Accurate and validated numerical computing

Fabienne Jézéquel

Sorbonne Université, Laboratoire d'Informatique de Paris 6 (LIP6), France

Workshop on Large-scale Parallel Numerical Computing Technology RIKEN Center for Computational Science, Kobe, Japan, 6-8 June 2019

Exascale barrier broken in June 2018: $1.8 \ 10^{18}$ floating-point operations per second. (Oak Ridge National Laboratory, analysis of genomic data)

- Increasing power of current computers
 - $\rightarrow\,$ GPU accelerators, Intel Xeon Phi processors, etc.
- Enable to solve more complex problems
 - \rightarrow Quantum field theory, supernova simulation, etc.
- A high number of floating-point operations performed
 - → Each of them can lead to a rounding error

Exascale barrier broken in June 2018: $1.8 \ 10^{18}$ floating-point operations per second. (Oak Ridge National Laboratory, analysis of genomic data)

- Increasing power of current computers
 - \rightarrow GPU accelerators, Intel Xeon Phi processors, etc.
- Enable to solve more complex problems
 - \rightarrow Quantum field theory, supernova simulation, etc.
- A high number of floating-point operations performed
 - → Each of them can lead to a rounding error

\Rightarrow Need for accuracy and validation

- fixed length expansions libraries: double-double (Briggs, Bailey, Hida, Li), quad-double (Bailey, Hida, Li)
- arbitrary length expansions libraries: Priest, Shewchuk, Joldes-Muller-Popescu
- arbitrary precision libraries: ARPREC, MPFR, MPIR
- compensated algorithms (Kahan, Priest, Ogita-Rump-Oishi,...) based on EFTs (Error Free Transformations)

- fixed length expansions libraries: double-double (Briggs, Bailey, Hida, Li), quad-double (Bailey, Hida, Li)
- arbitrary length expansions libraries: Priest, Shewchuk, Joldes-Muller-Popescu
- arbitrary precision libraries: ARPREC, MPFR, MPIR
- compensated algorithms (Kahan, Priest, Ogita-Rump-Oishi,...) based on EFTs (Error Free Transformations)

EFTs: properties and algorithms to compute the generated elementary rounding errors

Let $a, b \in \mathbb{F}$, for the basic operation $\circ \in \{+, -, \times\}$, with rounding to nearest,

$$a \circ b = \mathrm{fl}(a \circ b) + e \text{ with } e \in \mathbb{F}$$

Numerical validation: interval arithmetic

- Principle: replace numbers by intervals and compute.
- Fundamental theorem of interval arithmetic: the exact result belongs to the computed interval.
- No result is lost, the computed interval is guaranteed to contain every possible result.
- Some implementations:
 - INTLAB [Rump] http://www.ti3.tu-harburg.de/intlab
 - GNU octave interval package [Heimlich] http://octave.sourceforge.net/interval
 - Boost interval arithmetic library [Brönnimann et al., 2006]
 - C-XSC [Hofschuster et al., 2004]
 - filib++ [Lerch et al, 2006]

Numerical validation: Discrete Stochastic Arithmetic (DSA) [Vignes, 2004]

- each operation executed 3 times with a random rounding mode
- number of correct digits in the results estimated using Student's test with the probability 95%
- estimation may be invalid if both operands in a multiplication or a divisor are not significant.
 - \Rightarrow control of multiplications and divisions: *self-validation* of DSA.
- in DSA rounding errors are assumed centered. even if they are not rigorously centered, the accuracy estimation can be considered correct up to 1 digit.

- CADNA: for programs in single and/or double precision http://cadna.lip6.fr
- SAM: for arbitrary precision programs (based on MPFR) http://www-pequan.lip6.fr/~jezequel/SAM
- estimate accuracy and detect numerical instabilities
- provide stochastic types (3 classic type variables and 1 integer)
- all operators and mathematical functions overloaded
 - \Rightarrow few modifications in user programs

Results established for directed rounding will be applied to

- interval arithmetic
- discrete stochastic arithmetic.

Results established for directed rounding will be applied to

- interval arithmetic
- discrete stochastic arithmetic.

Notations:

• We assume floating-point arithmetic adhering to IEEE 754 with rounding unit **u** (no underflow nor overflow).

Let

$$\gamma_n(\mathbf{u})=\frac{n\mathbf{u}}{1-n\mathbf{u}}.$$

- I. Compensated algorithms and numerical validation
 - Error-free transformations (EFT) with rounding to nearest
 - 2 Error-free transformations (EFT) with directed rounding
 - Tight interval inclusions with compensated algorithms
 - Numerical validation of compensated algorithms with DSA
- II. Numerical validation of quadruple or arbitrary precision programs with DSA
 - Implementation of DSA in quadruple precision
 - Implementation of DSA in arbitrary precision
 - Application: computation of multiple roots of polynomials

I. Compensated algorithms and numerical validation

Outline

Error-free transformations (EFT) with rounding to nearest

- 2 Error-free transformations (EFT) with directed rounding
- 3) Tight interval inclusions with compensated algorithms
 - Compensated algorithm for summation with directed rounding
 - Compensated dot product with directed rounding
 - Compensated Horner scheme with directed rounding
- Numerical validation of compensated algorithms with DSA
 - Compensated algorithms for summation, dot product and Horner scheme with DSA
 - Summation as in K-fold precision with directed rounding
 - Dot product as in K-fold precision with directed rounding

EFT for the addition with rounding to nearest

$$x = a \oplus b \implies a + b = x + y \quad \text{with } y \in \mathbb{F}$$

Algorithm of Dekker (1971) and Knuth (1974)

Algorithm (EFT of the sum of 2 floating-point numbers with $|a| \ge |b|$)

function [x, y] = FastTwoSum(a, b) $x = a \oplus b$ $y = (a \ominus x) \oplus b$

Algorithm (EFT of the sum of 2 floating-point numbers)

function
$$[x, y] = \mathsf{TwoSum}(a, b)$$

 $x = a \oplus b$
 $z = x \ominus a$
 $y = (a \ominus (x \ominus z)) \oplus (b \ominus z)$

EFT for the product with rounding to nearest

$$x = a \otimes b \implies a \times b = x + y \quad \text{with } y \in \mathbb{F}$$

Given $a, b, c \in \mathbb{F}$,

• FMA(a, b, c) is the nearest floating-point number to $a \times b + c$

Algorithm (EFT of the product of 2 floating-point numbers)

```
function [x, y] = \mathsf{TwoProdFMA}(a, b)

x = a \otimes b

y = \mathsf{FMA}(a, b, -x)
```

FMA is available for example on PowerPC, Itanium, Cell, Xeon Phi, AMD and Nvidia GPU, Intel (Haswell), AMD (Bulldozer) processors.

Outline

Error-free transformations (EFT) with rounding to nearest

2 Error-free transformations (EFT) with directed rounding

- Tight interval inclusions with compensated algorithms
 - Compensated algorithm for summation with directed rounding
 - Compensated dot product with directed rounding
 - Compensated Horner scheme with directed rounding
- Numerical validation of compensated algorithms with DSA
 - Compensated algorithms for summation, dot product and Horner scheme with DSA
 - Summation as in K-fold precision with directed rounding
 - Dot product as in K-fold precision with directed rounding

EFT for the addition with directed rounding

$$x = fl_*(a + b) \implies a + b = x + e$$
 but possibly $e \notin \mathbb{F}$

Algorithm (EFT of the sum of 2 floating-point numbers with $|a| \ge |b|$)

function [x, y] = FastTwoSum(a, b) $x = fl_*(a + b)$ $y = fl_*((a - x) + b)$

Proposition

We have
$$y = fl_*(e)$$
 and so $|e - y| \le 2u|e|$. It yields $|e - y| \le 4u^2|x|$ and $|e - y| \le 4u^2|a + b|$. Moreover
• if $* = \Delta$, $e \le y$
• if $* = \nabla$, $y \le e$

EFT for the addition with directed rounding

$$x = \mathrm{fl}_*(a+b) \implies a+b = x+e$$
 but possibly $e \notin \mathbb{F}$

Algorithm (EFT of the sum of 2 floating-point numbers)

function
$$[x, y] = \text{TwoSum}(a, b)$$

 $x = \text{fl}_*(a + b)$
 $z = \text{fl}_*(x - a)$
 $y = \text{fl}_*((a - (x - z)) + (b - z))$

Proposition

We have $|e - y| \le 4\mathbf{u}^2|a + b|$ and $|e - y| \le 4\mathbf{u}^2|x|$. Moreover • if $* = \Delta$, $e \le y$ • if $* = \nabla$, $y \le e$

EFT for the product with directed rounding

$$x = \mathrm{fl}_*(a \times b) \implies a \times b = x + y \quad \text{with } y \in \mathbb{F}$$

Given $a, b, c \in \mathbb{F}$,

• FMA(a, b, c) is the nearest floating-point number to $a \times b + c$

Algorithm (EFT of the product of 2 floating-point numbers)

function [x, y] = TwoProdFMA(a, b) $x = \text{fl}_*(a \times b)$ y = FMA(a, b, -x)

Outline

- Error-free transformations (EFT) with rounding to nearest
- 2 Error-free transformations (EFT) with directed rounding
- Tight interval inclusions with compensated algorithms
 - Compensated algorithm for summation with directed rounding
 - Compensated dot product with directed rounding
 - Compensated Horner scheme with directed rounding
- Numerical validation of compensated algorithms with DSA
 - Compensated algorithms for summation, dot product and Horner scheme with DSA
 - Summation as in K-fold precision with directed rounding
 - Dot product as in K-fold precision with directed rounding

Compensated summation with directed rounding

Let $p = \{p_i\}$ be a vector of *n* floating-point numbers.

Algorithm (Ogita, Rump, Oishi (2005))

function res = CompSum(p) $\pi_1 = p_1; \sigma_1 = 0$ for i = 2: n $[\pi_i, q_i] = TwoSum(\pi_{i-1}, p_i)$ $\sigma_i = fl_*(\sigma_{i-1} + q_i)$ res = fl_{*}($\pi_n + \sigma_n$)

Proposition

Let us suppose CompSum is applied, with directed rounding, to $p_i \in \mathbb{F}$, $1 \le i \le n$. Let $s := \sum p_i$ and $S := \sum |p_i|$. If $n\mathbf{u} < \frac{1}{2}$, then

$$|\mathbf{res} - s| \le 2\mathbf{u}|s| + 2(1+2\mathbf{u})\gamma_n^2(2\mathbf{u})S$$
 with $\gamma_n(\mathbf{u}) = \frac{n\mathbf{u}}{1-n\mathbf{u}}$

Algorithm (Tight inclusion using INTLAB)

```
setround(-1)
Sinf = CompSum(p)
setround(1)
Ssup = CompSum(p)
```

Proposition

Let $p = \{p_i\}$ be a vector of *n* floating-point numbers. Then we have

$$\texttt{Sinf} \leq \sum_{i=1}^n p_i \leq \texttt{Ssup}.$$

Numerical experiments

Outline

- Error-free transformations (EFT) with rounding to nearest
- 2 Error-free transformations (EFT) with directed rounding
- Tight interval inclusions with compensated algorithms
 - Compensated algorithm for summation with directed rounding
 - Compensated dot product with directed rounding
 - Compensated Horner scheme with directed rounding
- Numerical validation of compensated algorithms with DSA
 - Compensated algorithms for summation, dot product and Horner scheme with DSA
 - Summation as in K-fold precision with directed rounding
 - Dot product as in K-fold precision with directed rounding

Algorithm (Ogita, Rump and Oishi 2005)

```
function res = CompDot(x, y)

[p,s] = TwoProdFMA(x_1, y_1)

for i = 2 : n

[h,r] = TwoProdFMA(x_i, y_i)

[p,q] = TwoSum(p,h)

s = fl_*(s + (q + r))

end

res = fl_*(p + s)
```

Proposition

Let $x_i, y_i \in \mathbb{F}$ $(1 \le i \le n)$ and res the result computed by CompDot with directed rounding. If $(n + 1)\mathbf{u} < \frac{1}{2}$, then,

$$|\mathbf{res} - x^T y| \le 2\mathbf{u}|x^T y| + 2\gamma_{n+1}^2(2\mathbf{u})|x^T||y|.$$

Algorithm (Tight inclusion using INTLAB)

```
setround(-1)
Dinf = CompDot(x,y)
setround(1)
Dsup = CompDot(x,y)
```

Proposition

Let $x_i, y_i \in \mathbb{F}$ $(1 \le i \le n)$ be given. Then we have

 $Dinf \leq x^T y \leq Dsup.$

Numerical experiments

Outline

- Error-free transformations (EFT) with rounding to nearest
- 2 Error-free transformations (EFT) with directed rounding
- Tight interval inclusions with compensated algorithms
 - Compensated algorithm for summation with directed rounding
 - Compensated dot product with directed rounding
 - Compensated Horner scheme with directed rounding
- Numerical validation of compensated algorithms with DSA
 - Compensated algorithms for summation, dot product and Horner scheme with DSA
 - Summation as in K-fold precision with directed rounding
 - Dot product as in K-fold precision with directed rounding

Let
$$p(x) = \sum_{i=0}^{n} a_i x^i$$
 with $x, a_i \in \mathbb{F}$

Algorithm (Graillat, Langlois, Louvet, 2009)

function res = CompHorner(p, x)

```
s_n = a_n

r_n = 0

for i = n - 1 : -1 : 0

[p_i, \pi_i] = \mathsf{TwoProdFMA}(s_{i+1}, x)

[s_i, \sigma_i] = \mathsf{TwoSum}(p_i, a_i)

r_i = fl_*(r_{i+1} \times x + (\pi_i + \sigma_i))

end

res = fl_*(s_0 + r_0)
```

Theorem

Consider a polynomial p of degree n with floating-point coefficients, and a floating-point value x. With directed rounding, the forward error in the compensated Horner algorithm is such that

 $|\text{CompHorner}(p, x) - p(x)| \le 2\mathbf{u}|p(x)| + 2\gamma_{2n+1}^2(2\mathbf{u})\widetilde{p}(|x|),$

with $\widetilde{p}(x) = \sum_{i=0}^{n} |a_i| x^i$.

Algorithm ($x \ge 0$, Tight inclusion using INTLAB)

```
setround(-1)
Einf = CompHorner(p,x)
setround(1)
Esup = CompHorner(p,x)
```

If $x \le 0$, CompHorner $(\bar{p}, -x)$ is computed with $\bar{p}(x) = \sum_{i=0}^{n} a_i (-1)^i x^i$.

Proposition

Consider a polynomial p of degree n with floating-point coefficients, and a floating-point value x.

 $Einf \le p(x) \le Esup.$

Numerical experiments

Outline

Error-free transformations (EFT) with rounding to nearest

- 2 Error-free transformations (EFT) with directed rounding
- 3) Tight interval inclusions with compensated algorithms
 - Compensated algorithm for summation with directed rounding
 - Compensated dot product with directed rounding
 - Compensated Horner scheme with directed rounding
- Numerical validation of compensated algorithms with DSA
 - Compensated algorithms for summation, dot product and Horner scheme with DSA
 - Summation as in K-fold precision with directed rounding
 - Dot product as in K-fold precision with directed rounding

Compensated algorithms with DSA

With the random rounding mode, EFTs are no more exact.

However thanks to the error bounds obtained with directed rounding,

- CADNA can be used to validate results of compensated algorithms.
- compensated algorithms can be used in CADNA codes.

For classic algorithms and their compensated versions, we compare:

- the accuracy estimated by CADNA
- the accuracy d evaluated from the exact results

R: result computed with CADNA *R*_{exact}: result computed symbolically

If
$$R_{exact} \neq 0$$
, $d = -\log_{10} \left| \frac{R - R_{exact}}{R_{exact}} \right|$,
otherwise $d = -\log_{10} |R|$.

Compensated summation using DSA

Accuracy (estimated by CADNA and computed from the exact results) using the Sum and the FastCompSum algorithms

Compensated dot product using DSA

Accuracy (estimated by CADNA and computed from the exact results) using the Dot and the CompDot algorithms

Compensated Horner scheme using DSA

Accuracy (estimated by CADNA and computed from the exact results) using the Horner and the CompHorner algorithms

Outline

Error-free transformations (EFT) with rounding to nearest

- 2 Error-free transformations (EFT) with directed rounding
- 3) Tight interval inclusions with compensated algorithms
 - Compensated algorithm for summation with directed rounding
 - Compensated dot product with directed rounding
 - Compensated Horner scheme with directed rounding
- Numerical validation of compensated algorithms with DSA
 - Compensated algorithms for summation, dot product and Horner scheme with DSA
 - Summation as in K-fold precision with directed rounding
 - Dot product as in K-fold precision with directed rounding

EFT for the addition with any rounding mode

From *a* and *b*, Priest algorithm (1992) returns *x* and *y* such that a + b = x + y.

Algorithm (EFT of the sum of 2 floating-point numbers)

```
function [x, y] = PriestTwoSum(a, b)

if |b| > |a|

exchange a and b

endif

x = fl_*(a + b); e = fl_*(x - a)

g = fl_*(x - e); h = fl_*(g - a)

f = fl_*(b - h); y = fl_*(f - e)

if fl_*(y + e) \neq f

x = a; y = b

endif
```

Compensated summation with directed rounding

Let $p = \{p_i\}$ be a vector of *n* floating-point numbers.

Algorithm

 $\begin{aligned} & \text{function res} = \texttt{PriestCompSum}(p) \\ & \pi_1 = p_1; \sigma_1 = 0 \\ & \text{for } i = 2:n \\ & [\pi_i, q_i] = \texttt{PriestTwoSum}(\pi_{i-1}, p_i); \sigma_i = \texttt{fl}_*(\sigma_{i-1} + q_i) \\ & \text{res} = \texttt{fl}_*(\pi_n + \sigma_n) \end{aligned}$

Proposition

Let us suppose PriestCompSum is applied, with directed rounding, to $p_i \in \mathbb{F}$, $1 \le i \le n$. Let $s := \sum p_i$ and $S := \sum |p_i|$. If $n\mathbf{u} < \frac{1}{2}$, then $|\mathbf{res} - s| \le 2\mathbf{u}|s| + \gamma_{n-1}^2(2\mathbf{u})S$ with $\gamma_n(\mathbf{u}) = \frac{n\mathbf{u}}{1 - n\mathbf{u}}$. with directed rounding

SumK based on TwoSum introduced by Ogita, Rump & Oishi (2005)

Algorithm (Summation in *K*-fold working precision)

```
function res = SumK(p, K)
for k = 1 : K - 1
for i = 2 : n
[p_i, p_{i-1}] = PriestTwoSum(p_i, p_{i-1})
res = fl*(\sum_{i=1}^{n} p_i)
```

Proposition

Let us suppose SumK is applied, with directed rounding, to $p_i \in \mathbb{F}$, $1 \le i \le n$. Let $s := \sum p_i$ and $S := \sum |p_i|$. If $8n\mathbf{u} \le 1$, then $|\mathbf{res} - s| \le (2\mathbf{u} + 3\gamma_{n-1}^2(2\mathbf{u}))|s| + \gamma_{2n-2}^K(2\mathbf{u})S$.

Summation as in K-fold precision using DSA

Accuracy estimated by CADNA using the Sum and the SumK algorithms

Outline

Error-free transformations (EFT) with rounding to nearest

- 2 Error-free transformations (EFT) with directed rounding
- 3) Tight interval inclusions with compensated algorithms
 - Compensated algorithm for summation with directed rounding
 - Compensated dot product with directed rounding
 - Compensated Horner scheme with directed rounding
- Numerical validation of compensated algorithms with DSA
 - Compensated algorithms for summation, dot product and Horner scheme with DSA
 - Summation as in K-fold precision with directed rounding
 - Dot product as in K-fold precision with directed rounding

Dot product as in K-fold precision with directed rounding

DotK based on TwoSum and TwoProd (EFT with rounding to nearest) introduced by Ogita, Rump & Oishi (2005)

Algorithm (Dot product in *K*-fold working precision)

```
function res = DotK(x, y, K)

[p, r_1] = TwoProdFMA(x_1, y_1)

for i = 2 : n

[h, r_i] = TwoProdFMA(x_i, y_i); [p, r_{n+i-1}] = PriestTwoSum(p, h)

r_{2n} = p

res = SumK(r, K - 1)
```

Proposition

Let $x_i, y_i \in \mathbb{F}$ $(1 \le i \le n)$ and res the result computed by DotK with directed rounding. If $16n\mathbf{u} \le 1$, then

$$|\mathbf{res} - x^T y| \le \left(\mathbf{u} + 2\gamma_{4n-2}^2(\mathbf{u})\right)|x^T y| + \gamma_{4n-2}^K(\mathbf{u})|x^T||y|.$$

F. Jézéquel (LIP6)

Dot product as in K-fold precision using DSA

Conclusion

- Compensated algorithms are a fast way to get accurate results
- Compensated algorithms & interval arithmetic
 → certified results with finite precision
- Compensated algorithms & stochastic arithmetic → results with accuracy estimation

Future work

- Error analysis of TwoProd with directed rounding
- Interval computation with *K*-fold compensated algorithms

II. Quadruple and arbitrary precision with DSA

- Simulation programs usually in single (*binary32*) or double (*binary64*) precision
- Quadruple precision (*binary128*) or arbitrary precision sometimes required, for instance:
 - computation of chaotic sequences
 - approximation of multiple roots of polynomials

How to estimate efficiently rounding errors in quadruple/arbitrary precision codes?

Probabilistic approach

- uses a random rounding mode
- DSA (Discrete Stochastic Arithmetic):
 - estimates the number of exact significant digits of any computed result
 - implemented in the CADNA library

- Extension of DSA to quadruple precision
- Extension of DSA to arbitrary precision
- Application: computation of multiple roots of polynomials

Quadruple precision arithmetic

binary128 format

- a sign bit, a 15-bit long exponent, a 112-bit long mantissa actual mantissa precision: 113 bits
- in GCC, bit field structure:
 - sign bit
 - 15-bit long integer for the exponent
 - 48-bit long integer for the high part of the mantissa
 - 64-bit long integer for its low part.

double-double format

- $a = (a_h, a_l)$ with $a = a_h + a_l, |a_l| \le 2^{-53}|a_h|$
- rounding not as specified in the IEEE 754 standard
- the QD library [Hida, Li & Bailey, 2008]
 - several implementations of double-double operations
 - for + and /, *sloppy* version: performs better with a possibly higher error.

Performance comparison of quadruple precision programs

Comparison of:

- binary128
- MPFR with 113-bit mantissa length http://www.mpfr.org
- double-double implementations from QD http://www.davidhbailey.com/dhbsoftware

Benchmarks:

- Matrix: naive multiplication of two square matrices of size 1,000.
- Map: computes the sequence
 - $U_0 = 1.1$

• for
$$i = 1, ..., n$$
, $U_i = (0.1 \times U_{i-1} - (1/3 + U_{i-1})^2)/(1 - U_{i-1})^3$
with $n = 128,000,000$.

Performance ratio w.r.t. double precision (binary64)

MPFR (3.1.1) costly, although improvements expected with version 4. with O0:

- binary128 performs the best
- low performance gain with DD sloppy

with O3:

- Matrix: performance ratio *binary128/binary64* higher than with O0
- DD better than *binary128*, but does not adhere to IEEE 754

same trends with ICC

F. Jézéquel (LIP6)

Extension of CADNA to quadruple precision

- new binary128 type: __float128 (GCC), _Quad (ICC) \Rightarrow float128
- new CADNA type: float128_st (3 float128 and 1 integer)
- efficient rounding mode change:
 - implicit change of the rounding mode thanks to $a \oplus_{+\infty} b = -(-a \oplus_{-\infty} -b)$ (similarly for \ominus) $a \otimes_{+\infty} b = -(a \otimes_{-\infty} -b)$ (similarly for \oslash) $\bigcirc_{+\infty}$ (resp. $\bigcirc_{-\infty}$): floating-point operation rounded $\rightarrow +\infty$ (resp. $-\infty$)
 - bit flip of float128 numbers
- overloading of arithmetic operators and mathematical functions

CADNA overhead w.r.t. classic floating-point computation (GCC):

		no instability	self-validation	all instabilities	
ainala	matrix	15	16	34	
Single	map	10	15	20	
daubla	matrix	20	22	35	
double	map	11	14	20	
quadrupla	matrix	5.0	5.4	21	
quadrupie	map	7.8	12	19	

• lower overheads in quadruple precision

instability detection cost not particularly higher in quadruple precision

Numerical experiment: Hénon map [Hénon, 1976]

maps a point $(x_i, y_i) \in \mathbb{R}^2$ to a new point defined by $x_{i+1} = 1 + y_i - a x_i^2$ and $y_{i+1} = b x_i$.

Accuracy estimated by CADNA of coordinates x_i of the Hénon map with a = 1.4, b = 0.3, $x_0 = 1$, and $y_0 = 0$:

Points (x_i , y_i) of the Hénon map computed using CADNA with a = 1.4, b = 0.3, $x_0 = 1$, and $y_0 = 0$ (exact digits displayed, @.0 if numerical noise):

iteration	precision	point (x_i, y_i) computed using CADNA		
1	single	x_i	-0.3999999E+000	
		y_i	0.300000E+000	
1	double	x _i	-0.399999999999999E+000	
		y_i	0.30000000000000E+000	
1	quad	x_i	-0.399999999999999999999999999999999999E+000	
		y_i	0.300000000000000000000000000000000000	
30	single	x_i	@.0	
		y_i	0.2E+000	
30	double	x_i	-0.13848191E+000	
		y_i	0.2856319104E+000	
30	quad	x_i	-0.138481919146792462486489312E+000	
		y_i	0.2856319104003007180980589904E+000	
75	double	x_i	@.0	
		y_i	-0.1E+000	
75	quad	x_i	0.115649947336564503E+000	
		y_i	-0.1839980672458806840E+000	
175	quad	x_i	@.0	
	-	y_i	-0.2E+000	

Floating-point arithmetic precision

- IEEE single precision: 32 bits (24-bit mantissa)
- IEEE double precision: 64 bits (53-bit mantissa)
- IEEE quadruple precision: 128 bits (113-bit mantissa)

Because of round-off errors, some problems must be solved with a longer floating-point format.

http://crd.lbl.gov/~dhbailey/dhbpapers/hpmpd.pdf

⇒ Arbitrary precision libraries

ARPREC

http://crd.lbl.gov/~dhbailey/mpdist

MPFR

http://www.mpfr.org

In arbitrary precision, round-off errors still occur... and require to be controlled!

MPFI: interval arithmetic in arbitrary precision, based on MPFR http://mpfi.gforge.inria.fr interval arithmetic not well suited for the validation of huge applications ©

CADNA: stochastic arithmetic http://cadna.lip6.fr used for the validation of real-life applications in single, double or quadruple precision

⇒ SAM: Stochastic Arithmetic in Multiprecision http://www-pequan.lip6.fr/~jezequel/SAM The SAM library implements in arbitrary precision the features of DSA:

- the stochastic types
- the concept of computational zero
- the stochastic operators.

The particularity of SAM (compared to CADNA) is the arbitrary precision of stochastic variables.

- The SAM library is written in C++ and is based on MPFR.
- All operators are overloaded
 ⇒ for a program in C++ to be used with SAM, only a few modifications are needed.
- Classical variables → stochastic variables (of mp_st type) consisting of
 - three variables of MPFR type
 - one integer variable to store the accuracy.

- declaration of the SAM library for the compiler #include "sam.h"
- initialization of the SAM library sam_init(nb_instabilities, nb_bits);
- substitution of float or double by the stochastic type mp_st in variable declarations
- change of output statements to print stochastic results with their accuracy, only the significant digits not affected by round-off errors are displayed
- termination of the SAM library sam_end();

```
f(x,y) = 333.75y^6 + x^2(11x^2y^2 - y^6 - 121y^4 - 2) + 5.5y^8 + \frac{x}{2y}
is computed with x = 77617, y = 33096.
S. Rump, 1988
#include "sam.h"
#include <stdio.h>
int main() {
   sam init(-1.122):
   mp_st x = 77617; mp_st y = 33096; mp_st res;
   res=333.75*y*y*y*y*y*y+x*x*(11*x*x*v*v-v*v*v*v*v*v
      -121*v*v*v*v-2.0)+5.5*v*v*v*v*v*v*v*v*v+x/(2*v):
   printf("res=%s\n",strp(res));
   sam_end();
}
```

Using SAM with 122-bit mantissa length, one obtains:

Self-validation detection: ON Mathematical instabilities detection: ON Branching instabilities detection: ON Intrinsic instabilities detection: ON Cancellation instabilities detection: ON

res=-0.827396059946821368141165095479816292

No instability detected

single precision	2.571784e+29
double precision	1.1726039400531
extended precision	1.172603940053178
Variable precision	[-0.827396059946821368141165095479816292005,
interval arithmetic	-0.827396059946821368141165095479816291986]
SAM, 121 bits	@.0
SAM, 122 bits	-0.827396059946821368141165095479816292

Logistic iteration:

$$x_{n+1} = ax_n(1 - x_n)$$
 with $a > 0$ and $0 < x_0 < 1$

- a < 3: $\forall x_0$, this sequence converges to a unique fixed point.
- $3 \le a \le 3.57$: $\forall x_0$, this sequence is periodic, the periodicity depending only on *a*. Furthermore the periodicity is multiplied by 2 for some values of *a* called "bifurcations".
- 3.57 < a < 4: this sequence is usually chaotic, but there are certain isolated values of *a* that appear to show periodic behavior.
- $a \ge 4$: the values eventually leave the interval [0,1] and diverge for almost all initial values.

The logistic map has been computed with $x_0 = 0.6$ using SAM and MPFI

- In stochastic arithmetic, iterations have been performed until the current iterate is a computational zero, *i.e.* all its digits are affected by round-off errors.
- In interval arithmetic, iterations have been performed until the two bounds of the interval have no common significant digit.

Comparison of SAM and MPFI - I

Number *N* of iterations performed with SAM and MPFI, for $x_{n+1} = ax_n(1 - x_n)$ with $x_0 = 0.6$.

а		# bits	Ν
3.575	SAM	24	142
	SAM	53	372
	SAM	100	802
	SAM	200	1554
	SAM	2000	15912
	MPFI	24	12
	MPFI	53	27
	MPFI	100	53
	MPFI	200	108
	MPFI	2000	1087
3.6	SAM	24	62
	SAM	53	152
	SAM	100	338
	SAM	200	724
	MPFI	24	12
	MPFI	53	27
	MPFI	100	53
	MPFI	200	107

Number N of iterations performed with SAM and MPFI, $x_{n+1} = -a(x_n - \frac{1}{2})^2 + \frac{a}{4}$

а		# bits	Ν
3.575	SAM	24	156
	SAM	53	362
	SAM	100	738
	SAM	200	1558
	SAM	2000	15958
	MPFI	24	93
	MPFI	53	303
	MPFI	100	707
	MPFI	200	1517
	MPFI	2000	15865
3.6	SAM	24	56
	SAM	53	156
	SAM	100	344
	SAM	200	730
	MPFI	24	49
	MPFI	53	143
	MPFI	100	329
	MPFI	200	713

Numerical experiment: multiple roots of polynomials

Newton's method to approximate a root α of a function f:

- compute the sequence $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$.
- classic stopping criterion: $|x_{n+1} x_n| < \varepsilon$ or $\left|\frac{x_{n+1} x_n}{x_{n+1}}\right| < \varepsilon$ if $x_{n+1} \neq 0$.

Approximation of a root α with multiplicity $m \ge 2$ using Newton's method

- Optimal stopping criterion: $x_n x_{n+1}$ not significant (numerical noise)
- Then the digits of x_{n+1} which are not affected by rounding errors are in common with α , up to $\delta = \lceil \log_{10}(m-1) \rceil$. [Graillat et al., 2016]

We compute using Newton's method approximations of the root α of $P_m(x) = (x - 1)^m$ and for each approximation:

- #digits not affected by rounding errors estimated by CADNA
- #digits in common with the exact root α : $-\log_{10} \left| \frac{\alpha_{computed} \alpha}{\alpha} \right|$

procision	m = 6,	$\delta = 1$	$m = 18, \delta = 2$		
precision	CADNA	exact	CADNA	exact	
single	2	1.0	1	0.5	
double	3	2.4	1	0.7	
quad	7	5.5	3	1.6	

As expected, the accuracy estimated by CADNA is correct, up to δ or δ + 1. (recall: the accuracy estimation by CADNA can be considered correct up to 1 digit).

Numerical experiment with SAM

We compute using Newton's method approximations of the root α of $P(x) = (3x - 1)^{100}$ ($\delta = 2$) and for each approximation:

- #digits not affected by rounding errors estimated by SAM
- #digits in common with the exact root $\alpha: \lfloor -\log_{10} \left| \frac{\alpha_{computed} \alpha}{\alpha} \right| \rfloor$

preci	sion	#digits		
bits	digits	SAM	exact	
200	60	1	0	
500	150	3	1	
1000	301	4	2	
5000	1505	17	14	
10000	3010	31	29	

As expected, the accuracy estimated by SAM is correct, up to δ or δ + 1. (recall: the accuracy estimation by SAM can be considered correct up to 1 digit).

- simple root (m = 1):
 - quadratic convergence with Newton's method
- multiple root $(m \ge 2)$:
 - linear convergence with Newton's method $\ensuremath{\textcircled{\sc s}}$
 - quadratic convergence with modified Newton's method ⁽²⁾
- simple root (m = 1):
 - quadratic convergence with Newton's method
- multiple root $(m \ge 2)$:
 - linear convergence with Newton's method $\ensuremath{\textcircled{\sc s}}$
 - quadratic convergence with modified Newton's method [©]
 we compute the sequence x_{n+1} = x_n − m f(x_n)/f'(x_n)
 m is required [©]

- simple root (m = 1):
 - quadratic convergence with Newton's method
- multiple root $(m \ge 2)$:
 - $\bullet\,$ linear convergence with Newton's method $\odot\,$
 - quadratic convergence with modified Newton's method [©]
 we compute the sequence x_{n+1} = x_n − m f(x_n)/f'(x_n)
 m is required [©]

How to compute m?

Proposition [Yakoubsohn, 2003]

Let (x_n) be the sequence of approximations computed using Newton's method of the root α of multiplicity *m* of a polynomial. Then

$$\lim_{k \to \infty} \frac{x_{i+2} - x_{i+1}}{x_{i+1} - x_i} = 1 - \frac{1}{m}.$$

 \Rightarrow *m* can be estimated from 3 successive iterates of Newton's method

Algorithm 1: Modified Newton with a requested accuracy using SAM

```
step = 0;

do

step = step + 1;

if step = 1 then

| (x, m) = Newton(x_{init}) \leftarrow optimal stopping criterion

else

| x = Modified_Newton(x_{init}, m) \leftarrow optimal stopping criterion

end

x_{init} = x;

double the working precision;

while C_x \leq Requested_accuracy;
```

 C_x : #correct digits of x estimated by SAM

We compute using Algorithm 1 approximations of the root α of $P_m(x) = (3x - 1)^m$ and for each approximation:

- #digits not affected by rounding errors estimated by SAM
- #digits in common with the exact root $\alpha: \lfloor -\log_{10} \left| \frac{\alpha_{computed} \alpha}{\alpha} \right| \rfloor$

m	requested	#digits		time (s)
	accuracy	SAM	exact	
100	100	130	130	1.1E-1
	500	655	655	9.9E+0
	1000	1311	1311	6.6E+1
200	500	653	653	1.6E+1
	1000	1305	1305	1.2E+2
500	500	651	651	1.3E+1
	1000	1301	1301	2.7E+2

Numerical experiments: modified Newton's method (2/3)

We compute using Algorithm 1 approximations of the roots α_i of $P(x) = (19x + 5)^5 (19x + 21)^9 (19x + 46)^{13} (19x + 67)^{25}$ and for each approximation:

- #digits not affected by rounding errors estimated by SAM
- #digits in common with the exact root $\alpha_i: \lfloor -\log_{10} \lfloor \frac{\alpha_i \operatorname{computed} \alpha_i}{\alpha_i} \rfloor$

root	requested	#digits		time (s)
	accuracy	SAM	exact	
$\alpha_1 = -5/19$	100	123	123	1.2E+0
	200	243	243	5.1E+0
	500	603	603	5.1E+1
$\alpha_2 = -21/19$	100	124	123	3.4E+0
	200	235	235	1.9E+1
	500	569	569	1.9E+2
$\alpha_3 = -46/19$	100	134	133	8.2E+0
	200	242	241	4.5E+1
	500	564	563	4.8E+2
$\alpha_4 = -67/19$	100	122	122	3.2E+1
	200	218	218	2.0E+2
	500	507	507	3.2E+3

- © For each root, the multiplicity is correctly determined.
- In the approximations provided by SAM, the digits not affected by rounding errors are always in common with the exact root, up to one.
- © It may be difficult to estimate the required initial precision
 - too low \Rightarrow insignificant results
 - too high \Rightarrow costly computation
 - depends on the requested accuracy and on the polynomial (multiplicity, number of roots,...)

Prospects:

- determine automatically the optimal initial precision
- theoretical results on the dynamical control of Newton's method
 → modified Newton's method

Conclusions:

- extension of CADNA to quadruple precision with a reasonable cost
- numerical validation of scientific codes in any working precision

Perspectives:

- numerical validation of parallel codes in quadruple precision (with OpenMP, MPI)
- with O3, double-double may perform better than binary128
 ⇒ implementation of DSA based on double-double
 requires double-double algorithms with directed rounding
- precision optimization on FPGA using SAM

- S. Boldo, S. Graillat, and J.-M. Muller.
 On the robustness of the 2Sum and Fast2Sum algorithms. ACM Trans. Math. Softw., 44(1):4:1–4:14, July 2017.
- [2] S. Graillat, F. Jézéquel, and M.S. Ibrahim. Dynamical control of Newton's method for multiple roots of polynomials. *Reliable Computing*, 21, 2016.
- [3] S. Graillat, F. Jézéquel, and R. Picot. Numerical validation of compensated summation algorithms with stochastic arithmetic.

Electronic Notes in Theoretical Computer Science, 317:55–69, 2015.

 S. Graillat, F. Jézéquel, and R. Picot. Numerical validation of compensated algorithms with stochastic arithmetic.

Applied Mathematics and Computation, 329:339 – 363, 2018.

- S. Graillat, F. Jézéquel, S. Wang, and Y. Zhu.
 Stochastic arithmetic in multiprecision.
 Mathematics in Computer Science, 5(4):359–375, 2011.
- S. Graillat and F. Jézéquel.
 Tight interval inclusions with compensated algorithms.
 In 18th international symposium on Scientific Computing, Computer Arithmetic and Validated Numerics (SCAN 2018), Tokyo, Japan, 2018.
- S. Graillat, F. Jézéquel, R. Picot, F. Févotte, and B. Lathuilière.
 PROMISE: floating-point precision tuning with stochastic arithmetic.
 In 17th international symposium on Scientific Computing, Computer Arithmetic and Validated Numerics (SCAN 2016), Uppsala, Sweden, 2016.
- [8] S. Graillat, F. Jézéquel, R. Picot, F. Févotte, and B. Lathuilière. Numerical validation in quadruple precision using stochastic arithmetic. In TNC'18. Trusted Numerical Computations, volume 8 of Kalpa Publications in Computing, pages 38–53, 2018.

[9] S. Graillat, Ph. Langlois, and N. Louvet. Algorithms for accurate, validated and fast polynomial evaluation. *Japan J. Indust. Appl. Math.*, 2-3(26):191–214, 2009.

T. Ogita, S. M. Rump, and S. Oishi.
 Accurate sum and dot product.
 SIAM Journal on Scientific Computing, 26(6):1955–1988, 2005.

[11] D. M. Priest.

On Properties of Floating Point Arithmetics: Numerical Stability and the Cost of Accurate Computations.

PhD thesis, Mathematics Department, University of California, Berkeley, CA, USA, November 1992.

Thank you for your attention