is assumed to
be the exact solution of a nearby problem

provides error bounds for the computed results

Interval arithmetic
The result of an operation between two intervals contains all values that
can be obtained by performing this operation on elements from each
interval.

guaranteed bounds for each computed result
the error may be overestimated
specific algorithms

Probabilistic approach
estimates the number of exact significant digits of any computed result

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 6



How to estimate rounding error propagation?
The exact result r of an arithmetic operation is approximated by a
floating-point number R− or R+.

R− R+
r

The random rounding mode
Approximation of r by R− or R+ with the probability 1/2

The CESTAC method [La Porte & Vignes 1974]

The same code is run several times with the random rounding mode.
Then different results are obtained.

Briefly, the part that is common to all the different results is assumed to be
reliable and the part that is different in the results is affected by round-off
errors.

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 7



With the random rounding mode...

By running N times the code with the random rounding mode, one obtains an
N -sample of the random variable modeled by

R ≈ r +
sn∑

i=1
gi 2−p αi

where the αi ’s are modeled by independent identically distributed random
variables. The common distribution of the αi ’s is uniform on [−1,+1].

⇒ the mathematical expectation of R is the exact result r ,

⇒ the distribution of R is a quasi-Gaussian distribution.

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 8



Implementation of the CESTAC method

The implementation of the CESTAC method in a code providing a result R
consists in:

performing N times this code with the random rounding mode to obtain N
samples Ri of R,
choosing as the computed result the mean value R of Ri , i = 1, ..., N ,
estimating the number of exact significant decimal digits of R with

CR = log10

 p
N

∣∣∣R∣∣∣
στβ


where

R = 1

N

N∑
i=1

Ri and σ2 = 1

N −1

N∑
i=1

(
Ri −R

)2
.

τβ is the value of Student’s distribution for N −1 degrees of freedom and a
probability level 1−β.

In pratice, N = 3 and β= 0.05.

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 9



On the number of runs

2 or 3 runs are enough. To increase the number of runs is not necessary.

From the model, to increase by 1 the number of exact significant digits given
by CR , we need to multiply the size of the sample by 100.

Such an increase of N will only point out the limit of the model and its error
without really improving the quality of the estimation.

It has been shown that N = 3 is the optimal value. [Chesneaux & Vignes, 1988]

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 10



On the probability of the confidence interval

With β= 0.05 and N = 3,

the probability of overestimating the number of exact significant digits of
at least 1 is 0.054%

the probability of underestimating the number of exact significant digits of
at least 1 is 29%.

By choosing a confidence interval at 95%, we prefer to guarantee a minimal
number of exact significant digits with high probability (99.946%), even if we
are often pessimistic by 1 digit.

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 11



Validity of the CESTAC method [Chesneaux & Vignes, 1988]

The CESTAC method is based on a 1st order model.

A multiplication of two insignificant results
or a division by an insignificant result

may invalidate the 1st order approximation.

⇒ control of multiplications and divisions: self-validation of CESTAC.

With CESTAC, rounding errors are assumed centered.

Even if they are not rigorously centered, the accuracy estimation can be
considered correct up to 1 digit.

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 12



The problem of stopping criteria

Let us consider a general iterative algorithm: Un+1 = F (Un).

while (fabs(X-Y) > EPSILON) {
X = Y;
Y = F(X);

}

ε too low =⇒ risk of infinite loop
ε too high =⇒ too early termination.

It would be optimal to stop when X −Y is an insignificant value.

Such a stopping criterion
would enable one to develop new numerical algorithms
is possible thanks to the concept of computed zero.

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 13



The problem of stopping criteria

Let us consider a general iterative algorithm: Un+1 = F (Un).

while (fabs(X-Y) > EPSILON) {
X = Y;
Y = F(X);

}

ε too low =⇒ risk of infinite loop
ε too high =⇒ too early termination.

It would be optimal to stop when X −Y is an insignificant value.

Such a stopping criterion
would enable one to develop new numerical algorithms
is possible thanks to the concept of computed zero.

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 13



The concept of computed zero

[Vignes, 1986]

Definition
Using the CESTAC method, a result R is a computed zero, denoted by @.0, if

∀i ,Ri = 0 or CR ≤ 0.

It means that R is a computed result which, because of round-off errors,
cannot be distinguished from 0.

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 14



The stochastic definitions

Let X and Y be two results computed using the CESTAC method
(N -samples).

X is stochastically equal to Y , noted X s= Y , iff

X −Y = @.0.

X is stochastically strictly greater than Y , noted X s> Y , iff

X > Y and X s=/ Y

X is stochastically greater than or equal to Y , noted X s≥ Y , iff

X ≥ Y or X s= Y

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 15



Discrete Stochastic Arithmetic [Vignes, 2004]

Discrete Stochastic Arithmetic (DSA) is defined as the joint use of
the CESTAC method
the computed zero
the stochastic relation definitions.

Implementation of DSA
CADNA: for programs in single, double, and/or quadruple precision
http://cadna.lip6.fr

support for wide range of codes (vectorised, GPU, MPI, OpenMP)

SAM: for arbitrary precision programs (based on MPFR)
http://www-pequan.lip6.fr/~jezequel/SAM

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 16

http://cadna.lip6.fr
http://www-pequan.lip6.fr/~jezequel/SAM


The CADNA library http://cadna.lip6.fr

CADNA allows one to estimate round-off error propagation in any scientific
program written in Fortran, C or C++.

More precisely, CADNA enables one to:
estimate the numerical quality of any result
detect numerical instabilities
take into account uncertainty on data.

CADNA provides new numerical types, the stochastic types, which consist of:
3 floating point variables
an integer variable to store the accuracy.

All operators and mathematical functions are redefined for these types.
⇒ CADNA requires only a few modifications in user programs.

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 17

http://cadna.lip6.fr


The CADNA library http://cadna.lip6.fr

CADNA allows one to estimate round-off error propagation in any scientific
program written in Fortran, C or C++.

More precisely, CADNA enables one to:
estimate the numerical quality of any result
detect numerical instabilities
take into account uncertainty on data.

CADNA provides new numerical types, the stochastic types, which consist of:
3 floating point variables
an integer variable to store the accuracy.

All operators and mathematical functions are redefined for these types.
⇒ CADNA requires only a few modifications in user programs.

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 17

http://cadna.lip6.fr


Cost of CADNA

The cost of CADNA is 4 in memory, about 10 in run time.

CADNA overhead:

Memory
Bound

Add

Compute
Bound

Add

Memory
Bound
Multiply

Compute
Bound
Multiply

7.89× 8.92× 11.6× 9.19×
(Intel Xeon E3-1275 at 3.5 GHz, gcc version 4.9.2, single precision, self-validation)

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 18



An example without/with CADNA

Computation of P (x, y) = 9x4 − y4 +2y2 [S.M. Rump, 1983]

#include <stdio.h>

double rump(double x, double y) {
return 9.0*x*x*x*x - y*y*y*y + 2.0*y*y;

}
int main(int argc, char **argv) {
double x, y;
x = 10864.0;
y = 18817.0;
printf("P1=%.14e\n", rump(x, y));
x = 1.0/3.0;
y = 2.0/3.0;
printf("P2=%.14e\n", rump(x, y));
return 0;

}

P1=2.00000000000000e+00
P2=8.02469135802469e–01

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 19



An example without/with CADNA

Computation of P (x, y) = 9x4 − y4 +2y2 [S.M. Rump, 1983]

#include <stdio.h>

double rump(double x, double y) {
return 9.0*x*x*x*x - y*y*y*y + 2.0*y*y;

}
int main(int argc, char **argv) {
double x, y;
x = 10864.0;
y = 18817.0;
printf("P1=%.14e\n", rump(x, y));
x = 1.0/3.0;
y = 2.0/3.0;
printf("P2=%.14e\n", rump(x, y));
return 0;

}

P1=2.00000000000000e+00
P2=8.02469135802469e–01

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 19



#include <stdio.h>

#include <cadna.h>

double rump(double x, double y) {
return 9.0*x*x*x*x-y*y*y*y+2.0*y*y;

}
int main(int argc, char **argv) {

cadna_init(-1);

double x, y;
x=10864.0; y=18817.0;
printf("P1=%.14e\n", rump(x, y) );"
x=1.0/3.0; y=2.0/3.0;
printf("P2=%.14e\n", rump(x, y) );"

cadna_end();

return 0;
}

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 20



#include <stdio.h>
#include <cadna.h>
double rump(double x, double y) {
return 9.0*x*x*x*x-y*y*y*y+2.0*y*y;

}
int main(int argc, char **argv) {

cadna_init(-1);

double x, y;
x=10864.0; y=18817.0;
printf("P1=%.14e\n", rump(x, y) );"
x=1.0/3.0; y=2.0/3.0;
printf("P2=%.14e\n", rump(x, y) );"

cadna_end();

return 0;
}

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 20



#include <stdio.h>
#include <cadna.h>
double rump(double x, double y) {
return 9.0*x*x*x*x-y*y*y*y+2.0*y*y;

}
int main(int argc, char **argv) {
cadna_init(-1);
double x, y;
x=10864.0; y=18817.0;
printf("P1=%.14e\n", rump(x, y) );"
x=1.0/3.0; y=2.0/3.0;
printf("P2=%.14e\n", rump(x, y) );"

cadna_end();

return 0;
}

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 20



#include <stdio.h>
#include <cadna.h>
double rump(double x, double y) {
return 9.0*x*x*x*x-y*y*y*y+2.0*y*y;

}
int main(int argc, char **argv) {
cadna_init(-1);
double x, y;
x=10864.0; y=18817.0;
printf("P1=%.14e\n", rump(x, y) );"
x=1.0/3.0; y=2.0/3.0;
printf("P2=%.14e\n", rump(x, y) );"
cadna_end();
return 0;

}

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 20



#include <stdio.h>
#include <cadna.h>
double rump(double x, double y) {
return 9.0*x*x*x*x-y*y*y*y+2.0*y*y;

}
int main(int argc, char **argv) {
cadna_init(-1);
double x, y;
x=10864.0; y=18817.0;
printf("P1=%.14e\n", rump(x, y) );"
x=1.0/3.0; y=2.0/3.0;
printf("P2=%.14e\n", rump(x, y) );"
cadna_end();
return 0;

}

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 20



#include <stdio.h>
#include <cadna.h>
double_st rump(double_st x, double_st y) {
return 9.0*x*x*x*x-y*y*y*y+2.0*y*y;

}
int main(int argc, char **argv) {
cadna_init(-1);
double_st x, y;
x=10864.0; y=18817.0;
printf("P1=%.14e\n", rump(x, y) );"
x=1.0/3.0; y=2.0/3.0;
printf("P2=%.14e\n", rump(x, y) );"
cadna_end();
return 0;

}

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 20



#include <stdio.h>
#include <cadna.h>
double_st rump(double_st x, double_st y) {
return 9.0*x*x*x*x-y*y*y*y+2.0*y*y;

}
int main(int argc, char **argv) {
cadna_init(-1);
double_st x, y;
x=10864.0; y=18817.0;
printf("P1=%.14e\n", rump(x, y) );"
x=1.0/3.0; y=2.0/3.0;
printf("P2=%.14e\n", rump(x, y) );"
cadna_end();
return 0;

}

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 20



#include <stdio.h>
#include <cadna.h>
double_st rump(double_st x, double_st y) {
return 9.0*x*x*x*x-y*y*y*y+2.0*y*y;

}
int main(int argc, char **argv) {
cadna_init(-1);
double_st x, y;
x=10864.0; y=18817.0;
printf("P1=%s\n", strp(rump(x, y)));"
x=1.0/3.0; y=2.0/3.0;
printf("P2=%s\n", strp(rump(x, y)));"
cadna_end();
return 0;

}

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 20



Results with CADNA
only correct digits are displayed

Self-validation detection: ON
Mathematical instabilities detection: ON
Branching instabilities detection: ON
Intrinsic instabilities detection: ON
Cancellation instabilities detection: ON
—————————————————————
P1= @.0 (no more correct digits)
P2= 0.802469135802469E+000
—————————————————————
There are 2 numerical instabilities
2 LOSS(ES) OF ACCURACY DUE TO CANCELLATION(S)

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 21



Tools related to CADNA
http://cadna.lip6.fr

CADNAIZER
automatically transforms C codes to be used with CADNA

CADTRACE
identifies in a code the instructions responsible for numerical instabilities

Example:
There are 11 numerical instabilities.

10 LOSS(ES) OF ACCURACY DUE TO CANCELLATION(S).
5 in <ex> file "ex.f90" line 58
5 in <ex> file "ex.f90" line 59

1 INSTABILITY IN ABS FUNCTION.
1 in <ex> file "ex.f90" line 37

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 22

http://cadna.lip6.fr


Contributions of Discrete Stochastic Arithmetic

In direct methods:
estimate the numerical quality of the results
control branching statements

In iterative methods:
optimize the number of iterations
check if the computed solution is satisfactory

In approximation methods:
optimize the integration step

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 23



In direct methods - Example

0.3x2 −2.1x +3.675 = 0

Without CADNA, in single precision with rounding to nearest:
d = -3.8146972E-06
Two complex roots
z1 = 0.3499999E+01 + i * 0.9765625E-03
z2 = 0.3499999E+01 + i * -.9765625E-03

With CADNA:
d = @.0
The discriminant is null
The double real root is 0.3500000E+01

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 24



Contribution of CADNA in iterative methods

Un+1 = F (Un)

Without / with CADNA
while (fabs(X-Y) > EPSILON) {

X = Y;
Y = F(X);

}

With CADNA
while (X != Y) {

X = Y;
Y = F(X);

}

, optimal stopping criterion

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 25



Iterative methods - Example 1

Sn(x) =
n∑

i=1

xi

i !

Stopping criterion
Without CADNA: |Sn −Sn−1| < 10−15|Sn |
With CADNA: Sn == Sn−1

Without CADNA With CADNA
x iter Sn(x) iter Sn(x)

-5. 37 6.737946999084039E-003 38 0.673794699909E-002
-10. 57 4.539992962303130E-005 58 0.45399929E-004
-15. 76 3.059094197302006E-007 77 0.306E-006
-20. 94 5.621884472130416E-009 95 @.0
-25. 105 -7.129780403672074E-007 106 @.0

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 26



Iterative methods - Example 2

The linear system AX = B is solved using Jacobi method.

x(k)
i =− 1

ai i

n∑
j=1, j,i

ai j x(k−1)
j + bi

ai i

Without CADNA

Stop when maxn
i=1 |x(k)

i −x(k−1)
i | < ε

Compute R = B − AX (k).

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 27



ε= 10−3

niter = 35
x( 1)= 0.1699924E+01 (exact: 0.1700000E+01), r( 1)= 0.3051758E-03
x( 2)=-0.4746889E+04 (exact:-0.4746890E+04), r( 2)= 0.1953125E-02
x( 3)= 0.5023049E+02 (exact: 0.5023000E+02), r( 3)= 0.1464844E-02
x( 4)=-0.2453197E+03 (exact:-0.2453200E+03), r( 4)=-0.7324219E-03
x( 5)= 0.4778290E+04 (exact: 0.4778290E+04), r( 5)=-0.4882812E-03
x( 6)=-0.7572980E+02 (exact:-0.7573000E+02), r( 6)= 0.9765625E-03
x( 7)= 0.3495430E+04 (exact: 0.3495430E+04), r( 7)= 0.3173828E-02
x( 8)= 0.4350277E+01 (exact: 0.4350000E+01), r( 8)= 0.0000000E+00
x( 9)= 0.4529804E+03 (exact: 0.4529800E+03), r( 9)= 0.9765625E-03
x(10)=-0.2759901E+01 (exact:-0.2760000E+01), r(10)= 0.9765625E-03
x(11)= 0.8239241E+04 (exact: 0.8239240E+04), r(11)= 0.7568359E-02
x(12)= 0.3459919E+01 (exact: 0.3460000E+01), r(12)=-0.4882812E-03
x(13)= 0.1000000E+04 (exact: 0.1000000E+04), r(13)= 0.9765625E-03
x(14)=-0.4999743E+01 (exact:-0.5000000E+01), r(14)= 0.1464844E-02
x(15)= 0.3642400E+04 (exact: 0.3642400E+04), r(15)=-0.1953125E-02
x(16)= 0.7353594E+03 (exact: 0.7353600E+03), r(16)=-0.3662109E-03
x(17)= 0.1700038E+01 (exact: 0.1700000E+01), r(17)= 0.1464844E-02
x(18)=-0.2349171E+04 (exact:-0.2349170E+04), r(18)= 0.1953125E-02
x(19)=-0.8247521E+04 (exact:-0.8247520E+04), r(19)=-0.8728027E-02
x(20)= 0.9843570E+04 (exact: 0.9843570E+04), r(20)= 0.0000000E+00

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 28



ε= 10−4

niter = 1000
x( 1)= 0.1699924E+01 (exact: 0.1700000E+01), r( 1)= 0.1831055E-03
x( 2)=-0.4746890E+04 (exact:-0.4746890E+04), r( 2)=-0.4882812E-03
x( 3)= 0.5022963E+02 (exact: 0.5023000E+02), r( 3)=-0.9765625E-03
x( 4)=-0.2453193E+03 (exact:-0.2453200E+03), r( 4)= 0.1464844E-02
x( 5)= 0.4778290E+04 (exact: 0.4778290E+04), r( 5)=-0.1464844E-02
x( 6)=-0.7573022E+02 (exact:-0.7573000E+02), r( 6)=-0.1953125E-02
x( 7)= 0.3495430E+04 (exact: 0.3495430E+04), r( 7)= 0.5126953E-02
x( 8)= 0.4350277E+01 (exact: 0.4350000E+01), r( 8)=-0.4882812E-03
x( 9)= 0.4529798E+03 (exact: 0.4529800E+03), r( 9)=-0.9765625E-03
x(10)=-0.2760255E+01 (exact:-0.2760000E+01), r(10)=-0.1953125E-02
x(11)= 0.8239240E+04 (exact: 0.8239240E+04), r(11)= 0.3173828E-02
x(12)= 0.3459731E+01 (exact: 0.3460000E+01), r(12)=-0.1464844E-02
x(13)= 0.1000000E+04 (exact: 0.1000000E+04), r(13)=-0.1953125E-02
x(14)=-0.4999743E+01 (exact:-0.5000000E+01), r(14)= 0.1953125E-02
x(15)= 0.3642400E+04 (exact: 0.3642400E+04), r(15)= 0.0000000E+00
x(16)= 0.7353599E+03 (exact: 0.7353600E+03), r(16)=-0.7324219E-03
x(17)= 0.1699763E+01 (exact: 0.1700000E+01), r(17)=-0.4882812E-03
x(18)=-0.2349171E+04 (exact:-0.2349170E+04), r(18)= 0.0000000E+00
x(19)=-0.8247520E+04 (exact:-0.8247520E+04), r(19)=-0.9155273E-03
x(20)= 0.9843570E+04 (exact: 0.9843570E+04), r(20)=-0.3906250E-02

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 29



With CADNA

niter = 29
x( 1)= 0.170E+01 (exact: 0.1699999E+01), r( 1)=@.0
x( 2)=-0.4746888E+04 (exact:-0.4746888E+04), r( 2)=@.0
x( 3)= 0.5023E+02 (exact: 0.5022998E+02), r( 3)=@.0
x( 4)=-0.24532E+03 (exact:-0.2453199E+03), r( 4)=@.0
x( 5)= 0.4778287E+04 (exact: 0.4778287E+04), r( 5)=@.0
x( 6)=-0.75729E+02 (exact:-0.7572999E+02), r( 6)=@.0
x( 7)= 0.349543E+04 (exact: 0.3495428E+04), r( 7)=@.0
x( 8)= 0.435E+01 (exact: 0.4349999E+01), r( 8)=@.0
x( 9)= 0.45298E+03 (exact: 0.4529798E+03), r( 9)=@.0
x(10)=-0.276E+01 (exact:-0.2759999E+01), r(10)=@.0
x(11)= 0.823923E+04 (exact: 0.8239236E+04), r(11)=@.0
x(12)= 0.346E+01 (exact: 0.3459999E+01), r(12)=@.0
x(13)= 0.10000E+04 (exact: 0.9999996E+03), r(13)=@.0
x(14)=-0.5001E+01 (exact:-0.4999999E+01), r(14)=@.0
x(15)= 0.364239E+04 (exact: 0.3642398E+04), r(15)=@.0
x(16)= 0.73536E+03 (exact: 0.7353597E+03), r(16)=@.0
x(17)= 0.170E+01 (exact: 0.1699999E+01), r(17)=@.0
x(18)=-0.234917E+04 (exact:-0.2349169E+04), r(18)=@.0
x(19)=-0.8247515E+04 (exact:-0.8247515E+04), r(19)=@.0
x(20)= 0.984356E+04 (exact: 0.9843565E+04), r(20)=@.0

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 30



Approximation methods

Approximation of a limit L = lim
h→0

L(h)

If h ↘, truncation error ↘, but rounding error ↗

How to estimate the optimal step?

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 31



Dynamical control of approximation methods

Theorem [FJ, 2006]

Let us consider a numerical method which provides an approximation L(h) of
order p to an exact value L:

L(h)−L = K hp +O
(
hq

)
with 1 ≤ p < q, K ∈ IR.

If Ln is the approximation computed with the step h0
2n , then

CLn ,Ln+1 =CLn ,L + log10

(
2p

2p −1

)
+O

(
2n(p−q)) .

If the convergence zone is reached, the digits common to two successive
iterates are also common to the exact result, up to one.

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 32



Approximation methods with the CADNA library

The technique of “step halving” is applied and iterations are stopped when
Ln −Ln−1 = @.0

You are sure that the result Ln is optimal.

Furthermore its significant digits which are not affected by round-off errors are
in common with the exact result L, up to one.

Ln

Ln−1

L round-off errors

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 33



Approximation methods with the CADNA library

Example: approximations of an integral using Simpson’s method

n= 1 Ln= 0.532202672142964E+002 err= 0.459035794670113E+002
n= 2 Ln=-0.233434428466744E+002 err= 0.306601305939595E+002
n= 3 Ln=-0.235451792663099E+002 err= 0.308618670135950E+002
...
n=13 Ln= 0.73166877473053E+001 err= 0.202E-010
n=14 Ln= 0.73166877472864E+001 err= 0.1E-011
n=15 Ln= 0.73166877472852E+001 err= 0.1E-012
n=16 Ln= 0.73166877472851E+001 err=@.0

The exact solution is: 7.316687747285081429939.

Also theoretical results for combined sequences
⇒ dynamical control of infinite integrals, multidimensional integrals

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 34



Approximation methods with the CADNA library

Example: approximations of an integral using Simpson’s method

n= 1 Ln= 0.532202672142964E+002 err= 0.459035794670113E+002
n= 2 Ln=-0.233434428466744E+002 err= 0.306601305939595E+002
n= 3 Ln=-0.235451792663099E+002 err= 0.308618670135950E+002
...
n=13 Ln= 0.73166877473053E+001 err= 0.202E-010
n=14 Ln= 0.73166877472864E+001 err= 0.1E-011
n=15 Ln= 0.73166877472852E+001 err= 0.1E-012
n=16 Ln= 0.73166877472851E+001 err=@.0

The exact solution is: 7.316687747285081429939.

Also theoretical results for combined sequences
⇒ dynamical control of infinite integrals, multidimensional integrals

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 34



Deployment of CADNA on CPU-GPU

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 35



CADNA on CPU

Rounding mode change:
implicit change of the rounding mode thanks to
a ⊕+∞ b =− (−a ⊕−∞−b) (similarly for ª)
a ⊗+∞ b =− (a ⊗−∞−b) (similarly for ®)
�+∞ (resp. �−∞): floating-point operation rounded →+∞ (resp. −∞)

RD+∞ set once in cadna_init()

Instability detection:
dedicated counters are incremented
the occurrence of each kind of instability is given at the end of the run.

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 36



CADNA on CPU

Rounding mode change:
implicit change of the rounding mode thanks to
a ⊕+∞ b =− (−a ⊕−∞−b) (similarly for ª)
a ⊗+∞ b =− (a ⊗−∞−b) (similarly for ®)
�+∞ (resp. �−∞): floating-point operation rounded →+∞ (resp. −∞)

RD+∞ set once in cadna_init()

Instability detection:
dedicated counters are incremented
the occurrence of each kind of instability is given at the end of the run.

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 36



CADNA for CPU-GPU simulations
Rounding mode change on GPU
Arithmetic operations on GPU can be performed with a specified rounding
mode.

Ex: redefinition of multiplication

CPU
(rounding mode set to ±∞)

res.x=a.x*b.x;
or
res.x=-((-a.x)*b.x);

res.y=a.y*b.y;
res.z=-(-(a.z)*b.z);

or
res.y=-((-a.y)*b.y);
res.z=a.z*b.z;

GPU
if (RANDOMGPU())
res.x=__fmul_ru(a.x,b.x);

else
res.x=__fmul_rd(a.x,b.x);

if (RANDOMGPU()) {
res.y=__fmul_rd(a.y,b.y);
res.z=__fmul_ru(a.z,b.z);

}
else {
res.y=__fmul_ru(a.y,b.y);
res.z=__fmul_rd(a.z,b.z);

}

/ warp divergence

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 37



Instability detection on GPU
No counter: would need a lot of atomic operations
An unsigned char is associated with each result (each bit associated with
a type of instability).

CPU + GPU
class float_st {
protected:
float x,y,z;
private:
mutable unsigned int accuracy;
unsigned char accuracy;
mutable unsigned char error;
unsigned char pad1, pad2;
}

GPU
class float_gpu_st {
public:
float x,y,z;
public:
mutable unsigned char accuracy;
mutable unsigned char error;
unsigned char pad1, pad2;
}

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 38



Instability detection on GPU
No counter: would need a lot of atomic operations
An unsigned char is associated with each result (each bit associated with
a type of instability).

CPU + GPU
class float_st {
protected:
float x,y,z;
private:
mutable unsigned int accuracy;
unsigned char accuracy;
mutable unsigned char error;
unsigned char pad1, pad2;
}

GPU
class float_gpu_st {
public:
float x,y,z;
public:
mutable unsigned char accuracy;
mutable unsigned char error;
unsigned char pad1, pad2;
}

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 38



Instability detection on GPU
No counter: would need a lot of atomic operations
An unsigned char is associated with each result (each bit associated with
a type of instability).

CPU + GPU
class float_st {
protected:
float x,y,z;
private:
mutable unsigned int accuracy;
unsigned char accuracy;
mutable unsigned char error;
unsigned char pad1, pad2;
}

GPU
class float_gpu_st {
public:
float x,y,z;
public:
mutable unsigned char accuracy;
mutable unsigned char error;
unsigned char pad1, pad2;
}

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 38



CADNA overhead on GPU

Overhead in single (SP) and double (DP) precision on NVIDIA K20c:

Memory
Bound

Add

Compute
Bound

Add

Memory
Bound
Multiply

Compute
Bound
Multiply

SP 7.25× 19.0× 19.3× 58.7×
DP 6.39× 12.5× 18.6× 49.2×

Higher overheads than on CPU (warp divergence)
memory-bound benchmarks: lower overheads
For an initially memory-bound code, the additional computation induced
by CADNA is more easily absorbed by the GPU.

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 39



Example: matrix multiplication

#include "cadna.h"
#include "cadna_gpu.cu"

__global__ void matMulKernel(
float_gpu_st* mat1,
float_gpu_st* mat2,
float_gpu_st* matRes,
int dim) {

unsigned int x = blockDim.x*blockIdx.x+threadIdx.x;
unsigned int y = blockDim.y*blockIdx.y+threadIdx.y;

cadna_init_gpu();

if (x < dim && y < dim){
float_gpu_st temp;
temp=0;
for(int i=0; i<dim;i++){
temp = temp + mat1[y * dim + i] * mat2[i * dim + x];

}
matRes[y * dim + x] = temp;

}
}

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 40



Example: matrix multiplication

...
float_st mat1[DIMMAT][DIMMAT], mat2[DIMMAT][DIMMAT],
res[DIMMAT][DIMMAT];
...
cadna_init(-1);
int size = DIMMAT * DIMMAT * sizeof(float_st);
cudaMalloc((void **) &d_mat1, size);
cudaMalloc((void **) &d_mat2, size);
cudaMalloc((void **) &d_res, size);
cudaMemcpy(d_mat1, mat1, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_mat2, mat2, size, cudaMemcpyHostToDevice);

dim3 threadsPerBlock(16,16);
int nbbx = (int)ceil((float)DIMMAT/(float)16);
int nbby = (int)ceil((float)DIMMAT/(float)16);
dim3 numBlocks(nbbx , nbby);
matMulKernel <<< numBlocks , threadsPerBlock >>>
(d_mat1, d_mat2, d_res, DIMMAT);
cudaMemcpy(res, d_res, size, cudaMemcpyDeviceToHost);
...
cadna_end();

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 41



Output

mat1=
0.0000000E+000 0.1000000E+001 0.2000000E+001 0.3000000E+001
0.4000000E+001 0.5000000E+001 0.6000000E+001 0.6999999E+001
0.8000000E+001 @.0 0.1000000E+002 0.1099999E+002
0.1199999E+002 0.1299999E+002 0.1400000E+002 0.1500000E+002

mat2=
0.1000000E+001 0.1000000E+001 0.1000000E+001 0.1000000E+001
0.1000000E+001 @.0 0.1000000E+001 0.1000000E+001
0.1000000E+001 0.1000000E+001 0.1000000E+001 0.1000000E+001
0.1000000E+001 0.1000000E+001 0.1000000E+001 0.1000000E+001

res=
0.5999999E+001 @.0 0.5999999E+001 0.5999999E+001
0.2199999E+002 @.0 0.2199999E+002 0.2199999E+002
@.0 @.0 MUL @.0 @.0
0.5399999E+002 @.0 0.5399999E+002 0.5399999E+002
----------------------------------------------------------------
No instability detected on CPU

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 42



Example: Mandelbrot set computed on GPU

We map a 2D image on a part of the complex plane
for each pixel we iterate at most N times:
zn+1 = z2

n + c, with z0 = 0 and c ∈C the pixel center coordinates.
If ∃n s.t. |zn | > 2, the sequence will diverge and c is not in the set.
Otherwise, c is in the set.

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 43



Mandelbrot set computed on GPU with CADNA

Pixels with unstable tests:

unstable test |zn | > 2 ⇒ complete loss of accuracy in zn

Should these points be in the set?

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 44



Reproducibility failures in a wave propagation code

For oil exploration, the 3D acoustic wave equation

1

c2

∂2u

∂t 2 − ∑
b∈x,y,z

∂2

∂b2 u = 0

where u is the acoustic pressure, c is the wave velocity and t is the time

is solved using a finite difference scheme
time: order 2
space: order p (in our case p = 8).

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 45



2 implementations of the finite difference scheme
1

un+1
i j k = 2un

i j k −un−1
i j k + c2∆t 2

∆h2

p/2∑
l=−p/2

al

(
un

i+l j k +un
i j+lk +un

i j k+l

)
+ c2∆t 2 f n

i j k

2

un+1
i j k = 2un

i j k −un−1
i j k + c2∆t 2

∆h2

(
p/2∑

l=−p/2
al un

i+l j k +
p/2∑

l=−p/2
al un

i j+l k +
p/2∑

l=−p/2
al un

i j k+l

)
+ c2∆t 2 f n

i j k

where un
i j k (resp. f n

i k ) is the wave (resp. source) field in (i , j ,k) coordinates and nth

time step and al∈−p/2,p/2 are the finite difference coefficients

1 nearest neighbours first
2 dimension 1, 2 then 3

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 46



Reproducibility problems

Results depend on :

the implementation of the finite difference scheme

the compiler / architecture (various CPUs and GPUs used)

In binary32, for 64×64×64 space steps and 1000 time iterations:

any two results at the same space coordinates have 0 to 7 common digits

the average number of common digits is about 4.

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 47



Results computed at 3 different points

scheme point in the space domain
p1 = (0,19,62) p2 = (50,12,2) p3 = (20,1,46)

AMD Opteron CPU with gcc
1 -1.110479E+0 5.454238E+1 6.141038E+2
2 -1.110426E+0 5.454199E+1 6.141035E+2

NVIDIA C2050 GPU with CUDA
1 -1.110204E+0 5.454224E+1 6.141046E+2
2 -1.109869E+0 5.454244E+1 6.141047E+2

NVIDIA K20c GPU with OpenCL
1 -1.109953E+0 5.454218E+1 6.141044E+2
2 -1.111517E+0 5.454185E+1 6.141024E+2

AMD Radeon GPU with OpenCL
1 -1.109940E+0 5.454317E+1 6.141038E+2
2 -1.110111E+0 5.454170E+1 6.141044E+2

AMD Trinity APU with OpenCL
1 -1.110023E+0 5.454169E+1 6.141062E+2
2 -1.110113E+0 5.454261E+1 6.141049E+2

How to estimate the impact of rounding errors?

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 48



Results computed at 3 different points

scheme point in the space domain
p1 = (0,19,62) p2 = (50,12,2) p3 = (20,1,46)

AMD Opteron CPU with gcc
1 -1.110479E+0 5.454238E+1 6.141038E+2
2 -1.110426E+0 5.454199E+1 6.141035E+2

NVIDIA C2050 GPU with CUDA
1 -1.110204E+0 5.454224E+1 6.141046E+2
2 -1.109869E+0 5.454244E+1 6.141047E+2

NVIDIA K20c GPU with OpenCL
1 -1.109953E+0 5.454218E+1 6.141044E+2
2 -1.111517E+0 5.454185E+1 6.141024E+2

AMD Radeon GPU with OpenCL
1 -1.109940E+0 5.454317E+1 6.141038E+2
2 -1.110111E+0 5.454170E+1 6.141044E+2

AMD Trinity APU with OpenCL
1 -1.110023E+0 5.454169E+1 6.141062E+2
2 -1.110113E+0 5.454261E+1 6.141049E+2

How to estimate the impact of rounding errors?
Principles of DSA - The CADNA & PROMISE tools 06 June 2019 48



The acoustic wave propagation code examined with
CADNA

The code is run on:
an AMD Opteron 6168 CPU with gcc
an NVIDIA C2050 GPU with CUDA.

With both implementations of the finite difference scheme, the number of
exact digits varies from 0 to 7 (single precision).

Its mean value is:
4.06 with both schemes on CPU
3.43 with scheme 1 and 3.49 with scheme 2 on GPU.

⇒ consistent with our previous observations

Instabilities detected: > 270 000 cancellations

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 49



The acoustic wave propagation code examined with
CADNA

Results computed at 3 different points using scheme 1:

Point in the space domain
p1 = (0,19,62) p2 = (50,12,2) p3 = (20,1,46)

IEEE CPU -1.110479E+0 5.454238E+1 6.141038E+2
IEEE GPU -1.110204E+0 5.454224E+1 6.141046E+2

CADNA CPU -1.1E+0 5.454E+1 6.14104E+2
CADNA GPU -1.11E+0 5.45E+1 6.1410E+2

Reference -1.108603879E+0 5.454034021E+1 6.141041156E+2

Despite differences in the estimated accuracy, the same trend can be
observed on CPU and on GPU.

Highest round-off errors impact negligible results.
Highest results impacted by low round-off errors.

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 50



Accuracy distribution on CPU

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 51



Accuracy distribution on GPU

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 52



Numerical validation of a shallow-water (SW)
simulation on GPU

Numerical model (combination of
finite difference stencils)
simulating the evolution of water
height and velocities in a 2D
oceanic basin

Focusing on an eddy evolution:
20 time steps (12 hours of
simulated time) on a 1024 ×
1024 grid
CUDA GPU deployment
in double precision

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 53



SW eddy simulation with CADNA-GPU
At the end of the simulation:

Square of water velocity in m2 .s−2 Number of exact significant digits estimated by

CADNA-GPU
at eddy center: great accuracy loss
equilibrium between several forces (pressure, Coriolis)
⇒ possible cancellations
point at the very center: 9 exact significant digits lost
⇒ no correct digits in SP
fortunately, velocity values close to zero at eddy center
→ negligible impact on the output
→ satisfactory overall accuracy

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 54



Performance impact of CADNA-GPU on SW eddy
simulation

 0.0001

 0.001

 0.01

 0.1

Shallow-water

C
o
m

p
u
ta

ti
o
n
 t

im
e
 (

s,
 l
o
g
 s

ca
le

)

IEEE
CADNAOvh.

15.8x

(average execution time of the CUDA kernel for one simulation time-step)

CADNA-GPU overhead of 15.8x for this real-life application
Same order of magnitude than our benchmark overheads

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 55



Numerical validation of half precision codes on GPU

Half precision (binary16)
mantissa precision 11 bits ⇒ maximal accuracy: 3 decimal digits
available on Nvidia GPU P100, V100
half or half2 computation

half is supported with the same throughput as float
two half2 instructions can be executed at a time (2-way SIMD instruction)

CADNA and half precision
Extension of CADNA-GPU for half precision codes
Application to a tiny neural network trained with backpropagation
https://cognitivedemons.wordpress.com/2017/09/02/

a-neural-network-in-10-lines-of-cuda-c-code

simplified set (4 samples) from Fisher’s Iris data set [Fisher, 1936]
input: flower characteristics (sepal length, sepal width, petal length, petal
width)
output: Iris flower class (Iris Setosa (0) or Iris Virginica (1))

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 56

https://cognitivedemons.wordpress.com/2017/09/02/a-neural-network-in-10-lines-of-cuda-c-code
https://cognitivedemons.wordpress.com/2017/09/02/a-neural-network-in-10-lines-of-cuda-c-code


Numerical validation of half precision codes on GPU

Half precision (binary16)
mantissa precision 11 bits ⇒ maximal accuracy: 3 decimal digits
available on Nvidia GPU P100, V100
half or half2 computation

half is supported with the same throughput as float
two half2 instructions can be executed at a time (2-way SIMD instruction)

CADNA and half precision
Extension of CADNA-GPU for half precision codes
Application to a tiny neural network trained with backpropagation
https://cognitivedemons.wordpress.com/2017/09/02/

a-neural-network-in-10-lines-of-cuda-c-code

simplified set (4 samples) from Fisher’s Iris data set [Fisher, 1936]
input: flower characteristics (sepal length, sepal width, petal length, petal
width)
output: Iris flower class (Iris Setosa (0) or Iris Virginica (1))

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 56

https://cognitivedemons.wordpress.com/2017/09/02/a-neural-network-in-10-lines-of-cuda-c-code
https://cognitivedemons.wordpress.com/2017/09/02/a-neural-network-in-10-lines-of-cuda-c-code


Numerical results
Prediction True value

float CADNA 6.099681E-02 0
7.619311E-02 0
9.275507E-01 1
9.182625E-01 1

float IEEE 6.099682E-02 0
7.619311E-02 0
9.275508E-01 1
9.182626E-01 1

half CADNA 6.1E-02 0
7.6E-02 0
9.2E-01 1
9.1E-01 1

half IEEE 6.094360E-02 0
7.629395E-02 0
9.277344E-01 1
9.184570E-01 1

Remark: cast to single precision for printing on CPU

Perspective: numerical validation of larger half precision codes

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 57



Numerical results
Prediction True value

float CADNA 6.099681E-02 0
7.619311E-02 0
9.275507E-01 1
9.182625E-01 1

float IEEE 6.099682E-02 0
7.619311E-02 0
9.275508E-01 1
9.182626E-01 1

half CADNA 6.1E-02 0
7.6E-02 0
9.2E-01 1
9.1E-01 1

half IEEE 6.094360E-02 0
7.629395E-02 0
9.277344E-01 1
9.184570E-01 1

Remark: cast to single precision for printing on CPU

Perspective: numerical validation of larger half precision codes
Principles of DSA - The CADNA & PROMISE tools 06 June 2019 57



CADNA for parallel codes
using OpenMP and/or MPI

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 58



CADNA for OpenMP parallel codes

OpenMP: implementation of multithreading
A master thread forks a number of threads which execute // blocks of code.

CADNA requires RD+∞ for each thread:
→ not guaranteed by OpenMP

Compatibility check for targeted OpenMP implementation:
In cadna_init():

1 set the master thread to RD+∞
2 check in an OpenMP parallel region that all worker threads have inherited

RD+∞, otherwise:
in 2nd parallel region: set all threads to RD+∞
in 3r d parallel region: check rounding mode correctly saved for each thread
if not: OpenMP environment not compatible with CADNA

GNU and Intel implementations found to be compatible with CADNA

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 59



Random rounding mode in OpenMP codes

Latest CADNA versions:
random number generator in each execution flow
(i.e. in each scalar lane for SIMD execution)

For OpenMP support:
distinct random generator in each thread
(via threadprivate)
to ensure persistence of threadprivate variable values among //
regions:
same number of threads for all // regions

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 60



Instability detection and reductions

Detection of numerical instabilities:
counters for each instability concurrently incremented by multiple threads
OpenMP atomic constructs for safe updates

Extension of OpenMP reductions to stochastic variables:
declare reduction construct (OpenMP 4.0) along with the redefinition
of all arithmetic operators for stochastic types
+, - and * operators currently supported

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 61



Atomic constructs

Atomic constructs on stochastic variables:
atomic constructs cannot be applied to CADNA stochastic (non scalar)
types
a CADNA-redefined arithmetic operation:

3 FP IEEE operations
bit manipulations
instability detections

→ exclusive access by each thread must be ensured for this whole
sequence of operations
each atomic construct replaced by a critical block in the user code
this is the only OpenMP-CADNA modification required in user code:
all previous modifications internal to the CADNA library

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 62



“Real-life” application: a Shallow-Water (SW) model

Combination of finite difference stencils to describe evolution of water
height and velocities in 2D oceanic basin

forward mode (direct model):
computes model output (time ↗)
fully parallel in space

backward mode (adjoint model):
computes output sensitivity to initial conditions (time ↘)
parallelizable with numerous atomic

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 63



SW: performance results
double precision computation, 500 time steps on a 256 × 256 grid

Forward:

 0.1

 1

 10

 100

Serial OMP-1T OMP-8T OMP-16T OMP-2x16T

C
o
m

p
u
ta

ti
o
n
 t

im
e
 (

s)

IEEE
CADNA

Ovh.
14.7x

Ovh.
15.0x

Ovh.
9.8x Ovh.

9.9x Ovh.
6.5x

No scaling overhead with
CADNA

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 64



SW: performance results
double precision computation, 500 time steps on a 256 × 256 grid

Backward:

 1

 10

 100

 1000

Serial OMP-1T OMP-8T OMP-16T OMP-2x16T

C
o
m

p
u
ta

ti
o
n
 t

im
e
 (

s)

IEEE
CADNA

Ovh.
8.9x

Ovh.
6.8x

Ovh.
20.1x

Ovh.
43.8x

Ovh.
57.9x

Limited IEEE speedups
(numerous atomic)
With CADNA (critical):
# threads ↗
⇒ computation times ↗
and overhead ↗

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 65



SW: numerical validation

Focus on the residual: key parameter for validating adjoint codes

IEEE CADNA
Serial 3.446611873236805E-06 3.4461E-06

OpenMP - 16 threads 3.446619149194419E-06 3.446E-06

IEEE runs: 6 common digits between serial and multithreaded
CADNA runs ⇒ 4 exact significant digits

(Almost) same exact significant digits between serial and OpenMP
CADNA runs:
⇒ likely no bug in the OpenMP parallelization

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 66



CADNA for MPI codes

Enabling exchange of stochastic variables
new MPI data types:

MPI_FLOAT_ST
MPI_DOUBLE_ST

⇒ *4 communication times with stochastic variables w.r.t. classic
variables
New reduction operators for stochastic types (available for *, +, min,
max)
Instability counting:

count of each kind of instability for each process
global count of each kind of instability

CADNA specific functions in MPI codes
cadna_mpi_init
cadna_mpi_end

CADNA allows the numerical validation of MPI-OpenMP codes.

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 67



Related works

Other numerical validation tools based on result pertubation
MCAlib [Frechling et al., 2015]

VerifiCarlo [Denis et al., 2016]

based on LLVM
Verrou [Févotte et al., 2017]

based on Valgrind, no source code modification ,

asynchronous approach: 1 complete run → 1 result
the user is in charge of the accuracy analysis
several executions → possibly several branches
require more samples than CADNA
no instability detection at run time

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 68



Precision auto-tuning

The PROMISE tool

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 69



Precision optimization

mixed precision often leads to better performance
some existing tools:

CRAFT HPC [Lam & al., 2013]
binary modifications on the operations

Precimonious [Rubio-Gonzàlez & al., 2013]
source modification with LLVM

They rely on comparisons with the highest precision result.

B [Rump, 1988] P = 333.75y6 +x2(11x2 y2 − y6 −121y4 −2)+5.5y8 +x/(2y)
with x = 77617 and y = 33096

float: P =2.571784e+29
double: P =1.17260394005318
quad: P =1.17260394005317863185883490452018
exact: P ≈-0.827396059946821368141165095479816292

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 70



Precision optimization

mixed precision often leads to better performance
some existing tools:

CRAFT HPC [Lam & al., 2013]
binary modifications on the operations

Precimonious [Rubio-Gonzàlez & al., 2013]
source modification with LLVM

They rely on comparisons with the highest precision result.

B [Rump, 1988] P = 333.75y6 +x2(11x2 y2 − y6 −121y4 −2)+5.5y8 +x/(2y)
with x = 77617 and y = 33096

float: P =2.571784e+29
double: P =1.17260394005318
quad: P =1.17260394005317863185883490452018
exact: P ≈-0.827396059946821368141165095479816292

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 70



Precision optimization

mixed precision often leads to better performance
some existing tools:

CRAFT HPC [Lam & al., 2013]
binary modifications on the operations

Precimonious [Rubio-Gonzàlez & al., 2013]
source modification with LLVM

They rely on comparisons with the highest precision result.

B [Rump, 1988] P = 333.75y6 +x2(11x2 y2 − y6 −121y4 −2)+5.5y8 +x/(2y)
with x = 77617 and y = 33096

float: P =2.571784e+29

double: P =1.17260394005318
quad: P =1.17260394005317863185883490452018
exact: P ≈-0.827396059946821368141165095479816292

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 70



Precision optimization

mixed precision often leads to better performance
some existing tools:

CRAFT HPC [Lam & al., 2013]
binary modifications on the operations

Precimonious [Rubio-Gonzàlez & al., 2013]
source modification with LLVM

They rely on comparisons with the highest precision result.

B [Rump, 1988] P = 333.75y6 +x2(11x2 y2 − y6 −121y4 −2)+5.5y8 +x/(2y)
with x = 77617 and y = 33096

float: P =2.571784e+29
double: P =1.17260394005318

quad: P =1.17260394005317863185883490452018
exact: P ≈-0.827396059946821368141165095479816292

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 70



Precision optimization

mixed precision often leads to better performance
some existing tools:

CRAFT HPC [Lam & al., 2013]
binary modifications on the operations

Precimonious [Rubio-Gonzàlez & al., 2013]
source modification with LLVM

They rely on comparisons with the highest precision result.

B [Rump, 1988] P = 333.75y6 +x2(11x2 y2 − y6 −121y4 −2)+5.5y8 +x/(2y)
with x = 77617 and y = 33096

float: P =2.571784e+29
double: P =1.17260394005318
quad: P =1.17260394005317863185883490452018

exact: P ≈-0.827396059946821368141165095479816292

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 70



Precision optimization

mixed precision often leads to better performance
some existing tools:

CRAFT HPC [Lam & al., 2013]
binary modifications on the operations

Precimonious [Rubio-Gonzàlez & al., 2013]
source modification with LLVM

They rely on comparisons with the highest precision result.

B [Rump, 1988] P = 333.75y6 +x2(11x2 y2 − y6 −121y4 −2)+5.5y8 +x/(2y)
with x = 77617 and y = 33096

float: P =2.571784e+29
double: P =1.17260394005318
quad: P =1.17260394005317863185883490452018
exact: P ≈-0.827396059946821368141165095479816292

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 70



PROMISE (PRecision OptiMISE)
promise.lip6.fr

Taking into account a required accuracy, PROMISE provides a mixed
precision configuration (float, double, quad)

2 ways to validate a configuration:
validation of every execution using CADNA

validation of a reference using CADNA and comparison to this reference

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 71

promise.lip6.fr


Searching for a valid configuration with 2 types
Method based on Delta Debugging algorithm [Zeller, 2009]

Higher precision

✓

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 72



Searching for a valid configuration with 2 types
Method based on Delta Debugging algorithm [Zeller, 2009]

Higher precision

✓
Lower precision

✗✗

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 72



Searching for a valid configuration with 2 types
Method based on Delta Debugging algorithm [Zeller, 2009]

Higher precision

✓
Lower precision

✗✗

✗ ✗

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 72



Searching for a valid configuration with 2 types
Method based on Delta Debugging algorithm [Zeller, 2009]

Higher precision

✓
Lower precision

✗✗

✗ ✗

Not tested

✓

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 72



Searching for a valid configuration with 2 types
Method based on Delta Debugging algorithm [Zeller, 2009]

Higher precision

✓
Lower precision

✗✗

✗ ✗

Not tested

✓

✓Already tested

...
✓

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 72



Searching for a valid configuration: complexity

We will not have the best configuration.

But the mean complexity is O(n log(n)) and in the worst case O(n2)

Efficient way of finding a local maximum configuration

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 73



Searching for a valid configuration: complexity

We will not have the best configuration.

But the mean complexity is O(n log(n)) and in the worst case O(n2)

Efficient way of finding a local maximum configuration

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 73



Experimental results
Benchmarks

Short programs:
arclength computation
rectangle method for the computation of integrals
Babylonian method for square root
matrix multiplication

GNU Scientific Library:
Fast Fourier Transform
sum of Taylor series terms
polynomial evaluation/solver

SNU NPB Suite:
Conjugate Gradient method
Scalar Penta-diagonal solver

Requested accuracy: 4, 6, 8 and 10 digits

⇒ PROMISE has found a new configuration each time.

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 74



Benchmark results

Program #Digits #exec
#double

-
#float

Time
(mm:ss)

Result

arclength exact 5.79577632241285
10 21 8-1 0:13 5.795776322413038
6 26 7-2 0:15 5.79577686259398
4 16 2-7 0:09 5.79619547341572

rectangle exact 0.100000000000000
10 15 4-3 0:06 0.1000000000000028
6 16 3-4 0:06 0.100000001490116
4 3 0-7 0:01 0.100003123283386

squareRoot exact 1.41421356237309
10 21 6-2 0:07 1.414213562373098
6 3 0-8 0:01 1.414213538169864

Time: total execution time of PROMISE (compilations, executions, and time
spent in PROMISE routines)

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 75



MICADO: simulation of nuclear cores (EDF)

neutron transport iterative solver
11,000 C++ code lines

# Digits
# comp

-
# exec

# double
-

# float

Time
(mm:ss)

Speed
up

memory
gain

10 83-51 19-32 88:56 1.01 1.00
8 80-48 18-33 85:10 1.01 1.01
6 69-37 13-38 71:32 1.20 1.44
5 3-3 0-51 9:58 1.32 1.624

Time: total execution time of PROMISE (compilations, executions, and
time spent in PROMISE routines)
Speedup, memory gain: of the proposed configuration, when run without
CADNA, w.r.t. the initial configuration (in double precision).

Speed-up up to 1.32 and memory gain 1.62
Mixed precision approach successful: speed-up 1.20 and memory
gain 1.44

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 76



MICADO: simulation of nuclear cores (EDF)

neutron transport iterative solver
11,000 C++ code lines

# Digits
# comp

-
# exec

# double
-

# float

Time
(mm:ss)

Speed
up

memory
gain

10 83-51 19-32 88:56 1.01 1.00
8 80-48 18-33 85:10 1.01 1.01
6 69-37 13-38 71:32 1.20 1.44
5 3-3 0-51 9:58 1.32 1.624

Speed-up up to 1.32 and memory gain 1.62
Mixed precision approach successful: speed-up 1.20 and memory
gain 1.44

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 76



Searching for a valid configuration with 3 types

PROMISE with 2 types
from a C/C++ program and an accuracy requirement on the results,
provides a new program mixing single and double precision
based on CADNA and the DeltaDebug (DD) algorithm

C : set of variables
in double precision DD

bipartition
(C s ,C d )

PROMISE with 3 types
2 executions of DD to provide a program mixing single, double, and
quadruple precision

C : set of variables
in quadruple precision DD (C d

0 ,C q ) DD (C s ,C d ,C q )

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 77



Program #digits
SquareRoot 20
(Babylonian 18

method) 16
14
12
10
8
6
4

Rectangle 20
(integrals 18

computation) 16
14
12
10
8
6
4

#exec #quad - #double - #float Time (s) Speedup

22 6 - 0 - 2 13.1 1.11

25 5 - 1 - 2 13.1 2.42

22 0 - 6 - 2 10.9 2.68

4 0 - 0 - 8 4.7 2.74

18 6 - 1 - 0 11.8 1.07

20 2 - 5 - 0 12.5 1.42
18 1 - 6 - 0 10.3 1.40

16 0 - 7 - 0 10.3 1.40

12 0 - 2 - 5 8.6 1.40
12 0 - 1 - 6 8.6 1.45
4 0 - 0 - 7 4.4 1.45

Time: total execution time of PROMISE (compilations, executions, and
time spent in PROMISE routines)
Speedup: speedup of the proposed configuration, when run without
CADNA, w.r.t. the initial configuration (in quadruple precision).

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 78



Program #digits
SquareRoot 20
(Babylonian 18

method) 16
14
12
10
8
6
4

Rectangle 20
(integrals 18

computation) 16
14
12
10
8
6
4

#exec #quad - #double - #float Time (s) Speedup

22 6 - 0 - 2 13.1 1.11

25 5 - 1 - 2 13.1 2.42

22 0 - 6 - 2 10.9 2.68

4 0 - 0 - 8 4.7 2.74

18 6 - 1 - 0 11.8 1.07

20 2 - 5 - 0 12.5 1.42
18 1 - 6 - 0 10.3 1.40

16 0 - 7 - 0 10.3 1.40

12 0 - 2 - 5 8.6 1.40
12 0 - 1 - 6 8.6 1.45
4 0 - 0 - 7 4.4 1.45

If the required accuracy decreases
# single and double precision variables increases
speedup increases

With the 2-precision version of PROMISE: lower speed-up (up to 1.3).

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 78



Conclusion

Discrete Stochastic Arithmetic can estimate which digits are affected by
round-off errors and possibly explain reproducibility failures.

In one execution: 3 runs of the program, accuracy of any result, complete
list of numerical instabilities.

Relatively low overhead

Support for wide range of codes (vectorised, GPU, MPI, OpenMP)

Numerical instabilities sometimes difficult to understand in a large code

Easily applied to real life applications

CADNA has been successfully used for the numerical validation of
academic and industrial simulation codes in various domains
(astrophysics, atomic physics, chemistry, climate science, fluid dynamics,
geophysics,...)

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 79



Thanks to Jean-Marie Chesneaux, Julien Brajard, Romuald Carpentier,
Patrick Corde, Pacôme Eberhart, François Févotte, Pierre Fortin, Stef Graillat,
Jean-Luc Lamotte, Baptiste Landreau, Bruno Lathuilière, Romain Picot, Issam
Saïd, Su Zhou, ...

Thank you for your attention!

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 80



Thanks to Jean-Marie Chesneaux, Julien Brajard, Romuald Carpentier,
Patrick Corde, Pacôme Eberhart, François Févotte, Pierre Fortin, Stef Graillat,
Jean-Luc Lamotte, Baptiste Landreau, Bruno Lathuilière, Romain Picot, Issam
Saïd, Su Zhou, ...

Thank you for your attention!

Principles of DSA - The CADNA & PROMISE tools 06 June 2019 80


