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Abstract Floating-point arithmetic precision is limited in length the IEEE single (respectively double) precision
format is 32-bit (respectively 64-bit) long. Extended precision formats can be up to 128-bit long. However some
problems require a longer floating-point format, because of round-off errors. Such problems are usually solved in
arbitrary precision, but round-off errors still occur and must be controlled. Interval arithmetic has been implemented
in arbitrary precision, for instance in the MPFI library. Interval arithmetic provides guaranteed results, but it is not
well suited for the validation of huge applications. The CADNA library estimates round-off error propagation using
stochastic arithmetic. CADNA has enabled the numerical validation of real-life applications, but it can be used
in single precision or in double precision only. In this paper, we present a library called SAM (Stochastic Arith-
metic in Multiprecision). It is a multiprecision extension of the classic CADNA library. In SAM (as in CADNA),
the arithmetic and relational operators are overloaded in order to be able to deal with stochastic numbers. As a
consequence, the use of SAM in a scientific code needs only few modifications. This new library SAM makes it
possible to dynamically control the numerical methods used and more particularly to determine the optimal number
of iterations in an iterative process. We present some applications of SAM in the numerical validation of chaotic
systems modeled by the logistic map.
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1 Introduction

The increasing power of current computers enables one to solve more and more complex problems. Then it is
necessary to perform a high number of floating-point operations, each one leading to a round-off error. Because of
round-off error propagation, some problems must be solved with a longer floating-point format. This is the case,
especially, for applications which carry out very complicated and enormous tasks in scientific fields, for example
(see http://crd.lbl.gov/~dhbailey/dhbpapers/hpmpd.pdf):

• Quantum field theory
• Supernova simulation
• Semiconductor physics
• Planetary orbit calculations
• Experimental and computational mathematics.

Even if other techniques, methods or algorithms are employed to increase the accuracy of numerical results, some
extended precision is still required to avoid severe numerical inaccuracies. Therefore some versions of scientific
software carry out multiprecision computation. For instance, XBLAS routines [1] consist of a multiprecision version
of basic linear algebra routines (BLAS). Moreover some libraries implement arbitrary precision arithmetic. MPFR
[2] is an arbitrary precision library developed by INRIA in C language. Freely available on various platforms, MPFR
uses very efficient algorithms.

Nevertheless, even with multiprecision, there are still some rounding errors and so it is still necessary to get
some information about the numerical quality of the results. Validation of numerical computations has been studied
for a long time (see for example [3–6]). Several approaches exist to control round-off error propagation: backward
analysis [3] (used in LAPACK), stochastic backward analysis [6] (used in PRECISE), interval arithmetic [7–9],
stochastic arithmetic [10,11], and abstract interpretation-based static analysis [12]. A survey on rounding errors
analysis is given in [13]. Based on MPFR, the MPFI library [14] provides arbitrary precision interval arithmetic.
The problem is that it is difficult to validate huge scientific codes with interval arithmetic. If such a code is not
rewritten to deal with intervals, its results would often be so overestimated that they would provide no information
at all.

In this paper, we present the SAM (Stochastic Arithmetic in Multiprecision) library which is based on MPFR
and extends the features of discrete stochastic arithmetic by enabling arbitrary precision computation. It can be used
to validate real-life scientific codes with few modifications of the code.

In Sect. 2, we briefly describe interval arithmetic as well as the MPFR and MPFI multiprecision libraries. Sec-
tion 3 is devoted to Discrete Stochastic Arithmetic and the CADNA library, its implementation in IEEE single and
double precision. In Sect. 4, we describe the SAM library as well as how to use it. In Sect. 5, we present some
numerical experiments carried out using the SAM library. We study Rump’s polynomial, Muller’s sequence, the
dynamic control of integral computation as well as the logistic map. We also provide some performance tests.
Conclusions and perspectives are given in Sect. 6.

2 MPFR, Interval Arithmetic and MPFI

In order to improve the accuracy of numerical results, the working precision can be increased. For this purpose,
some multiprecision libraries have been developed. One can divide the libraries into three categories.

• Arbitrary precision libraries using a multiple-digit format where a number is expressed as a sequence of digits
coupled with a single exponent. Examples of this format are Bailey’s MPFUN/ARPREC [15], Brent’s MP [16]
or MPFR [2].

• Arbitrary precision libraries using a multiple-component format where a number is expressed as unevaluated
sums of ordinary floating-point words. Examples using this format are Priest’s [17] and Shewchuk’s [18] libraries.

http://crd.lbl.gov/~dhbailey/dhbpapers/hpmpd.pdf
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• Extended fixed precision libraries using the multiple-component format but with a limited number of compo-
nents. Examples of this format are Bailey’s double-double [19] (double-double numbers are represented as an
unevaluated sum of a leading double and a trailing double) and quad-double [20].

In the sequel, we will focus on the MPFR arbitrary precision library, since it provides the four IEEE 754-1985 [21]
rounding modes and correct rounding for all the operations and mathematical functions it implements. Written in
the ISO C language, MPFR is based on the GNU MP library [22] (GMP for short). The internal representation of
a floating-point number x by MPFR is a mantissa m, a sign s and a signed exponent e. If the precision of x is p,
then the mantissa m has p significant bits. The mantissa m is represented by an array of native unsigned integers.
The semantic in MPFR is as follows: for each instruction a = f (b, c) the variables may have different precisions.
In MPFR, the data b and c are considered with their full precision and a correct rounding to the full precision of
a is computed. Applications using MPFR inherit the same properties as programs using the IEEE 754 standard
(portability, well-defined semantics, possibility to design robust programs and prove their correctness) with no
significant slowdown on average with respect to arbitrary precision libraries with ill-defined semantics.

The presentation of interval arithmetic in this paragraph heavily relies on [13]. Interval arithmetic [8,23] is
defined not on real numbers, but on closed intervals. The result of an arithmetic operation between two intervals,
X = [x, x] and Y = [y, y], is defined as the set of all values that can be obtained by performing this operation on
elements from each interval. The resulting arithmetic operations are listed below.

X + Y = [x + y, x + y]. (2.1)

X − Y = [x − y, x − y]. (2.2)

X × Y = [min(x × y, x × y, x × y, x × y), max(x × y, x × y, x × y, x × y)]. (2.3)

X2 = [min(x2, x2), max(x2, x2)] if 0 /∈ [x, x], [0, max(x2, x2)] otherwise.

1/Y = [min(1/y, 1/y), max(1/y, 1/y)] if 0 /∈ [y, y]. (2.4)

X/Y = [x, x] × (1/[y, y]) if 0 /∈ [y, y]. (2.5)

Actually we can also deal with empty intervals and unbounded intervals. But for simplicity we only mention
operations on nonempty bounded intervals. As a remark, arithmetic operations can also be applied to interval vectors
and interval matrices by performing scalar interval operations componentwise.

Interval arithmetic enables one to control rounding errors automatically. On a computer, a real value which is not
machine representable can be approximated to a floating-point number. It can also be enclosed by two floating-point
numbers. Real numbers can therefore be replaced by intervals with machine representable bounds. An interval oper-
ation can be performed using directed rounding modes, in such a way that the rounding error is taken into account
and the exact result is necessarily contained in the computed interval. For instance, the computed results, with
guaranteed bounds, of the addition and the subtraction between two intervals X = [x, x] and Y = [y, y] are

X + Y = [∇(x + y),�(x + y)] ⊇ {x + y|x ∈ X, y ∈ Y } (2.6)

X − Y = [∇(x − y),�(x − y)] ⊇ {x − y|x ∈ X, y ∈ Y } (2.7)

where ∇ (respectively �) denotes the downward (respectively upward) rounding mode.
The main advantage of interval arithmetic is its reliability. But the intervals obtained may be too large. The inter-

vals width regularly increases with respect to the intervals that would have been obtained in exact arithmetic. With
interval arithmetic, rounding error compensation is not taken into account. As the classical numerical algorithms
can lead to over-pessimistic results in interval arithmetic, specific algorithms, suited for interval arithmetic, have
been proposed. Interval arithmetic has been implemented in several libraries or software. For instance, a C++ class
library, C-XSC,1 and a Matlab toolbox, INTLAB,2 are freely available.

MPFI is a portable library written in C for arbitrary precision interval arithmetic where intervals are represented
using MPFR floating-point numbers. The purpose of MPFI is twofold: it is to get guaranteed results thanks to the

1 http://www.xsc.de.
2 http://www.ti3.tu-harburg.de/rump/intlab.

http://www.xsc.de
http://www.ti3.tu-harburg.de/rump/intlab
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reliability of interval computation, but also to get accurate results, thanks to MPFR multiple precision arithmetic.
In the sequel, we have compared MPFI with the SAM library, because both are based on MPFR.

3 Discrete Stochastic Arithmetic

Based on a probabilistic approach, the CESTAC method [11] allows the estimation of round-off error propagation
which occurs with floating-point arithmetic. This method uses a random rounding mode: at each elementary opera-
tion, the result is rounded up or down with the probability 0.5. With this random rounding mode, the same program
run several times provides different results, due to different round-off errors.

It has been proved [24] that a computed result R is modelled to the first order in 2−p as:

R ≈ Z = r +
n∑

i=1

gi (d)2−pzi (3.1)

where r is the exact result, gi (d) are coefficients depending exclusively on the data and on the code, p is the number
of bits in the mantissa and zi are independent uniformly distributed random variables on [−1, 1].

From Eq. (3.1), we deduce that:

1. the mean value of the random variable Z is the exact result r ,
2. the distribution of Z is a quasi-Gaussian distribution.

Then by identifying R and Z , i.e. by neglecting all the second order terms, Student’s test can be used to estimate
the accuracy of R. From N samples Ri , i = 1, 2, . . . , N ,

∀β ∈ [0, 1], ∃τβ ∈ R such that P

(∣∣R − r
∣∣ ≤ στβ√

N

)
= 1 − β (3.2)

where

R = 1

N

N∑

i=1

Ri and σ 2 = 1

N − 1

N∑

i=1

(
Ri − R

)2
. (3.3)

τβ is the value of Student’s distribution for N − 1 degrees of freedom and a probability level 1 − β.
Therefore the number of decimal significant digits common to R and r can be estimated with the following

equation.

CR = log10

(√
N

∣∣R
∣∣

στβ

)
. (3.4)

Thus the implementation of the CESTAC method in a code providing a result R consists in:

• performing N times this code with the random rounding mode, which is obtained by using randomly the upward
or downward rounding mode; we then obtain N samples Ri of R

• choosing as the computed result the mean value R of Ri , i = 1, . . . , N
• estimating with Eq. (3.4) the number of exact decimal significant digits of R.

In practice β = 0.05 and N = 3. Indeed, it has been shown [25,10] that N = 3 is in some reasonable sense the
optimal value. The estimation with N = 3 is more reliable than with N = 2 and increasing the size of the sample
does not improve the quality of the estimation. The complete theory can be found in [10,11].

Equations (3.1) and (3.4) hold if two main hypotheses are verified. These hypotheses are:

1. the round-off errors αi are independent, centered uniformly distributed random variables,
2. the approximation to the first order in 2−p is legitimate.
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Concerning the first hypothesis, with the use of the random arithmetic, round-off errors αi are random variables,
however, in practice, they are not rigorously centered and in this case Student’s test gives a biased estimation of the
computed result. It has been proved [25] that, with a bias of a few σ , the error on the estimation of the number of
exact significant digits of R is less than one decimal digit. Therefore even if the first hypothesis is not rigorously
satisfied, the estimation obtained with Eq. (3.4) is still correct up to one digit.

Concerning the second hypothesis, the approximation to the first order only concerns multiplications and divi-
sions. Indeed the round-off error generated by an addition or a subtraction does not contain any term of higher order.
It has been shown [24,10] that, if a computed result becomes insignificant, i.e. if the round-off error it contains is of
the same order of magnitude as the result itself, then the first order approximation may be not legitimate. In practice
the validation of the CESTAC method requires a dynamical control of multiplications and divisions, during the
execution of the code. This leads to the synchronous implementation of the method, i.e. to the parallel computation
of the N results Ri , and also to the concept of computational zero, also named informatical zero [26,27].

Definition 3.1 During the run of a code using the CESTAC method, an intermediate or a final result R is a compu-
tational zero, denoted by @.0, if one of the two following conditions holds:

• ∀i, Ri = 0,
• CR ≤ 0.

Any computed result R is a computational zero if either R = 0, R being significant, or R is insignificant. In
other words, a computational zero is a value that cannot be differentiated from the mathematical zero because of
its rounding error. As a remark, in a program, a variable R that is insignificant at a point can become significant
later. For instance, in a single precision program (with 24-bit mantissa length) if R = (10−16, 2.10−16, 3.10−16),
the three samples representing R have no common significant digits. After the instruction R = R + A with
A1 = A2 = A3 = 2, the value of each sample representing R is 2, so the computed result R is 2 with the maximal
number of exact significant digits for the precision used. An insignificant result is, like any stochastic number,
represented by three samples. The only difference is that it is printed as @.0.

From this new concept of zero, one can deduce new order relationships that take into account the accuracy of
intermediate results. For instance,

Definition 3.2 X is stochastically strictly greater than Y if and only if:

X > Y and X − Y 
= @.0.

or

Definition 3.3 X is stochastically greater than or equal to Y if and only if:

X ≥ Y or X − Y = @.0.

Stochastic relational operators ensure that in a branching statement the same sequence of instructions is performed
for all the samples which represent a variable.

The joint use of the CESTAC method and these new definitions is called DSA (Discrete Stochastic Arithmetic).
DSA enables to estimate the impact of rounding errors on any result of a scientific code and also to check that
no anomaly occurred during the run, especially in branching statements. The CADNA software [10,28–31] is a
library which implements DSA in any code written in C++ or in Fortran and allows to use new numerical types: the
stochastic types. The library contains the definition of all arithmetic operations and order relations for the stochastic
types. The control of the accuracy is performed only on variables of stochastic type. When a stochastic variable is
printed, only its exact significant digits appear. For a computational zero, the string “@.0” is printed. In contrast to
interval arithmetic, that computes guaranteed results, the CADNA software provides, with the probability 95% the
number of exact significant digits of any computed result. Because all operators are overloaded, the use of CADNA
in a program requires only a few modifications. The CADNA software has been successfully used for the numerical
validation of real-life applications [32–36].
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4 The SAM Library

The SAM library implements in arbitrary precision the features of DSA: the stochastic types, the concept of com-
putational zero and the stochastic operators. The particularity of SAM (compared to CADNA) is the arbitrary
precision of stochastic variables. The SAM library with 24-bit (resp. 53-bit) mantissa length is similar to CADNA
in single (resp. double) precision, except the range of the exponent is only limited by the machine memory. In SAM,
the number of exact significant digits of any stochastic variable is estimated with the probability 95%, whatever
its precision. Like in CADNA, the arithmetic and relational operators in SAM take into account round-off error
propagation. All numerical instabilities which occur at run time are detected. Such instabilities are usually generated
by an operation involving a computational zero.

The SAM library is written in C++ and is based on MPFR. In the SAM library, all operators are overloaded.
Consequently for a program written in C++ to be used with SAM, only a few modifications are needed: mainly
changes in type declarations. Classical variables have to be replaced by multiprecision stochastic variables (of
mp_st type) which consist of three variables of MPFR type and one integer variable to store the accuracy. In
SAM, for each stochastic operation, three MPFR operations are performed using different rounding modes and the
numerical instability that may be generated is detected. As a remark, in order to avoid using the same rounding
mode for the three operations, the first two operations are performed using a rounding mode randomly chosen and
the third rounding mode is the opposite of the second one. For instance, if the result of the second operation is
rounded up, then the result of the third operation is rounded down.

The use of the SAM library in a C++ program involves five steps described below.

1. The SAM library has to be included in the C++ program using the #include “sam.h” directive.
2. The sam_init initialization function has to be called once. In the following instruction

sam_init(nb_instabilities, nb_bits);
nb_instabilities is the maximum number of numerical instabilities to be detected and nb_bits is
the mantissa length in bits. If the value of the first argument is −1, all the instabilities will be detected.

3. In variable declarations, the float or double type has to be replaced by the mp_st stochastic type.
4. The strp function returns a string which contains the exact significant digits of a stochastic result, i.e. its sig-

nificant digits not affected by round-off errors. If the result is insignificant, the strp function returns “@.0”.
Therefore output statements should be modified to print stochastic results with their accuracy using the strp
function.

5. The sam_end function has to be called to print a report on the numerical instabilities which possibly occurred
during the execution.

As an example, a simple program which uses the SAM library is given in 5.1.

5 Numerical Experiments

5.1 Computing A Rational Function of Two Variables

In the following example proposed by Rump [37], the rational function

f (x, y) = 333.75y6 + x2(11x2 y2 − y6 − 121y4 − 2) + 5.5y8 + x

2y

is computed with x = 77617, y = 33096. The associated program written using the SAM library is:

#include ‘‘sam.h’’
#include <stdio.h>
int main() {
sam_init(-1,122);
mp_st x = 77617, y = 33096, res;
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res=333.75*y*y*y*y*y*y+x*x*(11*x*x*y*y-y*y*y*y*y*y
-121*y*y*y*y-2.0)+5.5*y*y*y*y*y*y*y*y+x/(2*y);
printf(‘‘res=%s\n’’,strp(res));
sam_end();
}

Because the first argument in the sam_init function is -1, the SAM library will detect all the numerical
instabilities which will possibly occur at run time. Using SAM with 122 bits, one obtains:

----------------------------------------------------------------
SAM software --- University P. et M. Curie --- LIP6
Self-validation detection: ON
Mathematical instabilities detection: ON
Branching instabilities detection: ON
Intrinsic instabilities detection: ON
Cancellation instabilities detection: ON
----------------------------------------------------------------
res=-0.827396059946821368141165095479816292
----------------------------------------------------------------
SAM software --- University P. et M. Curie --- LIP6
No instability detected
----------------------------------------------------------------

Using SAM with 53 bits, the result obtained has no exact significant digits. Furthermore SAM detects a cancel-
lation, which is a severe loss of accuracy due to the subtraction of two nearly equal numbers. Let us decompose the
expression into three terms: f (x, y) = a + b + c with a = 333.75y6 + x2(11x2 y2 − y6 − 121y4 − 2), b = 5.5y8

and c = x/(2y). SAM with 53 bits provides two opposite results for a and b:

a = -0.791711134066896E+037

b = 0.791711134066896E+037.

The computed results a and b have the same 15 exact significant digits. Their sum is insignificant, because it is
only due to rounding errors. The three samples representing this sum are:

-1.1805916207174113E+021, -1.1805916207174113E+021, -0.0000000000000000E+000.

The computed result c has 15 exact significant digits:

c= 0.117260394005317E+001.

The final result a + b + c is insignificant. It is represented by the three samples:

-1.1805916207174113E+021, -1.1805916207174112E+021, +1.1726039400531785E+000.

Table 1 shows that if computations carried out with different precisions lead to similar approximations, it does
not mean that the results have a good accuracy. Indeed, it is shown that the evaluations of Rump’s polynomial f
in single, double and extended precision share the same first digits. But in fact, the correct evaluation is totally
different from that result. This is detected by SAM. Until 121 bits, SAM says that the result has no exact significant
digits. It is only starting with 122-bit mantissa length that SAM says that we have full accuracy. It is verified by

Table 1 Computation of
f (x, y) = 333.75y6 +
x2(11x2 y2 − y6 − 121y4 −
2) + 5.5y8 + x/(2y) with
x = 77,617 and y = 33,096

Single precision 1.172603

Double precision 1.1726039400531

Extended precision 1.172603940053178

Variable precision [−0.827396059946821368141165095479816292005,

Interval arithmetic −0.827396059946821368141165095479816291986]
SAM, ≤121 bits @.0

SAM, 122 bits −0.827396059946821368141165095479816292
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computing the exact result with the Maple computer algebra system. It is noticeable that the result provided by
SAM with 122-bit mantissa length is included in the interval computed using variable precision interval arithmetic.

5.2 Computing A Second Order Recurrent Sequence

This sequence was proposed by Muller [38]. The first 30 iterations of the following recurrent sequence are computed:

Un+1 = 111 − 1130

Un
+ 3000

UnUn−1

with U0 = 5.5 and U1 = 61
11 . The exact limit is 6.

Using IEEE double precision arithmetic with rounding to the nearest, one obtains:

U(3) = +5.590163934426237e+00
(...)
U(11) = +5.861018785996283e+00
U(12) = +5.882524608269310e+00
U(13) = +5.918655323805488e+00
U(14) = +6.243961815306110e+00
U(15) = +1.120308737284091e+01
U(16) = +5.302171264499677e+01
U(17) = +9.473842279276452e+01
U(18) = +9.966965087355071e+01
U(19) = +9.998025776093678e+01
U(20) = +9.999882245337588e+01
(...)
U(30) = +1.000000000000000e+02

Until the 13th iteration, the sequence seems to converge to 6. Then it seems to converge to 100, although the
exact limit is 6.

Using SAM in double precision (with 53-bit mantissa length), one obtains:

----------------------------------------------------------------
SAM software --- University P. et M. Curie --- LIP6
Self-validation detection: ON
Mathematical instabilities detection: ON
Branching instabilities detection: ON
Intrinsic instabilities detection: ON
Cancellation instabilities detection: ON
----------------------------------------------------------------
U(3) = 0.5590163934426E+1
U(4) = 0.563343108504E+1
U(5) = 0.56746486205E+1
U(6) = 0.571332905E+1
U(7) = 0.57491209E+1
U(8) = 0.5781811E+1
U(9) = 0.581131E+1
U(10) = 0.58376E+1
U(11) = 0.586E+1
U(12) = 0.59E+1
U(13) = 0.6E+1
U(14) = @.0
U(15) = @.0
U(16) = @.0
U(17) = @.0
U(18) = 0.9E+2
U(19) = 0.99E+2
U(20) = 0.999E+2
(...)
U(30) = 0.100000000000000E+3
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----------------------------------------------------------------
SAM software --- University P. et M. Curie --- LIP6
CRITICAL WARNING: the self-validation detects major problem(s).
The results are NOT guaranteed.
There are 12 numerical instabilities
9 UNSTABLE DIVISION(S)
3 UNSTABLE MULTIPLICATION(S)
----------------------------------------------------------------

First the sequence seems to converge to 6, losing regularly exact significant digits to such an extent that iterates
14 to 17 are insignificant. Then the sequence converges to 100, improving regularly its numerical quality. The
accuracy of the 30th iterate (15 exact significant digits) is optimal for a computation carried out in double precision.
Unfortunately results from the 18th iteration are incorrect. The instabilities reported at the end of the execution are
unstable divisions and unstable multiplications which may invalidate the first order approximation in the CESTAC
method. A warning informs the user that the results may not be reliable.

Using SAM with 100 bits, one obtains:

----------------------------------------------------------------
SAM software --- University P. et M. Curie --- LIP6
Self-validation detection: ON
Mathematical instabilities detection: ON
Branching instabilities detection: ON
Intrinsic instabilities detection: ON
Cancellation instabilities detection: ON
----------------------------------------------------------------
U(3) = 0.559016393442622950819672131E+1
(...)
U(22) = 0.5979E+1
U(23) = 0.598E+1
U(24) = 0.59E+1
U(25) = @.0
U(26) = @.0
U(27) = @.0
U(28) = @.0
U(29) = 0.9E+2
U(30) = 0.99E+2
U(31) = 0.999E+2
(...)
U(52) = 0.100000000000000000000000000000E+3
----------------------------------------------------------------
SAM software --- University P. et M. Curie --- LIP6
CRITICAL WARNING: the self-validation detects major problem(s).
The results are NOT guaranteed.
There are 12 numerical instabilities
9 UNSTABLE DIVISION(S)
3 UNSTABLE MULTIPLICATION(S)
----------------------------------------------------------------

The sequence obtained using SAM with 100 bits has the same behavior as the previous one (computed with 53
bits). The sequence seems to converge to 6, then four iterates have no exact significant digits. These insignificant
results appear later, at iterations 25–28. From the 29th iteration, the sequence converges to 100, improving regularly
its accuracy. Like in the previous execution, a self-validation of SAM has been performed during the run. Because
unstable divisions and unstable multiplications occurred, the results are not reliable.

5.3 Dynamical Control of Integral Computation

Previous work had been carried out on the dynamical control of approximation methods using the CADNA library
in single or in double precision [34,35,39–42]. We show that the strategies previously proposed can be extended to



368 S. Graillat et al.

arbitrary precision. The theoretical results recalled here require the notion of significant digits common to two real
numbers. Therefore we need the following definition.

Definition 5.1 Let a and b be two real numbers, the number of significant digits that are common to a and b can
be defined in R by

1. for a 
= b, Ca,b = log10

∣∣∣ a+b
2(a−b)

∣∣∣ ,
2. ∀a ∈ R, Ca,a = +∞.

Then |a − b| = ∣∣ a+b
2

∣∣ 10−Ca,b . For instance, if Ca,b = 3, the relative difference between a and b is of the order
of 10−3 which means that a and b have three significant digits in common.

Remark 5.2 The value of Ca,b can seem surprising if we consider the decimal notations of a and b. For example, if
a = 2.4599976 and b = 2.4600012, then Ca,b ≈ 5.8. The difference due to the sequences of “0” or “9” is illusive.
The significant decimal digits of a and b are really different from the sixth position.

A dynamical control of integral computation can be performed using DSA (Discrete Stochastic Arithmetic).
Theorem 5.3 has been established from the truncation error expansion for closed Newton-Cotes quadrature rules.
Its proof can be found in [42]. It can apply, for instance, to the trapezoidal rule (of order 2) or to Simpson’s rule (of
order 4).

Theorem 5.3 Let In be the approximation to I = ∫ b
a f (x)dx by a composite closed Newton-Cotes quadrature rule

of order p with the step b−a
2n . If f ∈ C p+2[a, b] and f (p−1)(b) 
= f (p−1)(a), then

CIn ,In+1 = CIn ,I + log10

(
2p

2p − 1

)
+ O

(
1

4n

)
. (5.1)

If the convergence zone is reached, i.e. if the term O ( 1
4n

)
becomes negligible, the significant digits common

to two successive approximations In and In+1 are also in common with the exact result I , up to one bit. Indeed
the term log10 (2p/(2p − 1)) decreases as p increases and it corresponds to one bit for methods of order 1. Let
us assume that the sequence (In) is computed in DSA and that the convergence zone is reached. If the difference
between In and In+1 is only due to round-off errors, further iterations are useless. Therefore if computations are
performed until the difference In − In+1 has no exact significant digits, the optimal iterate In+1 can be dynamically
determined at run time. Furthermore, from Theorem 5.3, its significant bits which are not affected by round-off
errors are in common with the exact result I , up to one.

A similar strategy can be used with Romberg’s method, which is based on Richardson’s extrapolation on results
of the trapezoidal method. Let f be a real function over [a, b] and I be the exact value of

∫ b
a f (x)dx . Let T1(h)

be the approximation to I computed using the trapezoidal method with step h = b−a
M (M ≥ 1). Romberg’s method

consists in computing the following triangular table:

T1(h) T1(
h
2 ) ....... T1(

h
2n−3 ) T1(

h
2n−2 ) T1(

h
2n−1 )

T2(h) T2(
h
2 ) ....... T2(

h
2n−3 ) T2(

h
2n−2 )

T3(h) T3(
h
2 ) ....... T3(

h
2n−3 )

...
...

Tn−1(h) Tn−1(
h
2 )

Tn(h)

The first row of the table represents approximations to I computed using the trapezoidal method with step h
2 j

( j = 0, . . . , n − 1). Rows 2 to n are computed using the following formula.



Stochastic Arithmetic in Multiprecision 369

For r = 2, . . . , n and j = 0, . . . , n − r,

Tr

(
h

2 j

)
= 1

4r−1 − 1

(
4r−1Tr−1

(
h

2 j+1

)
− Tr−1

(
h

2 j

))
. (5.2)

The sequence of approximations with Romberg’s method T1(h), . . . , Tn(h) converges exponentially to I .
The dynamical control of Romberg’s method is based on Theorem 5.4. Its proof can be found in [41].

Theorem 5.4 Let us assume that f is a real function which is Ck over [a, b] where k ≥ 2n+1 and that f (2n−1)(a) 
=
f (2n−1)(b). Let Tn(h) be the approximation to I = ∫ b

a f (x)dx computed with n iterations of Romberg’s method
using the initial step h = b−a

M (M ≥ 1). Then

CTn(h),Tn+1(h) = CTn(h),I + O
(

h2

n2

)
.

In practice, it means that, when the convergence zone is reached, the significant digits common to Tn(h) and
Tn+1(h) are also common to I . Therefore the first significant digits of the exact value I can be obtained from
only two consecutive values of Tn(h). Let us assume that the sequence (Tn(h)) is computed in DSA and that the
convergence zone is reached. If computations are performed until the difference Tn(h) − Tn+1(h) has no exact
significant digits, the significant digits of the approximation obtained which are not affected by round-off errors
are in common with the exact result I .

The evaluation of the integral I defined in Eq. (5.3) is a problem which has been posed in [43].

I =
1∫

0

arctan(
√

2 + t2)

(1 + t2)
√

2 + t2
dt (5.3)

Its exact value has been indicated in [44]: I = 5π2

96 . Let In be the approximation to I computed by using the
composite trapezoidal rule or the composite Simpson’s rule with the step 1

2n , or by performing n iterations of
Romberg’s method with the initial step h = 1. Starting from I0 (the approximation obtained with no partition of the
integration interval), approximations In have been computed using the SAM library until the difference In − In+1 is
a computational zero (has no exact significant digits). Table 2 presents the approximations obtained using different
precisions. In every sequence, only the exact significant digits (i.e. not affected by round-off errors) of the last
iterate, estimated using SAM, are reported.

In agreement with Theorems 5.3 and 5.4, the exact significant digits of each approximation obtained are in
common with I , up to one. The number of iterations required for the stopping criterion to be satisfied may depend

Table 2 Approximations to I , its first 40 exact digits being 0.5140418958900707613976297395768828716309
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on the precision chosen, but also on the quadrature method used. Indeed the convergence speed of the computed
sequence and the numerical quality of the result obtained vary according to the quadrature method.

5.4 Computation of A Chaotic Dynamical System

It is always difficult to simulate chaotic dynamical systems [45,46] with a computer because rounding errors can
change dramatically their behavior. Nevertheless, some results can be proved on chaotic systems using rigorous
numerical computations and in particular interval computations (see for example [47–49]). In this subsection, we
study the computation of the logistic map using stochastic arithmetic with SAM and we compare with MPFI the
results obtained.

Let us consider the logistic iteration [45] defined by xn+1 = axn(1 − xn) with a > 0 and 0 < x0 < 1.

• When a < 3 this sequence converges to a unique fixed point, whatever the initial condition x0 is.
• When 3 ≤ a ≤ 3.57 this sequence is periodic, whatever the initial condition x0 is, the periodicity depending

only on a. Furthermore the periodicity is multiplied by 2 for some values of a called “bifurcations”.
• When 3.57 < a < 4 this sequence is usually chaotic, but there are certain isolated values of a that appear to

show periodic behavior.
• Beyond a = 4, the values eventually leave the interval [0,1] and diverge for almost all initial values.

The logistic map has been computed with x0 = 0.6 using SAM and MPFI. In stochastic arithmetic, iterations
have been performed until the current iterate is a computational zero, i.e. all its digits are affected by round-off
errors. In interval arithmetic, iterations have been performed until the two bounds of the interval have no common
significant digits. In Tables 3 and 4, we report the number N of iterations performed for two ways of computing
the logistic map. We also report the execution times. With SAM two types of executions have been performed:

• without the detection of numerical instabilities
• with the detection of all numerical instabilities which may occur at run time.

In Table 3, we have computed the logistic map using the formula

xn+1 = axn(1 − xn) with x0 = 0.6. (5.4)

During the computation performed using SAM with a = 3.57, no computational zero has been detected. The
program has been stopped after one million iterations. The run time reported in Table 3 has been measured for one
million iterations. Whereas using MPFI with the same value for a, at a certain iteration the stopping criterion is
satisfied: the bounds of the last interval have no common digits. Using 500,000 bits, fewer than 300,000 iterations
are performed in about 6 h. Since the number N of iterations performed increases linearly as the precision increases,
about 2-million bits would be required to perform one million iterations. If a = 3.575, a = 3.6 or a = 3.7, more
iterations are performed with SAM than with MPFI for the stopping criterion to be satisfied. However it must be
pointed out that SAM is based on an estimation of round-off errors. Results obtained with MPFI are more pessimis-
tic, but are guaranteed. If a = 10, the sequence diverges. Similar results are obtained with SAM and MPFI. The run
times measured with SAM are longer than those measured with MPFI. The main reason is the number of iterations,
higher with SAM than with MPFI. In the numerical experiment presented in 5.5, the same computation is carried
out using SAM and MPFI in order to compare their performance. The execution time is higher with SAM when the
detection of instabilities is enabled. However, in this application, the cost of this detection remains reasonable.

In Table 4, we have computed the logistic map using the formula

xn+1 = −a

(
xn − 1

2

)2

+ a

4
with x0 = 0.6. (5.5)

Concerning SAM, the results are very similar to those in Table 3 (similar N ). Nevertheless, the results are better
with MPFI compared to Table 3. This can be explained by the so-called dependency problem which is a major
drawback of interval arithmetic. Indeed, if an interval occurs several times in an expression, each occurrence is
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Table 3 Logistic map: number N of iterations performed with SAM and MPFI, xn+1 = axn(1 − xn) with x0 = 0.6

taken independently and then can lead to an unwanted over-estimation of the resulting interval. This is the case in
Eq. (5.4) where the variable xn appears twice whereas xn appears only once in Eq. (5.5). As a remark, if a = 3.57,
no computational zero has been detected using SAM. The run time reported in Table 4 has been measured for
1-million iterations. Using MPFI with a = 3.57, more than 15,000 bits are required to perform 1-million iterations.

Although SAM has been designed for arbitrary precision, it can be compared with CADNA if the chosen precision
is 24 or 53 bits. The results are, in general, similar with CADNA in double precision (53 bits) and SAM with 53
bits. It is normal since the operations are correctly rounded with the same precision in both cases. When there is a
difference, it is due to the fact that the exponent of the floating-point numbers is not limited in SAM, whereas it is
limited to 1,023 in double precision. The same explanation applies for single precision and SAM with 24 bits (here
the exponent in single precision is limited to 127).
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Table 4 Logistic map: number N of iterations performed with SAM and MPFI, xn+1 = −a(xn − 1
2 )2 + a

4 with x0 = 0.6

5.5 Performance Test

The performance of SAM has been compared with that of MPFI. The matrix multiplication M ∗ M , where Mi, j =
i + j −1(1 ≤ i ≤ N , 1 ≤ j ≤ N ) has been computed using SAM and MPFI with different precisions and different
values of N . Three types of executions have been performed using SAM:

• without the detection of numerical instabilities
• with the detection of instabilities that may occur in multiplications, divisions or calls to the power function and

may invalidate the CESTAC method, as mentioned in Sect. 3; this detection enables a self-validation of the SAM
library

• with the detection of all instabilities.
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Table 5 Run time (in seconds) for a matrix multiplication of size 100

# Bits 24 53 100 500 1,000 5,000

MPFI 0.292 0.320 0.432 0.504 0.648 2.216

SAM without detection 0.892 0.936 1.076 1.120 1.372 2.616

SAM with self-validation 0.896 0.940 1.092 1.160 1.380 2.624

SAM with all detections 7.168 8.357 10.461 27.254 69.588 903.528

SAM with self-validation/MPFI 3.07 2.94 2.53 2.30 2.13 1.18

The run times reported in Table 5 have been measured for N = 100 on an Intel Q9550 2.83 GHz processor using
the g++ 4.4 compiler.

From Table 5, it is noticeable that MPFI performs better than SAM. When self-validation is activated, the time
ratio varies from 1.2 to 3.1, depending on the working precision. The cost of self-validation in SAM (like in CAD-
NA) is negligible. The detection of all numerical instabilities is an interesting feature of SAM, unfortunately it may
be very costly, depending on the application. This cost is mainly due to the detection of cancellations which may
occur in additions or subtractions. From tests carried out for various values of N (from 50 to 1,000) it is noticeable
that the time ratio between SAM and MPFI is independent of N . Anyway our main objective was to show that the
resources required by SAM with self-validation are of the same order of magnitude as MPFI. This makes SAM
useful for the validation of huge numerical codes.

6 Conclusion and Future Work

In this article, we have demonstrated that SAM can be very useful to study the behavior of chaotic dynamical
system. We have only studied the behavior of the logistic map. We plan to do a similar work with other systems
like the Hénon map [50] or the Lorenz attractor [51].

We have also compared in terms of efficiency and computing times the SAM library with MPFI. As mentioned
previously, SAM and MPFI do not give the same answer since MPFI leads to a certified answer whereas SAM gives
an answer true within a given probability. Anyway, it is sometimes sufficient to know the answer only with high
probability. The main advantage of SAM is that it can be used to validate huge numerical scientific codes.

A perspective is the adaptive refinement of the precision in programs using SAM when the accuracy of the results
is not satisfactory. Such a strategy would be based on an appropriate threshold for the number of exact significant
digits lost during the computation.
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