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Introduction

Exascale barrier broken in June 2018: 1.8 1018 floating-point operations per
second. (Oak Ridge National Laboratory, analysis of genomic data)

Increasing power of current computers
→ GPU accelerators, Intel Xeon Phi processors, etc.

Enable to solve more complex problems
→ Quantum field theory, supernova simulation, etc.

A high number of floating-point operations performed
→ Each of them can lead to a rounding error

⇒ Need for accuracy and validation
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Key tools for accurate computation

fixed length expansions libraries: double-double (Briggs, Bailey, Hida, Li),
quad-double (Bailey, Hida, Li)
arbitrary length expansions libraries: Priest, Shewchuk,
Joldes-Muller-Popescu
arbitrary precision libraries: ARPREC, MPFR, MPIR
compensated algorithms (Kahan, Priest, Ogita-Rump-Oishi,...)
based on EFTs (Error Free Transformations)

EFTs: properties and algorithms to compute the generated elementary
rounding errors

Let a, b ∈ F, for the basic operation ◦ ∈ {+,−,×}, with rounding to nearest,

a ◦ b = fl(a ◦ b) + e with e ∈ F
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Numerical validation: interval arithmetic

Principle: replace numbers by intervals and compute.

Fundamental theorem of interval arithmetic: the exact result belongs to the
computed interval.

No result is lost, the computed interval is guaranteed to contain every
possible result.

Some implementations:
INTLAB [Rump]
http://www.ti3.tu-harburg.de/intlab
GNU octave interval package [Heimlich]
http://octave.sourceforge.net/interval
Boost interval arithmetic library [Brönnimann et al., 2006]
C-XSC [Hofschuster et al., 2004]
filib++ [Lerch et al, 2006]
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Numerical validation:
Discrete Stochastic Arithmetic (DSA) [Vignes, 2004]

each operation executed 3 times with a random rounding mode
number of correct digits in the results estimated using Student’s test with
the probability 95%
estimation may be invalid if both operands in a multiplication or a divisor
are not significant.
⇒ control of multiplications and divisions: self-validation of DSA.
in DSA rounding errors are assumed centered.
even if they are not rigorously centered, the accuracy estimation can be
considered correct up to 1 digit.
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Implementation of DSA

CADNA: for programs in single and/or double precision
http://cadna.lip6.fr

SAM: for arbitrary precision programs (based on MPFR)
http://www-pequan.lip6.fr/~jezequel/SAM

estimate accuracy and detect numerical instabilities
provide stochastic types (3 classic type variables and 1 integer)
all operators and mathematical functions overloaded
⇒ few modifications in user programs
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In this talk...

Results established for directed rounding will be applied to
interval arithmetic
discrete stochastic arithmetic.

Notations:
We assume floating-point arithmetic adhering to IEEE 754 with rounding
unit u (no underflow nor overflow).

Let
γn(u) =

nu
1 − nu

.
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Outline of this talk

I. Compensated algorithms and numerical validation

1 Error-free transformations (EFT) with rounding to nearest
2 Error-free transformations (EFT) with directed rounding
3 Tight interval inclusions with compensated algorithms
4 Numerical validation of compensated algorithms with DSA

II. Numerical validation of quadruple or arbitrary precision programs with DSA

1 Implementation of DSA in quadruple precision
2 Implementation of DSA in arbitrary precision
3 Application: computation of multiple roots of polynomials
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I. Compensated algorithms and numerical validation
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Outline

1 Error-free transformations (EFT) with rounding to nearest

2 Error-free transformations (EFT) with directed rounding

3 Tight interval inclusions with compensated algorithms
Compensated algorithm for summation with directed rounding
Compensated dot product with directed rounding
Compensated Horner scheme with directed rounding

4 Numerical validation of compensated algorithms with DSA
Compensated algorithms for summation, dot product and Horner scheme
with DSA
Summation as in K-fold precision with directed rounding
Dot product as in K-fold precision with directed rounding
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EFT for the addition with rounding to nearest

x = a ⊕ b ⇒ a + b = x + y with y ∈ F

Algorithm of Dekker (1971) and Knuth (1974)

Algorithm (EFT of the sum of 2 floating-point numbers with
|a| ≥ |b|)
function [x, y] = FastTwoSum(a, b)

x = a ⊕ b
y = (a 	 x) ⊕ b

Algorithm (EFT of the sum of 2 floating-point numbers)
function [x, y] = TwoSum(a, b)

x = a ⊕ b
z = x 	 a
y = (a 	 (x 	 z)) ⊕ (b 	 z)
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EFT for the product with rounding to nearest

x = a ⊗ b ⇒ a × b = x + y with y ∈ F

Given a, b, c ∈ F,
FMA(a, b, c) is the nearest floating-point number to a × b + c

Algorithm (EFT of the product of 2 floating-point numbers)
function [x, y] = TwoProdFMA(a, b)

x = a ⊗ b
y = FMA(a, b,−x)

FMA is available for example on PowerPC, Itanium, Cell, Xeon Phi, AMD and
Nvidia GPU, Intel (Haswell), AMD (Bulldozer) processors.
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EFT for the addition with directed rounding

x = fl*(a + b) ⇒ a + b = x + e but possibly e < F

Algorithm (EFT of the sum of 2 floating-point numbers with
|a| ≥ |b|)
function [x, y] = FastTwoSum(a, b)

x = fl*(a + b)
y = fl*((a − x) + b)

Proposition
We have y = fl*(e) and so |e − y| ≤ 2u|e|. It yields |e − y| ≤ 4u2

|x| and
|e − y| ≤ 4u2

|a + b|. Moreover
if ∗ = ∆, e ≤ y
if ∗ = ∇, y ≤ e
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Compensated summation with directed rounding

Let p = {pi} be a vector of n floating-point numbers.

Algorithm (Ogita, Rump, Oishi (2005))
function res = CompSum(p)
π1 = p1 ; σ1 = 0
for i = 2 : n

[πi, qi] = TwoSum(πi−1, pi)
σi = fl*(σi−1 + qi)

res = fl*(πn + σn)

Proposition
Let us suppose CompSum is applied, with directed rounding, to pi ∈ F, 1 ≤ i ≤ n.
Let s :=

∑
pi and S :=

∑
|pi|. If nu < 1

2 , then

|res − s| ≤ 2u|s| + 2(1 + 2u)γ2
n(2u)S with γn(u) =

nu
1 − nu

.
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Tight inclusions with compensated summation

Algorithm (Tight inclusion using INTLAB)

setround(-1)
Sinf = CompSum(p)
setround(1)
Ssup = CompSum(p)

Proposition
Let p = {pi} be a vector of n floating-point numbers. Then we have

Sinf ≤

n∑
i=1

pi ≤ Ssup.
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Numerical experiments
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Compensated dot product

Algorithm (Ogita, Rump and Oishi 2005)
function res = CompDot(x, y)

[p, s] = TwoProdFMA(x1, y1)
for i = 2 : n

[h, r] = TwoProdFMA(xi, yi)
[p, q] = TwoSum(p, h)
s = fl*(s + (q + r))

end
res = fl*(p + s)

Proposition
Let xi, yi ∈ F (1 ≤ i ≤ n) and res the result computed by CompDot with directed
rounding. If (n + 1)u < 1

2 , then,

|res − xT y| ≤ 2u|xT y| + 2γ2
n+1(2u)|xT

||y|.
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Tight inclusions with compensated dot product

Algorithm (Tight inclusion using INTLAB)

setround(-1)
Dinf = CompDot(x,y)
setround(1)
Dsup = CompDot(x,y)

Proposition
Let xi, yi ∈ F (1 ≤ i ≤ n) be given. Then we have

Dinf ≤ xT y ≤ Dsup.
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Compensated Horner scheme

Let p(x) =

n∑
i=0

aixi with x, ai ∈ F

Algorithm (Graillat, Langlois, Louvet, 2009)
function res = CompHorner(p, x)

sn = an
rn = 0
for i = n − 1 : −1 : 0

[pi, πi] = TwoProdFMA(si+1, x)
[si, σi] = TwoSum(pi, ai)
ri = fl*(ri+1 × x + (πi + σi))

end
res = fl*(s0 + r0)
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Compensated Horner scheme

Theorem
Consider a polynomial p of degree n with floating-point coefficients, and a
floating-point value x. With directed rounding, the forward error in the
compensated Horner algorithm is such that

|CompHorner(p, x) − p(x)| ≤ 2u|p(x)| + 2γ2
2n+1(2u)p̃(|x|),

with p̃(x) =
∑n

i=0 |ai|xi.
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Tight inclusions - compensated Horner scheme

Algorithm (x ≥ 0, Tight inclusion using INTLAB)

setround(-1)
Einf = CompHorner(p,x)
setround(1)
Esup = CompHorner(p,x)

If x ≤ 0, CompHorner(p̄,−x) is computed
with p̄(x) =

∑n
i=0 ai(−1)ixi.

Proposition
Consider a polynomial p of degree n with floating-point coefficients, and a
floating-point value x.

Einf ≤ p(x) ≤ Esup.
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Compensated algorithms with DSA

With the random rounding mode, EFTs are no more exact.
However thanks to the error bounds obtained with directed rounding,

CADNA can be used to validate results of compensated algorithms.
compensated algorithms can be used in CADNA codes.

For classic algorithms and their compensated versions, we compare:
the accuracy estimated by CADNA
the accuracy d evaluated from the exact results

R: result computed with CADNA
Rexact: result computed symbolically

If Rexact , 0, d = − log10

∣∣∣∣∣R − Rexact

Rexact

∣∣∣∣∣ ,
otherwise d = − log10 |R| .
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Compensated summation using DSA

Accuracy (estimated by CADNA and computed from the exact results) using
the Sum and the FastCompSum algorithms
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Compensated dot product using DSA

Accuracy (estimated by CADNA and computed from the exact results) using
the Dot and the CompDot algorithms
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Compensated Horner scheme using DSA

Accuracy (estimated by CADNA and computed from the exact results) using
the Horner and the CompHorner algorithms
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EFT for the addition with any rounding mode

From a and b, Priest algorithm (1992) returns x and y such that a + b = x + y.

Algorithm (EFT of the sum of 2 floating-point numbers)
function [x, y] = PriestTwoSum(a, b)

if |b| > |a|
exchange a and b

endif
x = f l∗(a + b) ; e = f l∗(x − a)
g = f l∗(x − e) ; h = f l∗(g − a)
f = f l∗(b − h) ; y = f l∗( f − e)
if f l∗(y + e) , f

x = a ; y = b
endif
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Compensated summation with directed rounding

Let p = {pi} be a vector of n floating-point numbers.

Algorithm
function res = PriestCompSum(p)
π1 = p1 ; σ1 = 0
for i = 2 : n

[πi, qi] = PriestTwoSum(πi−1, pi) ; σi = fl*(σi−1 + qi)
res = fl*(πn + σn)

Proposition
Let us suppose PriestCompSum is applied, with directed rounding, to pi ∈ F,
1 ≤ i ≤ n. Let s :=

∑
pi and S :=

∑
|pi|. If nu < 1

2 , then

|res − s| ≤ 2u|s| + γ2
n−1(2u)S with γn(u) =

nu
1 − nu

.
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Summation as in K-fold precision
with directed rounding

SumK based on TwoSum introduced by Ogita, Rump & Oishi (2005)

Algorithm (Summation in K-fold working precision)
function res = SumK(p,K)

for k = 1 : K − 1
for i = 2 : n

[pi, pi−1] = PriestTwoSum(pi, pi−1)
res = fl*(

∑n
i=1 pi)

Proposition
Let us suppose SumK is applied, with directed rounding, to pi ∈ F, 1 ≤ i ≤ n. Let
s :=

∑
pi and S :=

∑
|pi|. If 8nu ≤ 1, then

|res − s| ≤
(
2u + 3γ2

n−1(2u)
)
|s| + γK

2n−2(2u)S.
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Summation as in K-fold precision using DSA

Accuracy estimated by CADNA using the Sum and the SumK algorithms
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Dot product as in K-fold precision with directed
rounding
DotK based on TwoSum and TwoProd (EFT with rounding to nearest) introduced
by Ogita, Rump & Oishi (2005)

Algorithm (Dot product in K-fold working precision)
function res = DotK(x, y,K)

[p, r1] = TwoProdFMA(x1, y1)
for i = 2 : n

[h, ri] = TwoProdFMA(xi, yi) ; [p, rn+i−1] = PriestTwoSum(p, h)
r2n = p
res = SumK(r,K − 1)

Proposition
Let xi, yi ∈ F (1 ≤ i ≤ n) and res the result computed by DotK with directed
rounding. If 16nu ≤ 1, then

|res − xT y| ≤
(
u + 2γ2

4n−2(u)
)
|xT y| + γK

4n−2(u)|xT
||y|.
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Dot product as in K-fold precision using DSA

Accuracy estimated by CADNA using the Dot and the DotK algorithms
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Conclusion and future work

Conclusion
Compensated algorithms are a fast way to get accurate results

Compensated algorithms & interval arithmetic
→ certified results with finite precision

Compensated algorithms & stochastic arithmetic
→ results with accuracy estimation

Future work
Error analysis of TwoProd with directed rounding

Interval computation with K-fold compensated algorithms
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II. Quadruple and arbitrary precision with DSA
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Introduction

Simulation programs usually in single (binary32) or double (binary64)
precision
Quadruple precision (binary128) or arbitrary precision sometimes required,
for instance:

computation of chaotic sequences
approximation of multiple roots of polynomials

How to estimate efficiently rounding errors
in quadruple/arbitrary precision codes?

Probabilistic approach

uses a random rounding mode
DSA (Discrete Stochastic Arithmetic):

estimates the number of exact significant digits of any computed result
implemented in the CADNA library
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Overview

Extension of DSA to quadruple precision

Extension of DSA to arbitrary precision

Application: computation of multiple roots of polynomials
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Quadruple precision arithmetic

binary128 format
a sign bit, a 15-bit long exponent, a 112-bit long mantissa
actual mantissa precision: 113 bits
in GCC, bit field structure:

sign bit
15-bit long integer for the exponent
48-bit long integer for the high part of the mantissa
64-bit long integer for its low part.

double-double format
a = (ah, al) with a = ah + al, |al| ≤ 2−53

|ah|

rounding not as specified in the IEEE 754 standard
the QD library [Hida, Li & Bailey, 2008]

several implementations of double-double operations
for + and /, sloppy version: performs better with a possibly higher error.
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Performance comparison of quadruple precision
programs

Comparison of:
binary128
MPFR with 113-bit mantissa length
http://www.mpfr.org

double-double implementations from QD
http://www.davidhbailey.com/dhbsoftware

Benchmarks:
Matrix: naive multiplication of two square matrices of size 1,000.
Map: computes the sequence

U0 = 1.1
for i = 1,..., n, Ui = (0.1 ×Ui−1 − (1/3 + Ui−1)2)/(1 −Ui−1)3

with n = 128, 000, 000.
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Performance ratio w.r.t. double precision (binary64)
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(b) GCC with O3

MPFR (3.1.1) costly, although improvements expected with version 4.
with O0:

binary128 performs the best
low performance gain with DD sloppy

with O3:
Matrix: performance ratio binary128/binary64 higher than with O0
DD better than binary128, but does not adhere to IEEE 754

same trends with ICC
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Extension of CADNA to quadruple precision

new binary128 type:
__float128 (GCC), _Quad (ICC)⇒ float128

new CADNA type:
float128_st (3 float128 and 1 integer)

efficient rounding mode change:
implicit change of the rounding mode thanks to
a ⊕+∞ b = − (−a ⊕−∞ −b) (similarly for 	)
a ⊗+∞ b = − (a ⊗−∞ −b) (similarly for �)
�+∞ (resp. �−∞): floating-point operation rounded→ +∞ (resp. −∞)

bit flip of float128 numbers

overloading of arithmetic operators and mathematical functions

F. Jézéquel (LIP6) Accurate and validated numerical computing 50 / 79



Performance of CADNA in quadruple precision

CADNA overhead w.r.t. classic floating-point computation (GCC):

no instability self-validation all instabilities

single matrix 15 16 34
map 10 15 20

double matrix 20 22 35
map 11 14 20

quadruple matrix 5.0 5.4 21
map 7.8 12 19

lower overheads in quadruple precision

instability detection cost not particularly higher in quadruple precision
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Numerical experiment: Hénon map [Hénon, 1976]

maps a point (xi, yi) ∈ R2 to a new point defined by xi+1 = 1 + yi − a x2
i and

yi+1 = b xi.

Accuracy estimated by CADNA of coordinates xi of the Hénon map with a = 1.4,
b = 0.3, x0 = 1, and y0 = 0:
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Points (xi, yi) of the Hénon map computed using CADNA with a = 1.4, b = 0.3,
x0 = 1, and y0 = 0 (exact digits displayed, @.0 if numerical noise):

iteration precision point (xi, yi) computed using CADNA
1 single xi -0.3999999E+000

yi 0.3000000E+000
1 double xi -0.399999999999999E+000

yi 0.300000000000000E+000
1 quad xi -0.399999999999999999999999999999999E+000

yi 0.300000000000000000000000000000000E+000
30 single xi @.0

yi 0.2E+000
30 double xi -0.13848191E+000

yi 0.2856319104E+000
30 quad xi -0.138481919146792462486489312E+000

yi 0.2856319104003007180980589904E+000
75 double xi @.0

yi -0.1E+000
75 quad xi 0.115649947336564503E+000

yi -0.1839980672458806840E+000
175 quad xi @.0

yi -0.2E+000
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The need for arbitrary precision

Floating-point arithmetic precision
IEEE single precision: 32 bits (24-bit mantissa)
IEEE double precision: 64 bits (53-bit mantissa)
IEEE quadruple precision: 128 bits (113-bit mantissa)

Because of round-off errors, some problems must be solved with a longer
floating-point format.
http://crd.lbl.gov/~dhbailey/dhbpapers/hpmpd.pdf

�⇒ Arbitrary precision libraries
ARPREC
http://crd.lbl.gov/~dhbailey/mpdist

MPFR
http://www.mpfr.org
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Numerical validation & arbitrary precision

In arbitrary precision, round-off errors still occur...
and require to be controlled!

MPFI: interval arithmetic in arbitrary precision, based on MPFR
http://mpfi.gforge.inria.fr

interval arithmetic not well suited for the validation of huge applications /

CADNA: stochastic arithmetic
http://cadna.lip6.fr

used for the validation of real-life applications ,
in single, double or quadruple precision

�⇒ SAM: Stochastic Arithmetic in Multiprecision
http://www-pequan.lip6.fr/~jezequel/SAM
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The SAM library

The SAM library implements in arbitrary precision the features of DSA:
the stochastic types
the concept of computational zero
the stochastic operators.

The particularity of SAM (compared to CADNA) is the arbitrary precision of
stochastic variables.
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Using the SAM library

The SAM library is written in C++ and is based on MPFR.

All operators are overloaded
�⇒ for a program in C++ to be used with SAM, only a few modifications are
needed.

Classical variables→ stochastic variables (of mp_st type) consisting of
three variables of MPFR type
one integer variable to store the accuracy.
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How to implement SAM?

declaration of the SAM library for the compiler
#include "sam.h"

initialization of the SAM library
sam_init(nb_instabilities, nb_bits);

substitution of float or double by the stochastic type mp_st in variable
declarations

change of output statements to print stochastic results with their accuracy,
only the significant digits not affected by round-off errors are displayed

termination of the SAM library
sam_end();
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Example of SAM code

f (x, y) = 333.75y6 + x2(11x2y2
− y6

− 121y4
− 2) + 5.5y8 +

x
2y

is computed with x = 77617, y = 33096.
S. Rump, 1988

#include "sam.h"
#include <stdio.h>
int main() {

sam_init(-1,122);
mp_st x = 77617; mp_st y = 33096; mp_st res;
res=333.75*y*y*y*y*y*y+x*x*(11*x*x*y*y-y*y*y*y*y*y

-121*y*y*y*y-2.0)+5.5*y*y*y*y*y*y*y*y+x/(2*y);
printf("res=%s\n",strp(res));
sam_end();

}
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Output of the SAM code

Using SAM with 122-bit mantissa length, one obtains:

Self-validation detection: ON
Mathematical instabilities detection: ON
Branching instabilities detection: ON
Intrinsic instabilities detection: ON
Cancellation instabilities detection: ON
��������������
res=-0.827396059946821368141165095479816292
��������������

No instability detected
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Computation of f (77617, 33096)

single precision 2.571784e+29
double precision 1.1726039400531
extended precision 1.172603940053178
Variable precision [−0.827396059946821368141165095479816292005,
interval arithmetic −0.827396059946821368141165095479816291986]
SAM, 121 bits @.0
SAM, 122 bits −0.827396059946821368141165095479816292
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Application of SAM to chaotic dynamical systems

Logistic iteration:

xn+1 = axn(1 − xn) with a > 0 and 0 < x0 < 1

a < 3: ∀x0, this sequence converges to a unique fixed point.
3 ≤ a ≤ 3.57: ∀x0, this sequence is periodic, the periodicity depending only
on a. Furthermore the periodicity is multiplied by 2 for some values of a
called “bifurcations”.
3.57 < a < 4: this sequence is usually chaotic, but there are certain isolated
values of a that appear to show periodic behavior.
a ≥ 4: the values eventually leave the interval [0,1] and diverge for almost
all initial values.
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Logistic map

The logistic map has been computed with x0 = 0.6 using SAM and MPFI

In stochastic arithmetic, iterations have been performed until the current
iterate is a computational zero, i.e. all its digits are affected by round-off
errors.

In interval arithmetic, iterations have been performed until the two bounds
of the interval have no common significant digit.
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Comparison of SAM and MPFI - I

Number N of iterations performed with SAM and MPFI, for xn+1 = axn(1 − xn)
with x0 = 0.6.

a # bits N
3.575 SAM 24 142

SAM 53 372
SAM 100 802
SAM 200 1554
SAM 2000 15912
MPFI 24 12
MPFI 53 27
MPFI 100 53
MPFI 200 108
MPFI 2000 1087

3.6 SAM 24 62
SAM 53 152
SAM 100 338
SAM 200 724
MPFI 24 12
MPFI 53 27
MPFI 100 53
MPFI 200 107
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Comparison of SAM and MPFI - II

Number N of iterations performed with SAM and MPFI, xn+1 = −a(xn −
1
2 )2 + a

4

a # bits N
3.575 SAM 24 156

SAM 53 362
SAM 100 738
SAM 200 1558
SAM 2000 15958
MPFI 24 93
MPFI 53 303
MPFI 100 707
MPFI 200 1517
MPFI 2000 15865

3.6 SAM 24 56
SAM 53 156
SAM 100 344
SAM 200 730
MPFI 24 49
MPFI 53 143
MPFI 100 329
MPFI 200 713
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Numerical experiment: multiple roots of polynomials
Newton’s method to approximate a root α of a function f :

compute the sequence xn+1 = xn −
f (xn)
f ′(xn) .

classic stopping criterion: |xn+1 − xn| < ε or
∣∣∣ xn+1−xn

xn+1

∣∣∣ < ε if xn+1 , 0.

Approximation of a root α with multiplicity m ≥ 2
using Newton’s method

Optimal stopping criterion: xn − xn+1 not significant (numerical noise)

Then the digits of xn+1 which are not affected by rounding errors are in
common with α, up to δ = dlog10(m − 1)e. [Graillat et al., 2016]

xn+1

xn

α rounding errorsδ
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Numerical experiment with CADNA

We compute using Newton’s method approximations of the root α of
Pm(x) = (x − 1)m and for each approximation:

#digits not affected by rounding errors estimated by CADNA

#digits in common with the exact root α: − log10

∣∣∣αcomputed−α

α

∣∣∣
precision m = 6, δ = 1 m = 18, δ = 2

CADNA exact CADNA exact
single 2 1.0 1 0.5
double 3 2.4 1 0.7
quad 7 5.5 3 1.6

As expected, the accuracy estimated by CADNA is correct, up to δ or δ + 1.
(recall: the accuracy estimation by CADNA can be considered correct up to 1
digit).
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Numerical experiment with SAM

We compute using Newton’s method approximations of the root α of
P(x) = (3x − 1)100 (δ = 2) and for each approximation:

#digits not affected by rounding errors estimated by SAM

#digits in common with the exact root α: b− log10

∣∣∣αcomputed−α

α

∣∣∣c
precision #digits

bits digits SAM exact
200 60 1 0
500 150 3 1

1000 301 4 2
5000 1505 17 14

10000 3010 31 29

As expected, the accuracy estimated by SAM is correct, up to δ or δ + 1.
(recall: the accuracy estimation by SAM can be considered correct up to 1
digit).
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Modified Newton’s method

simple root (m = 1):
quadratic convergence with Newton’s method

multiple root (m ≥ 2):
linear convergence with Newton’s method /
quadratic convergence with modified Newton’s method ,
we compute the sequence xn+1 = xn −m f (xn)

f ′(xn)

m is required /

How to compute m?
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Estimation of the multiplicity m

Proposition [Yakoubsohn, 2003]

Let (xn) be the sequence of approximations computed using Newton’s method
of the root α of multiplicity m of a polynomial. Then

lim
i→∞

xi+2 − xi+1

xi+1 − xi
= 1 −

1
m
.

⇒ m can be estimated from 3 successive iterates of Newton’s method
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Modified Newton’s method using SAM

Algorithm 1: Modified Newton with a requested accuracy using SAM
step = 0;
do

step = step + 1;
if step = 1 then

(x,m) =Newton(xinit) ← optimal stopping criterion
else

x = Modified_Newton(xinit,m) ← optimal stopping criterion
end
xinit = x;
double the working precision;

while Cx ≤ Requested_accuracy;

Cx: #correct digits of x estimated by SAM
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Numerical experiments: modified Newton’s method (1/3)

We compute using Algorithm 1 approximations of the root α of Pm(x) = (3x− 1)m

and for each approximation:
#digits not affected by rounding errors estimated by SAM

#digits in common with the exact root α: b− log10

∣∣∣αcomputed−α

α

∣∣∣c
m requested #digits time (s)

accuracy SAM exact
100 100 130 130 1.1E−1

500 655 655 9.9E+0
1000 1311 1311 6.6E+1

200 500 653 653 1.6E+1
1000 1305 1305 1.2E+2

500 500 651 651 1.3E+1
1000 1301 1301 2.7E+2
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Numerical experiments: modified Newton’s method (2/3)

We compute using Algorithm 1 approximations of the roots αi of
P(x) = (19x + 5)5 (19x + 21)9 (19x + 46)13 (19x + 67)25 and for each
approximation:

#digits not affected by rounding errors estimated by SAM
#digits in common with the exact root αi: b− log10

∣∣∣αi computed − αi

αi

∣∣∣c
root requested #digits time (s)

accuracy SAM exact
α1 = −5/19 100 123 123 1.2E+0

200 243 243 5.1E+0
500 603 603 5.1E+1

α2 = −21/19 100 124 123 3.4E+0
200 235 235 1.9E+1
500 569 569 1.9E+2

α3 = −46/19 100 134 133 8.2E+0
200 242 241 4.5E+1
500 564 563 4.8E+2

α4 = −67/19 100 122 122 3.2E+1
200 218 218 2.0E+2
500 507 507 3.2E+3
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Numerical experiments: modified Newton’s method (3/3)

, For each root, the multiplicity is correctly determined.

, In the approximations provided by SAM, the digits not affected by rounding
errors are always in common with the exact root, up to one.

/ It may be difficult to estimate the required initial precision
too low ⇒ insignificant results
too high ⇒ costly computation
depends on the requested accuracy and on the polynomial (multiplicity,
number of roots,...)

Prospects:

determine automatically the optimal initial precision
theoretical results on the dynamical control of Newton’s method
→ modified Newton’s method
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Conclusions/Perspectives

Conclusions:
extension of CADNA to quadruple precision with a reasonable cost
numerical validation of scientific codes in any working precision

Perspectives:
numerical validation of parallel codes in quadruple precision (with OpenMP,
MPI)
with O3, double-double may perform better than binary128

⇒ implementation of DSA based on double-double
requires double-double algorithms with directed rounding

precision optimization on FPGA using SAM
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Thank you for your attention
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