
GREMLINS: a large sparse linear solver for

grid environment
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Abstract

Traditional large sparse linear solvers are not suited in a grid computing en-
vironment as they require a large amount of synchronization and communication
penalizing the performance on this architecture. This paper presents some features
of the solver designed during the current GREMLINS (GRid Efficient Method for
LINear Systems) project. The GREMLINS solver limits the amount of communica-
tion as it is based on a coarse grained iterative method called multisplitting method.
Moreover, the solver can be executed either in a synchronous or an asynchronous
mode. In the latter case, iterations are desynchronized and there is no more synchro-
nization at all. It may result in a faster execution time compared to the synchronous
case. Some experiments presented in this paper with the GRID’5000 architecture, a
nation wide experimental grid in France, allowed us to highlight interesting features
of this solver.

Key words: sparse linear solver, iterative method, asynchronous iterations,
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1 Introduction

Many scientific problems require after, their discretization steps, the solving of
large sparse linear systems in order to simulate phenomena close to reality [1].
For decades new techniques have been designed to efficiently solve them. The
use of multiple machines could increase the amount of memory available or
reduce the execution times required by the solving of very large sparse ma-
trices. In order to benefit from simultaneous machines, one can either use
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parallel computers or clusters of machines. The former class is composed of
homogeneous processors linked by a high speed communication system. Nev-
ertheless, this kind of architecture is very expensive and not available for all
scientists. The latter class consists in using a set of traditional computers. In
most cases, machines are either used by single users as personal computers
or used simultaneously or not by other people to solve large problems. Clus-
ters are more heterogeneous than parallel architecture. The heterogeneity may
lie in the processors and more generally in the architecture of the machines
(memory, hard drive, operating system) but it can also lie in the network ca-
pacities (bandwidth and latency). In order to dispose of a large number of
processors, scientists may simultaneously use several clusters. In general, clus-
ters are geographically distant and communications are less efficient than the
ones of local clusters or parallel machines. Yet distant clusters computing may
be considered as a grid computing platform.

In grid computing contexts, many parallel algorithms may not be efficient,
especially with a large number of processors [2]. That is why it is essential to
develop new algorithms suited to grid environments. For example, concerning
partial differential equations, interested readers may consult [3,4]. Indeed, in
distant environments the amount of synchronization and communication has
to be limited because the communication network has relatively poor per-
formances. The inefficiency of a standard parallel algorithms, executed in a
grid environment, may happen when computations have non negligible depen-
dencies requiring large communications. Furthermore, the parallel algorithm
needs to be flexible as the network parameters (bandwidth and latency) and
the computing power (due to the load of users’ interaction) may drastically
evolve during the computation. So, in this context, fine grained algorithms and
dynamic load balancing are completely inefficient because of communication
costs. Therefore the problem of load balancing with a huge amount of data
is difficult to achieve out as efficient static data distribution algorithms are
generally NP-complete [5,6].

Solving sparse linear solvers can usually be categorized into two classes: di-
rect methods and iterative ones. The former class consists in finding the exact
solution (by neglecting the rounding error) of the linear system after a finite
number of steps. Most of efficient algorithms are based on a LU factoriza-
tion [1,7]. Those algorithms are often used as a black box which can find the
solution of a linear system without knowing any property of the matrix. They
are quite memory consuming and their parallelization is difficult and present
some small sequential parts. The latter class proceeds by successive approxi-
mation of the solution until the convergence. Several iterative algorithms have
been designed. Dealing with sparse matrices this class of algorithms often re-
quires less computation when the number of iterations is small compared to a
direct method. However, the convergence depends on some properties on the
matrix. The parallelization of those algorithms is quite easy and the speed up
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is very good with a parallel architecture.

It is well known that parallel versions of direct solvers require high connection
networks because the amount of communication is large. That is why syn-
chronous parallel direct solvers are not suitable for execution in a grid context
environment. Standard parallel version of iterative solvers are based on the
decomposition of the iterated vector. Each processor is in charge of a part
of the vector and all instructions of the sequential algorithms are achieved
out in parallel using gather-and-scatter operations. Consequently there are
often several synchronizing communications or blocking operations for only
one iteration. From a grid point of view, this kind of algorithms would not be
appropriate.

Multisplitting algorithms have the characteristic of decomposing the initial
system into subsystems and converging to the solution by successive approx-
imation of the solution [8,9]. They differ from standard parallel iterative al-
gorithms by the splitting they provide which may present similarities with
decomposition methods. Dealing with sparse linear systems the multisplitting
method generalizes the block Jacobi algorithm by allowing the use of asyn-
chronous iterations and by providing the overlapping of some components.
In each block, a direct method or an iterative one may be used to solve the
subsystem. Multisplitting methods have been widely studied theoretically in
literature (see, e.g.,[10]); but few studies report experiments in grid computing
context, especially with a large number of processors.

In this paper, we describe the solver we have designed during the GREM-
LINS project. It is based on the multisplitting method presented in Section 2.
Currently it has the particularity of using different sequential solvers to solve
subsystems provided by the method: SuperLU [11], MUMPS [12] and the it-
erative solvers of the SparseLib library [13]. It supports both synchronous and
asynchronous execution modes. It should be noticed that the interest for grid
computation is to use the asynchronous version. Moreover, to the best of our
knowledge, our solver is the only one dedicated to grid computing context.
Our solver is not built with a standard communication library for parallel
computing because that kind of library does not provide a way of designing
efficient parallel asynchronous iterative algorithms. In [14] the use of a multi-
threaded library is explained and shown in order to obtain this goal. That is
why we have chosen to use the CRAC library [15] exposed in Section 3. It is
designed to implement both synchronous and asynchronous parallel iterative
algorithms. In Section 4, we present and analyze some experiments performed
on the GRID’5000 architecture, a nation wide experimental grid in France.
Finally we present our concluding remarks and perspectives.
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2 The multisplitting method

In the following we consider we have a n × n sparse linear system

Ax = b. (1)

We suppose that (1) has a unique solution. The multisplitting method consists
in splitting the matrix into horizontal rectangle matrices. Then each processor
is responsible for the management of a rectangle matrix. With this distribu-
tion, a processor knows the offset of its computation. This offset enables us to
define the submatrix, noted ASub, which a processor is in charge of managing.
The part of the rectangle matrix before the submatrix represents the left de-
pendencies, called DepLeft, and the part after the submatrix represents the
right dependencies, called DepRight. Similarly, XSub represents the unknown
part to solve and BSol the right hand side involved in the computation. Figure
1 describes the decomposition of A, b and x into several parts (DepLeft, ASub,
DepRight, Xleft, XSub, XRight, BSub) required locally by a processor.

B
SubDepLeft ASub DepRight

X
L

eft
X

Sub
X

R
ight

Fig. 1. Decomposition of the matrix

At each step, a processor computes XSub by solving the following subsystem:

ASub ∗ XSub = BSub − DepLeft ∗ XLeft − DepRight ∗ XRight

Then the solution XSub must be sent to each processor depending on it.

2.1 Multisplitting algorithm

Algorithm 1 summarizes the multisplitting method used to solve a linear sys-
tem also called the linear multisplitting solver. The four main steps are de-
scribed as follows:

(1) Initialization

The matrix could be loaded or generated. Each processor manages the
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Algorithm 1 linear multisplitting method
Initialize the communication interface
MyRank = Rank of the processor

NbProcs = Number of processors

Size = Size of the matrix

SizeSub = Size of the submatrix

Offset = Offset of the matrix

ASub[SizeSub][SizeSub] = Submatrix

DepLeft[SizeSub][Offset] = Submatrix with left dependencies

DepRight[SizeSub][Size-Offset-SizeSub] = Submatrix with right dependencies

DependsOnMe[NbProcs] = Array with dependent processors

IDependOn[NbProcs] = Array with processors this processor depends on

BSub[SizeSub] = Array with right hand side of subsystem

XSub[SizeSub] = Array with solution of the subsystem

XLeft[Offset] = Array with left solution of the system

XRight[Size-Offset-SizeSub] = Array with right solution of the system

BLoc = Array with local computation of right hand side

TLoc = Array used for reception of dependencies

repeat

BLoc = BSub
if MyRank!=0 then

BLoc = BLoc-DepLeft*XLeft
end if

if MyRank!=NbProcs-1 then

BLoc = BLoc-DepRight*XRight
end if

XSub = Solve(ASub,BLoc)
for i=0 to NbProcs-1 do

if i!=MyRank and DependsOnMe[i] then

Send(PartOf(XSub,i),i)
end if

end for

for i=0 to NbProcs-1 do

if i!=MyRank and DependsOnMe[i] then

Send(PartOf(XSub,i),i)
end if

end for

for i=0 to NbProcs-1 do

if i!=MyRank and IDependOn[i] then

Receive(TLoc,i)
Update XLeft or Xright with TLoc according to the processor i

end if

end for

Convergence detection
until Global convergence is achieved
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load of the rectangle matrix (in the algorithm the rectangle matrix cor-
responds to DepLeft+ASub+DepRight). Then until convergence, each
processor iterates on:

(2) Computation

At each iteration, each processor computes BLoc = BSub − DepLeft ∗
XLeft−DepRight∗XRight. Then, it solves XSub using the Solve(ASub, BLoc)
function.

(3) Data exchange

Each processor sends its dependencies to its neighbors. As the dependen-
cies can be different from one processor to another, the function PartOf

computes the part dedicated to processor i. Nonetheless, when a pro-
cessor receives a part of the solution vector (noted XSub) of one of its
neighbors, it should update its part of XLeft or XRight vector according
to the rank of the sending processor.

(4) Convergence detection

Two methods are possible to detect the convergence. We can either use
a centralized algorithm described in [16] or a decentralized version, that
is a more general version, as described in [17].

This algorithm may be similar to block Jacobi algorithm. It actually general-
izes the block Jacobi method which is only a particular case of the multisplit-
ting method. The two main differences of the multisplitting method are:

• The multisplitting method may use asynchronous iterations. In this case,
the execution times may be reduced. For a complete description of asyn-
chronous algorithms, interested readers may consult [18]. In [19,20] authors
studied how flexible communications might improve the convergence of
asynchronous algorithms. This particularity allows a processor to use re-
sults from its neighbors as soon as they arrive. Practically, the flexibility of
communications allows to decrease the ellapsed time. We do not use this
feature in this work because with the multisplitting method it requires mod-
ifications in the inner algorithm (used to solve the linear system) in order
to take into account new messages directly in the computation.

• Some components may be overlapped and computed by more than one pro-
cessor. Overlapping some components of the system may drastically reduce
the number of iterations to obtain the convergence whatever the chosen
threshold.

From a practical point of view, the use of asynchronous iterations consists
in using non blocking receptions, dissociating computations from communica-
tions using threads and using an appropriate convergence detection algorithm.
Overlapping some components is simple to implement since one only needs to
change the variables Offset and SizeSub in Algorithm 1 in order to compute
some components by two processors and define how overlapped components
are taken into account.
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Currently, the matrix distribution is simple: each submatrix is load balanced
in terms of number of rows but unfortunately not in terms of computational
volume. We are working on an efficient static matrix data distribution based
on computational volume estimators in order to decrease the global execution
time. Preliminary results presented in [21] show that this data distribution
could drastically reduce the global execution time.

The sequential solver used in the algorithm is free. It can be a direct one or
an iterative one. For the former class (direct), the most consuming part is
the factorization part which is only achieved out at the first iteration. With
large matrices, even after the decomposition process, the size of a submatrix
that a processor is responsible to solve in sequential, may be quite large. So,
the time required to factorize a submatrix may be long. In opposition to a
long factorization time, the use of a sequential direct solver allows to solve
other iterations very quickly because only the right-hand side changes at each
iteration. For the latter class (iterative), iterations of the multisplitting method
require a non negligible time, even if this time may, after a given number of
iterations, be reduced. So, if in advance, the user knows some properties of
the matrix he wants to solve, he can choose the appropriate class of solver.

The important characteristics of a sparse matrix are its pattern and the spec-
tral radius of its iteration matrix. The pattern of a submatrix acts on the
time required to factorize it at the first iteration of a solving with a sequential
direct solve. Some previous works, already done around the load balancing of
the multiple front method [22,23], have successfully been adapted to the linear
multisplitting solver. The spectral radius of the iteration matrix is correlated
with the number of iterations required to solve the system. The closer the
spectral radius is to 1, the more iterations are required to solve the system, as
all iterative methods. The convergence condition to make the asynchronous
version converge is slightly different and more restrictive than the synchronous
one, i.e., in some rare practical cases, the synchronous version would converge
whereas the asynchronous one would not. As the explanation for this condi-
tion is quite complex, because it lies on several mathematical tools, we invite
interested readers to consult [24].

After the presentation of the linear multisplitting algorithm we intend to
briefly present the library used for communications as indeed it is quite new.

3 CRAC

CRAC is a library designed to build parallel iterative asynchronous applica-
tions. It uses the classical MPI triplet: daemon, application, spawner. The
daemon is launched on each machine constituting the Virtual Distributed
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Machine (VDM). The user develops its application and launches it with the
spawner on the desired machines. Meanwhile, the similarity with MPI nearly
stops here. Even if the CRAC programming interface uses the message pass-
ing paradigm, the communication semantic is completely different and several
primitives do not exist in MPI. Furthermore, the internals of CRAC are based
on multithreading and even the application is a thread. Finally, the virtual
distributed machine relies on a hierarchical view of the network in order to
reach machines with private IPs and to limit the bandwidth used on slow
links.

In order to define the VDM, we describe the different kinds of machines:
master, supermaster, slave, frontal.

• a frontal is a machine that can relay messages from outside the site to the
private IP machines of the site. It can also relay messages to another site if
a machine cannot send outside the site.

• a slave is a machine with no particular role.
• a master is a machine that collects information from the slaves of the site

and relays them to the supermaster, or the opposite.
• a supermaster is a machine that collects/sends information from or to the

masters. Obviously, the supermaster is a master but it is unique.

A CRAC daemon is launched on each machine of the VDM. Its main task is to
send and receive messages for the application tasks executed on the machine
hosting the daemon. For this, two threads are created : a Sender thread and a
Receiver thread. Both these threads use a queue. The Sender thread sends long
messages in several chunks. The Receiver thread uses a polling mechanism to
detect the incoming data. According to the execution mode (synchronous or
asynchronous) it stores all messages (in the synchronous mode) or it keeps
only the last version of a message (in the asynchronous mode) if it has the
same sender and tag.

The application task is a thread which is executed within the daemon con-
text. Thus, the task can directly access the message queues (incoming and
outgoing). This is not the case of MPI, in which a task is a process and must
communicate (with an Unix socket or shared memory) with the daemon to
send/receive data.

From the programmer point of view, CRAC basically proposes three methods
to send or receive a message and detect the convergence. The emission of a
message is never blocking. The message is copied into the outgoing queue when
the Send method is called. The receive method is blocking in the synchronous
mode (like in MPI) whereas it is not blocking in the asynchronous mode. In
the latter case the method returns the last version of a message if one or more
version of the same message arrived and it returns nothing otherwise. The
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convergence method requires a parameter indicating the local convergence and
it returns the global convergence using a centralized or decentralized algorithm
on the supermaster node.

4 Experiments

In this section we explain all the experiments we have performed and we an-
alyze obtained results. Experiments have been conducted on the GRID’5000
architecture, a nation wide experimental grid [25]. Currently, the GRID’5000
platform is composed of an average of 1300 bi-processors that are located
in 9 sites in France: Bordeaux, Grenoble, Lille, Lyon, Nancy, Orsay, Rennes,
Sophia-Antipolis, Toulouse. Most of those sites have a Gigabit Ethernet Net-
work for local machines. Links between the different sites range from 2.5 Gbps
up to 10Gbps. Most processors are AMD Opteron. For more details on the
GRID’5000 architecture, interested readers are invited to visit the website:
www.grid5000.fr.

4.1 Context of experiments

With the CRAC library we have implemented the linear multisplitting solver
which has the particularity of using a sequential solver to solve the local linear
subsystem issued from the multisplitting method. In the following we call it
GREMLINS. Currently, it can be used with the SparseLib, MUMPS or Su-
perLU solvers. All these solvers are freely available for academic researchers.
As CRAC is an object oriented library, GREMLINS uses this paradigm and
the sequential solver used to solve the subsystem is an object that is conse-
quently easy to change. Obviously, it is easy to add other sequential sparse
linear solvers. GREMLINS has the particularity to be executed either in a syn-
chronous mode or an asynchronous one. In this paper, in order to experiment
its efficiency in a grid environment we have used generated square matrices
and a real square matrix. Generated matrices are built on-the-fly. This offers
the advantage of having matrices of the desired pattern and with the desired
form. We have also used a real matrix, which we call in the following advec-
diffu; it comes from a 3D advection-diffusion equation discretized with a finite
difference scheme (see, for example, [26] for more details on the equation).
The size of this matrix is 6,750,000 and the number of non-zero elements is
53,730,000. More precisely the considered system is discretized with a 3D grid
composed of 150*150*150 discretized points and the model contains two com-
ponents per discretized point. For all the experiments we have chosen a 10−8

precision using the infinity norm. For more details on the parameters of the
simulation, interested reader are invited to consult [27].
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The generated matrices we use are built using the following scheme. The diag-
onal of the matrix is not empty neither are its two neighbor diagonals. Then
according to the number of diagonals specified by the user, some of the other
diagonals are not empty. Those diagonals are equitably scattered between the
diagonal of the matrix and a bandwidth specified by the user. Consequently,
in the experiments we report those two parameters (number of diagonals and
bandwidth). Off-diagonal non empty elements of a matrix are negative ran-
dom values with a value between −1 and 0. Diagonal elements are equal to
the inverse of the sum of the non empty elements of the same line plus a ran-
dom value whose interval is defined by the user. This allows us to change the
spectral radius of the iteration matrix which acts on the number of iterations
required to reach a given threshold during the solving. Such generated matri-
ces are M-matrices [28] for which it is known that multisplitting algorithms
converge. Figure 2 illustrates the case where the bandwidth is equal to half
the matrix size with 7 non empty diagonals.

Bandwidth

Fig. 2. Example of a generated matrix

In the following experiments we mention the size of the matrix, its parameters,
the sequential solver used, the execution mode (synchronous or asynchronous),
the execution time in seconds, the number of iterations and the number of
processors used with their location and characteristics. It should be noticed
that the number of iterations in the synchronous mode is always constant
whereas it is not the case in the asynchronous mode since it varies from an
execution to another and according to the power of the processor if they
are heterogeneous. That is why, in this case, we report an interval with the
minimum and the maximum number of iterations according to the execution
and the processors. All reported execution times are the mean value of a series
of four executions. Finally, it should be noticed that we do not experiment
matrices with a too small spectral radius because in this case, the number of
iterations would be smaller. So we choose quite complex matrices.
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In our experiments, we did not change the default parameters of the MUMPS
and SuperLU package. With SparseLib we have chosen the GMRES method [29]
with an ILU preconditioner. We remind the fact that the three solvers are used
in their sequential version.

Because GRID’5000 is an experiment platform and not a production platform,
we cannot reserve nodes during a long time. It is often very difficult to have
a large number of processors for more than 4 hours a day, because a large
number of scientists use it. Consequently, it requires tremendous endeavors
before experimenting. Moreover, in order to have a uniform grid context, users
are advised to deploy their environment on the reserved nodes before running
a computation. We have always used this method in order to deploy CRAC
because without using it, linux distributions are heterogeneous from one site
to another. Since it is not possible to reserve the same nodes from one day
to another, GRID’5000 represents a very interesting grid computing platform
but it has the drawback that experiments are very difficulty reproducible.
Moreover, even though other users cannot used reserved nodes, the bandwidth
of the network is varying that is why, in the following, some execution times
may be slightly surprising.

In the following subsections we highlight some interesting issues that we have
experimented.

4.2 Comparison of local and distant executions

In this first series of experiments, we wanted to compare the execution times
of our solver using only local nodes and using the same number of nodes
with distant sites. To achieve this, we have used a generated matrix of size
10, 000, 000 with 70 processors located either in Sophia (AMD 246 2GHz) for
the local case or 30 in Orsay (20 AMD 246 2GHz and 10 AMD 250 2.4GHz),
20 in Lille (AMD 248 2.2GHz) and 20 in Sophia (AMD 246 2GHz) for the dis-
tant one. Table 1 shows the execution times with the local cluster in Sophia.
In this table we can remark that with large bandwidth matrices, GREMLINS
is more efficient in the asynchronous mode than in the synchronous one. This
can be explained by the fact that the larger the bandwidth is, the more com-
munications are required with the more neighbors. With a smaller bandwidth,
the synchronous version is faster. It can also be noticed that the number of
iterations required to reach the convergence in the asynchronous mode is al-
ways greater than for the synchronous mode. This remark will always be true
in the following.

Table 2 shows the execution times of the same matrices as in Table 1 with
the same number of nodes but located in three sites. The execution times
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Synchronous Asynchronous
Solver

exec. time (s) nb. iter. exec. time (s) nb. iter.

13 diagonals, bandwidth: 5, 000, 000

SparseLib 88.69 142 57.42 [207-296]

MUMPS 98.73 142 70.39 [198-280]

SuperLU 80.23 142 49.00 [241-365]

13 diagonals, bandwidth: 1, 000, 000

SparseLib 79.89 125 57.60 [182-247]

MUMPS 98.33 125 69.75 [174-237]

SuperLU 72.87 125 50.92 [183-255]

13 diagonals, bandwidth: 100, 000

SparseLib 39.19 51 48.01 [57-75]

MUMPS 15.45 51 19.81 [65-106]

SuperLU 12.40 51 15.21 [71-111]

Table 1
Execution times of the three solvers with a generated matrix of size 10, 000, 000
with 70 machines in a local cluster (Sophia).

are higher than in a local context. This is not surprising since distant com-
munications take more time than local ones. With large bandwidth matrices
execution times are much longer and the comparison between a local running
and a distant one may seem unrelevant. In this case, using a distant cluster is
only limited to solve large matrices that cannot be solved using a local cluster.

Nevertheless, the asynchronous version is more robust to distant communi-
cations than the synchronous one. This is due to the implicit overlapping of
communication by computation inherent to the asynchronous model. However,
with smaller bandwidth matrices the behavior of the solver between a local
and a distant running is more comparable. The ratio between the local and
the distant running is bounded by three although the smallest machines in
the distant configuration are the same than in the local one. Another issue is
that whatever the sequential solver used for our experiments is, the execution
times are relatively similar for this size of matrix.

To sum up this first series of experiments, the ratio between the computation
time and the communication time is very important. With those matrices,
when the bandwidth increases, the computation time is quite of the same
order but the communication time increases drastically. That is why with
large bandwidth matrices, GREMLINS is less efficient in a distant context.
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Synchronous Asynchronous
Solver

exec. time (s) nb. iter. exec. time (s) nb. iter.

13 diagonals, bandwidth: 5, 000, 000

SparseLib 1,340.12 142 770.62 [1,821-2,354]

MUMPS 1,178.56 142 741.65 [1,582-2,101]

SuperLU 1,109.12 142 736.63 [1,782-2,095]

13 diagonals, bandwidth: 1, 000, 000

SparseLib 1,244.25 125 517.69 [1,876-2,320]

MUMPS 1,318.63 125 512.32 [2,019-2,764]

SuperLU 1,298.71 125 506.76 [2,102-2,908]

13 diagonals, bandwidth: 100, 000

SparseLib 83.97 51 48.73 [65-86]

MUMPS 60.48 51 42.29 [178-279]

SuperLU 62.35 51 46.56 [283-422]

Table 2
Execution times of the three solvers with a generated matrix of size 10, 000, 000
with 70 machines located in 3 sites (30 in Orsay, 20 in Lille and 20 in Sophia).

But it should be noticed that any other solvers would have the same caveat,
probably with a stronger effect due to the amount of communications and syn-
chronizations. From a general point of view, the higher this ratio between the
computation times and the communication times is, the more the synchronous
version is favored compared to the asynchronous one and reciprocally. That is
why when executing an algorithm in a local cluster, the synchronous version
may be faster than the asynchronous one. Conversely, executing the same al-
gorithm within a grid context, where communication performances are worst,
the communication time would be longer and the ratio would often decrease
in favor of the asynchronism.

4.3 Impact of the computation amount

In the previous series of experiments we have shown that the communication
time is very influential on the execution time especially in a distant context.
In this second series of experiments we want to study how the execution time
is affected when the computation amount increases. In Table 3, we report
the experiments with different sizes of matrices. For each one, the bandwidth
is quite small, which ensures that the execution times will not be too long.
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For those experiments we have used 120 machines scattered in 4 sites (40 in
Rennes (AMD 248 2.2GHz), 40 in Orsay (20 AMD 246 2GHz and 20 AMD
250 2.4GHz), 25 in Nancy (AMD 248 2.2GHz) and 15 in Lille (AMD 248
2.2GHz)). As our goal was not to compare the performances of the different
sequential solvers, we have chosen the MUMPS solver for those experiments.

Size Number Synchronous Asynchronous

of the of Bandwidth exec. nb. exec. nb.

matrix diagonals time (s) iter. time (s) iter.

1,000,000 23 1,000 10.05 72 4.55 [303-475]

2,000,000 23 2,000 14.98 69 5.39 [195-229]

4,000,000 23 4,000 19.33 68 12.31 [204-268]

6,000,000 23 6,000 24.19 69 13.34 [146-176]

8,000,000 23 8,000 27.87 68 18.18 [142-143]

10,000,000 23 5,000 28.10 67 22.22 [136-144]

Table 3
Execution times of our solver coupled with MUMPS solver on different generated
matrices with 120 machines located in 4 sites (40 in Rennes, 40 in Orsay, 25 in
Nancy and 15 in Lille).

Those experiments emphasize that the smaller the size of the matrix is, the
more efficient the asynchronous version is, compared to the synchronous one.
This is easily understandable since the computation amount increases with the
size of the matrix. So the ratio between the computation time and the commu-
nication times decreases and communications are less penalizing. The num-
ber of iterations to reach the convergence in the asynchronous version clearly
shows this point, since this number is larger with matrices of small sizes. When
the computation amount becomes more important, the difference between the
synchronous and the asynchronous version decreases. It should be noticed that
the network bandwidth between the different sites of the GRID’5000 archi-
tecture is very important compared to traditional bandwidth networks. So,
with the GRID’5000 platform the ratio between the computation time and
the communication time for which algorithms are efficient is very different
from more traditional grid environment with low bandwidth networks.

4.4 Larger experiments

In a third series of experiments we have tried to reserve a larger number of
processors in order to measure the scalability of GREMLINS.

In Table 4 we report three configurations for which we have compared the
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Size Number Synchronous Asynchronous

Solver of the of Bandwidth exec. nb. exec. nb.

matrix diagonals time (s) iter. time (s) iter.

MUMPS 10,000,000 13 5,000 16.41 30 10.98 [138-159]

SuperLU 10,000,000 13 5,000 19.83 30 14.77 [85-109]

MUMPS 20,000,000 13 5,000 15.91 22 15.48 [74-79]

Table 4
Execution times of our solver coupled with the MUMPS solver on generated matrices
with 190 machines located in 5 sites (30 in Rennes, 30 In Sophia, 70 Orsay, 30 Lyon
and 30 Lille ).

execution times of the two execution modes of our solver with 190 machines
scattered into 5 sites (30 in Rennes (AMD 248 2.2GHz), 30 in Sophia (AMD
246 2GHz), 70 in Orsay (40 AMD 246 2GHz and 30 AMD 250 2.4GHz), 30
in Lyon (AMD 246 2GHz) and 30 in Lille (AMD 248 2.2GHz). It results
from those experiments that the two different direct solvers that GREMLINS
can use, have a quite similar behavior. With a size equal to 20, 000, 000, for
this experiment, the synchronous and the asynchronous version require about
the same times. This is because the ratio between the computation time and
communication time is not in favor of one version or the other. For the matrices
of Table 4, we do not choose the same values for the diagonal elements, that is
why the number of iterations in the synchronous case is different for the first
matrix (of degree 10, 000, 000) and the last one (of degree 20, 000, 000).

In all our previous experiments, we only studied executions with one computa-
tion thread by machines. Let us remind the interested reader that machines in
the GRID’5000 architecture are at least bi-processors. As mentioned, CRAC is
a multithreaded library, it is possible with the multisplitting algorithm to run
more than one computation task by machine. In fact, as soon as the computa-
tion task is thread safe, i.e., it supports to be executed by multiple threads, our
solver can be executed with multiple computation tasks. Unfortunately, two
of the three internal solvers used in GREMLINS are not thread-safe (MUMPS
and SuperLU), that is why we only experimented it with SparseLib.

As for this experiment we have only taken two sites and we have chosen matri-
ces with larger bandwidths. Table 5 shows the results. Using only two distant
sites, we can remark that the asynchronous version is still faster than the syn-
chronous one. GREMLINS simply allows to use multi-processor machines as
soon as the sequential linear solver used is thread safe. Hence, it is easy to
increase the computing power without doing anything.
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Number Synchronous Asynchronous

of Bandwidth exec. nb. exec. nb.

diagonals time (s) iter. time (s) iter.

13 300,000 132.51 134 87.14 [634-859]

23 300,000 163.88 141 104.37 [576-809]

13 3,000,000 353.80 142 245.68 [980-1279]

Table 5
Execution times of our solver coupled with the SparseLib solver on generated ma-
trices of size 30, 000, 000 with 200 bi-processors located in 2 sites (120 in Orsay, 80
in Sophia), so 400 cpu.

4.5 Experiments with a matrix issued from an advection-diffusion model

Experiments with the advec-diffu matrix are synthetized in Table 6. With this
matrix issued from a real application, we can observe that the ratio between
the synchronous and the asynchronous version is of the same order as that
of the generated matrices. Although SuperLU is slower than the other solvers
in the synchronous case, it is equivalent to SparseLib in the asynchronous
mode. This can be explained by the fact that the number of iterations is more
important than in previous examples, so after the factorization step, a direct
solver has less work to do at each iteration than an iterative one.

Synchronous Asynchronous

Solver exec. nb. exec. nb.

time (s) iter. time (s) iter.

MUMPS 54.03 146 39.89 [293-354]

SuperLU 92.01 146 58.95 [259-312]

SparseLib 76.11 146 58.09 [250-291]

Table 6
Execution times of our solver with the advec-diffu matrix with 90 machines located
in 3 sites (30 in Rennes, 30 in Sophia and 30 in Nancy).

5 Conclusion

In this paper, we have described the GREMLINS solver. It is based on the mul-
tisplitting algorithm which is iterative. It is suited for grid computing context
composed of distant sites in which communications have worse performances
than in a traditional local cluster. Our solver uses a sequential linear solver
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on each processor to solve a local linear solver obtained by the decomposi-
tion provided by the method. This sequential solver may be either a direct
or an iterative one. Moreover, our solver is able to be executed either in the
synchronous mode or in the asynchronous mode. In the latter case, communi-
cations are overlapped by computation, which may result in a faster execution
times.

Our solver is built with CRAC, a multi-threaded library suited for asyn-
chronous iterative computation. This library offers similar performances of
MPI in the synchronous case, and allows us, without any modification of the
code, to execute either a program in a synchronous or an asynchronous com-
munication mode.

We have experimented our solver with the GRID’5000 architecture in France
in order to study its behavior in various contexts of execution. We have used
generated matrices in order to have the desired size with the desired form
and a real matrix issued from a PDE advection diffusion problem. It follows
from these experiments that the synchronous version is quite efficient even
in such a context of execution with distant sites. The asynchronous version
is often faster. With the SparseLib solver which is a thread-safe library, it is
even possible to use multiple computation tasks per machine.

We plan to study how to adapt and use preconditioners to our solver in order
to widen the spectral of usable matrices. Using a direct sequential solver, the
crucial point lies in the load balancing in the factorization part, because this is
often a consuming part. So it would be interesting to study how to use a load
balancing algorithm if the partitioning process provides local submatrices for
which the factorization process is completely unbalanced.
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