
Dynamial ontrol of onverging sequenesomputationFabienne J�ez�equelLaboratoire d'Informatique de Paris 6 - CNRS UMR 7606,4 plae Jussieu, 75252 Paris edex 05, FraneAbstratUnder some assumptions on the speed of onvergene of a sequene, the signi�antdigits of one of its iterates in ommon with the exat limit an be determinedby omparing this iterate with the next one. Using a �nite preision arithmeti,if omputations are performed until the di�erene between two suessive iteratesis insigni�ant, the global error on the last iterate is minimal. Furthermore, forsequenes onverging at least linearly, we an determine in the result obtained whihexat signi�ant digits, i.e. not a�eted by round-o� errors, are in ommon withthe exat limit. This strategy an be used for the omputation of integrals withthe trapezoidal or Simpson's rule. A sequene is then generated by halving the stepvalue at eah iteration, while the di�erene between two suessive iterates is asigni�ant value. The exat signi�ant digits of the last iterate are in ommon withthe exat value of the integral, up to one bit. This kind of strategy is then extendedto numerial algorithms involving several sequenes, suh as the approximation ofintegrals on an in�nite interval.Key words: onverging sequenes, numerial validation, quadrature methods,trapezoidal rule, Simpson's rule, CESTAC method, Disrete Stohasti Arithmeti
1 IntrodutionIn a numerial method whih involves the omputation of a onverging se-quene, the limit is approximated by one of the iterates. It may be diÆultto estimate in the hosen iterate the global error, onsisting of the trunationerror and the round-o� error. The optimal iterate, i.e. the approximation forwhih the global error is minimal, an be omputed dynamially [14℄. In thisEmail address: Fabienne.Jezequel�lip6.fr (Fabienne J�ez�equel).Preprint submitted to Elsevier Siene



paper, we show that we an determine the signi�ant digits of this optimaliterate, whih are a�eted neither by the trunation error, nor by the round-o�error. In setion 2, we present theorems established from the trunation errorwhih enable one to determine the signi�ant digits of an iterate in ommonwith the exat limit. As round-o� errors must also be taken into aount, insetion 3, we briey review methods and onepts whih enable one to esti-mate round-o� error propagation with a probabilisti approah: the CESTACmethod, the priniples of stohasti arithmeti and the implementation pro-vided by Disrete Stohasti Arithmeti (DSA). We also present theoretialresults established in stohasti arithmeti for the ontrol of arithmetial op-erations. In setion 4, we desribe a strategy to ontrol both the trunationand the round-o� error during the omputation of a onverging sequene.More preisely, under some assumptions on the speed of onvergene of thesequene, we an determine in the optimal approximation the exat signi�-ant digits, i.e. not a�eted by round-o� errors, whih are in ommon withthe exat limit. In setion 5, we show how the theorems established in theprevious setions an be ombined to ontrol sequenes in whih eah termis the limit of another sequene. We desribe a strategy whih an be usedfor the omputation of improper integrals. The last setion presents numerialexperiments arried out using DSA.2 Theoretial results on onverging sequenes2.1 Preliminary de�nitionsThe theorems presented here have been established for sequenes having alinear or an exponential onvergene speed. Therefore we reall propertieswhih haraterize these two types of onvergene speed.De�nition 1 A sequene (In) onverges to I with a linear speed ifIn � I = K�n + o(�n); where K 2 R and 0 < j�j < 1:With a sequene having a linear onvergene, the number of iterations requiredto obtain an approximation of the limit with one more exat digit is quasi-onstant.De�nition 2 A sequene (In) onverges to I with an exponential speed ifIn � I = K �pn + o(�pn); where K 2 R; 0 < j�j < 1 and p > 1:2



With a sequene having an exponential onvergene, at eah iteration, thenumber of exat digits is quasi-multiplied by p.The theoretial results presented in this setion require the notion of signi�antdigits ommon to two real numbers. Therefore we need the following de�nition.De�nition 3 Let a and b be two real numbers, the number of signi�ant digitsthat are ommon to a and b an be de�ned in R by(1) for a 6= b, Ca;b = log10 ����� a+ b2(a� b) ����� ;(2) 8a 2 R; Ca;a = +1.Then ja� bj = ���a+b2 ��� 10�Ca;b. For instane, if Ca;b = 3, the relative di�erenebetween a et b is of the order of 10�3 whih means that a and b have threesigni�ant digits in ommon.Remark 4 The value of Ca;b an seem surprising if we onsider the deimalnotations of a and b. For example, if a = 2:4599976 and b = 2:4600012, thenCa;b � 5:8. The di�erene due to the sequenes of \0" or \9" is illusive. Thesigni�ant deimal digits of a and b are really di�erent from the sixth position.2.2 On sequenes with a linear onvergeneLet us onsider a sequene (In) onverging linearly to I. From the number ofsigni�ant digits ommon to two suessive iterates, In and In+1, the followingtheorem enables one to determine the number of signi�ant digits ommonto In and the exat limit I.Theorem 5 Let (In) be a sequene onverging linearly to I, i.e. whih satis�esIn � I = K�n + o(�n) where K 2 R and 0 < j�j < 1, thenCIn;In+1 = CIn;I + log10 � 11� �� + o (1) :PROOF. In � I = K�n + o(�n) (1)By using the same formula for In+1, one obtainsIn � In+1 = K�n(1� �) + o(�n) (2)3



From equation (1), we dedueInIn � I = InK�n (1 + o(1)) (3)InIn � I = InK�n (1 + o(1)) (4)Therefore InIn � I = InK�n + o� 1�n� (5)Then In + I2(In � I) = InIn � I � 12 = InK�n + o� 1�n� (6)Similarly, from equation (2), we dedueIn + In+12(In � In+1) = InIn � In+1 � 12 = InK�n 11� � + o� 1�n� (7)From de�nition 3 and equation (6) we dedueCIn;I = log10 ���� InK�n (1 + o(1))���� (8)CIn;I = log10 ���� InK�n ����+ log10 j1 + o(1)j (9)Therefore CIn;I = log10 ���� InK�n ����+ o(1) (10)Similarly, from de�nition 3 and equation (7) we dedueCIn;In+1 = log10 ���� InK�n 11� � ����+ o (1) (11)Finally CIn;In+1 = CIn;I + log10 � 11� ��+ o (1) (12)4



If the onvergene zone is reahed, o (1) � 1: the last term in equation (12)beomes negligible. In this ase, from the signi�ant digits in ommon betweenIn and In+1, we an dedue the signi�ant digits in ommon between In andthe exat limit I.If �1 < � < 0, then � log10 2 < log10 � 11��� < 0. In this ase, if the onver-gene zone is reahed, the signi�ant digits in ommon between In and In+1are also in ommon with I.8� 2℄0; 1[, 9k 0 < � � 1 � 10�k and therefore 0 < log10 � 11��� � k. If theonvergene zone is reahed, the signi�ant digits in ommon between In andIn+1 are also in ommon with I, up to k digits. The lower � is, the faster theonvergene of the sequene is and the lower k is.Remark 6 If 0 < � � 12 , then 0 < log2 � 11��� � 1. In this ase, if theonvergene zone is reahed, the signi�ant bits in ommon between In andIn+1 are also in ommon with I, up to one.2.3 On the trapezoidal and Simpson's rulesTheorem 5 an be used for the evaluation of integrals with the trapezoidal orSimpson's rule. Indeed a sequene whih onverges linearly an be generatedby halving the step value at eah iteration.Let f be a real funtion whih is Ck over [a; b℄ where k � 3. Let In be theapproximation of I = R ba f(x)dx omputed using the trapezoidal rule withstep h = b�a2n . If f 0(a) 6= f 0(b), the development of the error up to order 4is [1,8,9℄: In � I = h212 [f 0(b)� f 0(a)℄ +O(h4) (13)As the sequene (In) satis�es In�I = K�n+O(�2n), with K = (b�a)212 [f 0(b)�f 0(a)℄ and � = 14 , theorem 5 ould apply. However the following property hasbeen established in [5℄:CIn;In+1 = CIn;I + log10 �43�+O � 14n� : (14)Let f be a real funtion whih is Ck over [a; b℄ where k � 5. Let In be theapproximation of I = R ba f(x)dx omputed using Simpson's rule with steph = b�a2n . If f (3)(a) 6= f (3)(b), the development of the error up to order 65



is [1,8,9℄: In � I = h4180 [f (3)(b)� f (3)(a)℄ +O(h6): (15)The sequene (In) satis�es In� I = K�n+O(� 32n), with K = (b�a)4180 [f (3)(b)�f (3)(a)℄ and � = 116 . Therefore, as for the trapezoidal rule, theorem 5 ouldapply. The following property has atually been established in [5℄:CIn;In+1 = CIn;I + log10 �1615� +O � 14n� : (16)If the onvergene zone is reahed, O � 14n � � 1. Furthermore log10 �43� andlog10 �1615� represent at most one bit. Indeed, for both rules, � < 12 . Therefore,if the onvergene zone is reahed, the signi�ant digits ommon to In andIn+1 are also ommon to I, the exat value of the integral, up to one bit.2.4 On sequenes with an exponential onvergeneTheoretial results similar to theorem 5 may be established for sequenes withan exponential onvergene.Theorem 7 Let (In) be a sequene onverging to I with an exponential speed,i.e. whih satis�es In � I = K �pn + o(�pn) where K 2 R, 0 < j�j < 1 andp > 1, then CIn;In+1 = CIn;I + log10 � 11� �pn(p�1)�+ o (1) :PROOF. In � I = K �pn + o(�pn) (17)By using the same formula for In+1, one obtainsIn � In+1 = K ��pn � �pn+1�+ o(�pn) (18)From equation (17), we dedueInIn � I = InK�pn (1 + o(1)) (19)InIn � I = InK�pn (1 + o(1)) (20)6



Therefore InIn � I = InK�pn + o� 1�pn� (21)Then In + I2(In � I) = InIn � I � 12 = InK�pn + o� 1�pn� (22)Similarly, from equation (18), we dedueInIn � In+1 = InK (�pn � �pn+1) (1 + o(1)) (23)Therefore InIn � In+1 = InK (�pn � �pn+1) + o� 1�pn� (24)Then In + In+12(In � In+1) = InIn � In+1 � 12 = InK (�pn � �pn+1) + o� 1�pn� (25)From de�nition 3 and equation (22) we dedueCIn;I = log10 ���� InK�pn (1 + o(1))���� (26)Therefore CIn;I = log10 ���� InK�pn ����+ o(1) (27)Similarly, from de�nition 3 and equation (25) we dedueCIn;In+1 = log10 ����� InK (�pn � �pn+1) (1 + o(1))����� (28)Therefore CIn;In+1 = log10 ����� InK �pn (1� �pn(p�1)) �����+ o(1) (29)Finally CIn;In+1 = CIn;I + log10 � 11� �pn(p�1)�+ o(1) (30)7



If the onvergene zone is reahed, the deimal signi�ant digits in ommon be-tween In and In+1 are also ommon to the exat limit I, up to log10 � 11��pn(p�1)�.If 0 < j�j �Mn, with Mn = ( 910)( 1pn(p�1) ), then 0 < log10 � 11��pn(p�1) � � 1. Thesigni�ant digits ommon to In and In+1 are also ommon to I, up to one. Asthe number n of iterations inreases, Mn also inreases and the ondition that� must satisfy in order to have log10 � 11��pn(p�1)� � 1 beomes less and lessstrit. For example, if the sequene (In) has a quadrati onvergene, whihis haraterized by p = 2, then M1 > 0:94 and M5 > 0:99. Similarly, as pinreases, the speed of onvergene inreases and Mn also inreases.Remark 8 If the onvergene zone is reahed, the signi�ant bits in ommonbetween In and In+1 are also ommon to the exat limit I, up to log2 � 11��pn(p�1)�.If 0 < j�j � 2( 1pn(1�p) ), then 0 < log2 � 11��pn(p�1) � � 1. This ondition on � iseasily satis�ed. Indeed in the ase of a quadrati onvergene (i.e. for p = 2)if n = 5, 2( 1pn(1�p) ) > 0:97.The theoretial results presented in this setion have been established by tak-ing into aount only the trunation error on two suessive iterates of asequene. However omputed results are also a�eted by round-o� error prop-agation. The next setion desribes how round-o� errors an be estimated witha probabilisti approah in order to determine the exat signi�ant digits ofany omputed result.
3 Stohasti approah of round-o� errors3.1 The CESTAC methodThe CESTAC (Contrôle et Estimation Stohastique des Arrondis de Caluls)method, whih has been developed by La Porte and Vignes [10,12,13℄, enablesone to estimate the number of exat signi�ant digits of any omputed result.This method is based on a probabilisti approah of round-o� errors using arandom rounding mode de�ned below.De�nition 9 Eah real number x, whih is not a oating-point number, isbounded by two onseutive oating-point numbers: X� (rounded down) andX+ (rounded up). The random rounding mode de�nes the oating-point num-ber X representing x as being one of the two values X� or X+ with the prob-ability 1=2. 8



With this random rounding mode, the same program run several times pro-vides di�erent results, due to di�erent round-o� errors.It has been proved [2℄ that a omputed result R is modelled to the �rst orderin 2�p as: R � Z = r + nXi=1 gi(d)2�pzi (31)where r is the exat result, gi(d) are oeÆients depending exlusively on thedata and on the ode, p is the number of bits in the mantissa and zi areindependent uniformly distributed random variables on [�1; 1℄.From equation (31), we dedue that:(1) the mean value of the random variable Z is the exat result r,(2) under some assumptions, the distribution of Z is a quasi-Gaussian dis-tribution.Then by identifying R and Z, i.e. by negleting all the seond order terms,Student's test an be used to determine the auray of R. Thus from Nsamples Ri; i = 1; 2; :::; N , the number of deimal signi�ant digits ommonto R and r an be estimated with the following equation.CR = log100�pN ���R������ 1A ; (32)where R = 1N NXi=1Ri and �2 = 1N � 1 NXi=1 �Ri � R�2 : (33)�� is the value of Student's distribution for N � 1 degrees of freedom and aprobability level 1� �.Thus the implementation of the CESTAC method in a ode providing a resultR onsists in:� performing N times this ode with the random rounding mode, whih isobtained by using randomly the rounding mode towards �1 or +1; wethen obtain N samples Ri of R� hoosing as the omputed result the mean value R of Ri, i = 1; :::; N� estimating with equation (32) the number of exat deimal signi�ant digitsof R.In pratie N = 2 or N = 3 and � = 0:05: Note that for N = 2, then�� = 12:706 and for N = 3, then �� = 4:4303:9



Equations (31) and (32) hold if two main hypotheses are veri�ed. These hy-potheses are:(1) the round-o� errors �i are independent, entered uniformly distributedrandom variables,(2) the approximation to the �rst order in 2�p is legitimate.Conerning the �rst hypothesis, with the use of the random arithmeti, round-o� errors �i are random variables, however, in pratie, they are not rigorouslyentered and in this ase Student's test gives a biased estimation of the om-puted result. It has been proved [6℄ that, with a bias of a few �, the error onthe estimation of the number of exat signi�ant digits of R is less than onedeimal digit. Therefore even if the �rst hypothesis is not rigorously satis�ed,the reliability of the estimation obtained with equation (32) is not altered ifit is onsidered as exat up to one digit.Conerning the seond hypothesis, the approximation to the �rst order onlyonerns multipliations and divisions. Indeed the round-o� error generatedby an addition or a subtration does not ontain any term of higher order. Ithas been shown [2,4℄ that, if a omputed result beomes insigni�ant, i.e. ifthe round-o� error it ontains is of the same order of magnitude as the resultitself, then the �rst order approximation may be not legitimate. In pratiethe validation of the CESTAC method requires a dynami ontrol of multi-pliations and divisions, during the exeution of the ode. This leads to thesynhronous implementation of the method, i.e. to the parallel omputation ofthe N samples Ri, and also to the onept of omputational zero, also namedinformatial zero [11℄.De�nition 10 During the run of a ode using the CESTAC method, an in-termediate or a �nal result R is a omputational zero, denoted by �:0, if oneof the two following onditions holds:� 8i; Ri = 0,� CR � 0.Any omputed result R is a omputational zero if either R = 0, R beingsigni�ant, or R is insigni�ant. A omputational zero is a value that annotbe di�erentiated from the mathematial zero beause of its round-o� error.From the synhronous implementation of the CESTAC method and the on-ept of omputational zero, stohasti arithmeti [4,7,13℄ has been de�ned.Two types of stohasti arithmeti atually exist: it an be either ontinuousor disrete. 10



3.2 Priniples of stohasti arithmetis3.2.1 Continuous stohasti arithmetiContinuous stohasti arithmeti is a modelling of the synhronous implemen-tation of the CESTAC method. By using this implementation, so that the Nruns of a ode take plae in parallel, the N results of eah arithmetial opera-tion an be onsidered as realizations of a Gaussian random variable enteredon the exat result. One an therefore de�ne a new number, alled stohastinumber, and a new arithmeti, alled (ontinuous) stohasti arithmeti, ap-plied to these numbers. An equality onept and order relations, whih takeinto aount the number of exat signi�ant digits of stohasti operands, havealso been de�ned.A stohasti number X is denoted by (m; �2), where m is the mean value ofX and � its standard deviation. Stohasti arithmetial operations (s+, s�,s�, s=) orrespond to terms to the �rst order in �m of operations between twoindependent Gaussian random variables.De�nition 11 Let X1 = (m1; �21) and X2 = (m2; �22). Stohasti arithmetialoperations on X1 and X2 are de�ned as:X1 s+ X2 = �m1 +m2 ; �21 + �22� (34)X1 s� X2 = �m1 �m2 ; �21 + �22� (35)X1 s� X2 = �m1 �m2 ; m22�21 +m21�22� (36)X1 s= X2 = 0�m1=m2 ; � �1m2�2 +  m1�2m22 !21Awith m2 6= 0: (37)An auray an be assoiated to any stohasti number. If X = (m; �2), ��exists (depending only on �) suh thatP (X 2 [m� ���;m+ ���℄) = 1� �; (38)I�;X = [m� ���;m+ ���℄ is the on�dene interval ofm at 1��. The numberof deimal signi�ant digits ommon to all the elements of I�;X and to m islower bounded by C�;X = log10  jmj���! : (39)The following de�nition is the modelling of the onept of omputational zero,previously introdued. 11



De�nition 12 A stohasti number X is a stohasti zero, denoted by 0, ifand only if C�;X � 0 or X = (0; 0):In aordane with the onept of stohasti zero, a new equality onept andnew order relations have been de�ned.De�nition 13 Let X1 = (m1; �21) and X2 = (m2; �22) be two stohasti num-bers.� Stohasti equality, denoted by s=, is de�ned as:X1 s= X2 if and only if X1 s� X2 = 0.� Stohasti inequalities, denoted by s> and s� are de�ned as:X1 s> X2 if and only if m1 > m2 and X1 s 6= X2,X1 s� X2 if and only if m1 � m2 or X1 s= X2.Continuous stohasti arithmeti is a modelling of the omputer arithmeti,whih takes into aount round-o� errors. The properties of ontinuous stohas-ti arithmeti [3,4℄ have pointed out the theoretial di�erenes between theapproximative arithmeti of a omputer and exat arithmeti.3.2.2 Disrete Stohasti ArithmetiDisrete Stohasti Arithmeti (DSA) has been de�ned from the synhronousimplementation of the CESTAC method. With DSA, a real number beomesan N -dimensional set and any operation on these N -dimensional sets is per-formed element per element using the random rounding mode. The numberof exat signi�ant digits of suh an N -dimensional set an be estimated fromequation (32). From the onept of omputational zero previously introdued,an equality onept and order relations have been de�ned for DSA.De�nition 14 Let X and Y be N-samples provided by the CESTAC method.� Disrete stohasti equality denoted by ds= is de�ned as:Xds= Y if and only if X � Y = �:0.� Disrete stohasti inequalities denoted by ds> and ds� are de�ned as:Xds> Y if and only if X > Y and Xds 6= Y ,Xds� Y if and only if X � Y or Xds= Y .Order relations in DSA are essential to ontrol branhing statements. Beauseof round-o� errors, if A and B are two oating-point numbers and a and b theorresponding exat values,a > b; A > B and A > B ; a > b:12



Many problems in sienti� omputing are due to this dis-orrelation: forexample, unsatis�ed stopping riteria or in�nite loops in algorithmi geometry.Taking into aount the numerial quality of the operands in order relationsenables to partially solve these problems [3℄.Therefore DSA enables to estimate the impat of round-o� errors on any resultof a sienti� ode and also to hek that no anomaly ourred during therun, espeially in branhing statements. DSA is implemented in the CADNAlibrary 1 .The auray of a stohasti number an be related to the number of exat sig-ni�ant digits of an N -sample provided by the CESTAC method. Indeed, whenN is a small value (2 or 3), whih is the ase in pratie, the values obtainedwith equations (32) and (39) are very lose. They represent in a omputedresult the number of signi�ant digits whih are not a�eted by round-o�errors. So the two types of stohasti arithmetis are oherent. Properties es-tablished in the theoretial framework of ontinuous stohasti arithmeti anbe applied on a omputer via the pratial use of DSA.3.3 Theoretial results on stohasti operationsThe theoretial results presented here have been established in ontinuous sto-hasti arithmeti. They enable one to ompare results of arithmetial stohas-ti operations with those provided by the orresponding lassial operationsperformed on exat values.Let us onsider a numerial method whih aims to approximate an exatvalue x1. This method may onsist for example in omputing an iterate ofa sequene (un) suh that limn!1 un = x1. Even using an arithmeti within�nite preision, the value obtained is not x1, but an approximation whihis a�eted by a trunation error. We ompare here the results obtained usingsuh numerial methods in stohasti arithmeti with the exat values theyapproximate.Theorem 15 Let X1 = (m1; �21) be the approximation of an exat value x1 instohasti arithmeti. Let us assume that the exat signi�ant bits of X1, i.e.not a�eted by round-o� errors, are in ommon with x1, up to p: the numberof signi�ant bits of X1 in ommon with x1 is lower bounded by log2 � jm1j���1��p.Similarly let X2 = (m2; �22) be an approximation obtained in stohasti arith-meti of an exat value x2, suh that its exat signi�ant bits are in ommon1 URL address: http://www.lip6.fr/adna/13



with x2, up to q.Let  be an exat arithmetial operator:  2 f+;�;�; =g and s the orre-sponding stohasti operator s 2 fs+ ; s� ; s� ; s=g.Then the exat signi�ant bits of X1 s X2 are in ommon with the exatvalue x1  x2, up to max(p; q).PROOF. From equation (39), the number of exat signi�ant bits of X1,i.e. not a�eted by round-o� errors, is lower bounded by log2 � jm1j���1�. As thenumber of signi�ant bits of X1 in ommon with the exat value x1 is lowerbounded by log2 � jm1j���1� � p = log2 � jm1j2p���1�, to take into aount both thetrunation error and the round-o� error on X1, one has to onsider not thevariane �21 , but (2p�1)2.Similarly the number of signi�ant bits of X2 in ommon with the exatvalue x2 is lower bounded by log2 � jm2j���2�� q = log2 � jm2j2q���2�.From equations (34) and (39), the number of exat signi�ant bits of X1s+X2is lower bounded by log2 � jm1+m2j��p�21+�22�. To take into aount both the trun-ation error and the round-o� error on X1s+ X2, one has to onsider notthe variane �21 + �22 , but (2p�1)2 + (2q�2)2. Therefore a lower bound forthe number of signi�ant bits of X1s+ X2 in ommon with the exat valuex1 + x2 is log2 � jm1+m2j��p(2p�1)2+(2q�2)2�, whih an be itself lower bounded bylog2 � jm1+m2j��p�21+�22��max(p; q). Then the exat signi�ant bits of X1s+X2 arein ommon with x1 + x2, up to max(p; q).As X1s�X2 = (m1 �m2; �21 + �22), the proof for the subtration is similar asthe one for the addition.From equations (36) and (39), the number of exat signi�ant bits of X1s�X2is lower bounded by log2 � jm1m2j��pm2�21+m1�22�. To take into aount both the trun-ation error and the round-o� error on X1s�X2, one has to onsider not thevariane m2�21 +m1�22, but 22pm2�21 + 22qm1�22. Therefore a lower bound forthe number of signi�ant bits of X1s� X2 in ommon with the exat valuex1 � x2 is log2 � jm1m2j��p22pm2�21+22qm1�22�, whih an be itself lower bounded bylog2 � jm1m2j��pm2�21+m1�22��max(p; q). Then the exat signi�ant bits of X1s�X2are in ommon with x1 � x2, up to max(p; q).14



From equations (37) and (39), the number of exat signi�ant bits of X1s=X2is lower bounded by log20� jm1m2 j��q( �1m2 )2+(m1�2m22 )21A. To take into aount both thetrunation error and the round-o� error on X1s=X2, one has to onsider notthe variane ( �1m2 )2+(m1�2m22 )2, but (2p�1m2 )2+(2qm1�2m22 )2. Therefore a lower boundfor the number of signi�ant bits of X1s=X2 in ommon with the exat valuex1=x2 is log20BB� jm1m2 j��r( 2p�1m2 )2+( 2qm1�2m22 )21CCA, whih an be itself lower bounded bylog20� jm1m2 j��q( �1m2 )2+(m1�2m22 )21A�max(p; q). Then the exat signi�ant bits ofX1s=X2are in ommon with x1=x2, up to max(p; q).Theorem 15 enables one to ontrol arithmetial operations performed on om-puted results of numerial methods. This theorem has been proved for stohas-ti arithmetial operations, whih are a modelling of the operations performedin the synhronous implementation of the CESTAC method. In pratie, the-orem 15 is used, aording to 3.2.2, for results obtained in DSA. In the nextsetion, we present, in aordane with theorem 15 and the theoretial resultspresented in setion 2, a strategy to dynamially ontrol onverging sequenesomputed in DSA.4 A strategy for a dynamial ontrol of onverging sequenesWhen a numerial algorithm requires the evaluation of the limit of a sequene,this limit is approximated by one of the iterates. As the number of iterationsinreases, the trunation error usually dereases, but the round-o� error in-reases. Therefore the hoie of the optimal iterate may be problemati.DSA enables one to estimate the number of exat signi�ant digits of anyomputed result, i.e. its signi�ant digits whih are not a�eted by round-o� error propagation. Let us onsider the omputation of a sequene (In)in DSA and let us assume that the onvergene zone is reahed. If disretestohasti equality is ahieved for two suessive iterates, i.e. In� In+1 = �:0,the di�erene between In and In+1 is only due to round-o� errors and furtheriterations are useless. The optimal iterate In+1 an therefore be dynamiallydetermined at run time. Furthermore, if the sequene (In) onverges at leastlinearly to I, from setion 2, the exat signi�ant digits of In+1 are in ommonwith I, up to k digits. The value k, whih depends on the onvergene speedof (In), an be determined from theorem 5 or 7.15



Let us onsider a sequene generated using the trapezoidal or Simpson's rulewith the tehnique of step halving previously desribed. If the onvergenezone is reahed and omputations are performed until the di�erene betweentwo suessive iterates is insigni�ant, then, from setion 2, the exat signi�-ant bits of the last iterate are in ommon with the exat value of the integral,up to one.More generally, if a sequene (In) onverging at least linearly to I is omputedusing DSA, the optimal iterate an be dynamially determined and the numberof signi�ant digits it has in ommon with the exat limit I an be evaluated.If operations on limits of sequenes are required in a numerial algorithm, asimilar strategy, based on the following theorem, an be used.Theorem 16 Let us onsider the omputation in DSA of two sequenes (Ik)and (Jk) onverging at least linearly to I and J respetively.Let In (respetively Jm) be an iterate suh that its exat signi�ant bits are inommon with I up to p (respetively J up to q).If we denote by  an exat arithmetial operator, then the exat signi�antbits of In  Jm are in ommon with the exat value I J , up to max(p; q).PROOF. From setion 2, as the sequene (Ik) onverges at least linearlyto I, if it is omputed until the di�erene between two suessive iterates isinsigni�ant, i.e. In�1�In = �:0, then we an determine the value p suh thatthe exat signi�ant bits of In are in ommon with I, up to p. Similarly if thesequene (Jk) is omputed until Jm�1� Jm = �:0, then we an determine thevalue q suh that the exat signi�ant bits of Jm are in ommon with J , upto q. Aording to the appliation of theorem 15 in DSA, if an arithmetialoperation is performed on In and Jm, the exat signi�ant bits of the resultare those obtained with the same operation performed on I and J , up tomax(p; q).Remark 17 Aording to setion 2, if the onvergene of the sequenes (Ik)and (Jk) is suÆiently fast, then p = q = 1. In this ase, the exat signi�antbits of the result obtained are those provided by the same operation on thelimits, up to one.More generally, in a numerial algorithm involving the omputation of sev-eral sequenes, if eah sequene is omputed until the di�erene between twosuessive iterates is insigni�ant, eah limit is approximated by the optimaliterate. Aording to setion 2, if eah sequene onverges at least linearly, wean evaluate the number of signi�ant digits ommon between the limit andits approximation. If arithmetial operations are performed on these approxi-16



mations, we an determine the signi�ant digits of the result obtained whihare ommon with the result of the same operations performed on the limits.
5 Dynamial ontrol of ombined sequenesThis setion shows how to approximate the limit of a sequene by its optimaliterate, this iterate being itself the limit of another sequene. The theoremspresented in setions 2 and 3 an be ombined to determine the number ofdigits of the approximation obtained whih are in ommon with the exatresult. In the strategies desribed in this setion, small letters denote exatvalues and apital letters the orresponding approximations omputed usingDSA.
5.1 A strategy to ompute ombined sequenesWe onsider a sequene in whih eah term um is the limit of another sequene.More preisely, let (um) be a sequene onverging at least linearly to u and,for all m, let (um;n) be a sequene onverging at least linearly to um.For all m, let Um be the approximation of um omputed using DSA. Um isobtained by omputing the sequene (um;n) until, in the onvergene zone, thedi�erene between two suessive iterates is insigni�ant.As for all m, the sequene (um;n) onverges at least linearly to um, aordingto setion 2, one an determine the value q suh that the exat signi�ant bitsof Um are ommon to um, up to q.Figure 1 represents the signi�ant bits of Um and Um+1 if the di�ereneUm � Um+1 is insigni�ant. In this ase, the exat signi�ant bits of Um+1are ommon to Um and are also ommon to um and um+1, up to q.As the sequene (um) onverges at least linearly to u, one an determine thevalue p suh that the bits ommon to um and um+1 are ommon with u, upto p.Consequently if the di�erene Um�Um+1 is insigni�ant, the exat signi�antbits of Um+1 are ommon with u, up to p+ q.17
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Fig. 1. Signi�ant bits of Um and Um+15.2 Dynamial ontrol of integrals on an in�nite domainLet us onsider the omputation of an improper integral g = R10 �(x)dx. Thein�nite interval of integration is partitioned into �nite intervals of length L.Let fj = R (j+1)LjL �(x)dx and gm = Pmj=0 fj, limm!1 gm = g.g an be numerially approximated by an iterate gm, m being suÆiently high.The optimal number of iterates to ompute an be determined dynamiallyusing DSA.Let Fj;n be the approximation of fj omputed using the trapezoidal or Simp-son's rule with step L2n . For all j, the sequene (Fj;n) is omputed until thedi�erene between two suessive iterates is insigni�ant. This is not ahievedat the same iteration of all values of j. Let nj be the iteration at whihFj;nj�1 � Fj;nj = �:0.Aording to setion 2, for all j, the exat signi�ant bits of Fj;nj are inommon with fj, up to one. Let Gm = Pmj=0 Fj;nj . Aording to theorem 16,the exat signi�ant bits of Gm are in ommon with gm, up to one.Figure 2 represents the signi�ant bits of Gm and Gm+1 if the di�ereneGm �Gm+1 is insigni�ant. In this ase, the exat signi�ant bits of Gm+1are ommon to Gm and are also ommon to gm and gm+1, up to one.We assume that the sequene (gm) onverges at least linearly to g. Aordingto setion 2, if the onvergene zone is reahed, Cgm;gm+1 = Cgm;g +  where represents p bits. Therefore the bits ommon to gm and gm+1 are ommonwith g, up to p. 18
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Fig. 2. Signi�ant bits of Gm and Gm+1Consequently if the di�erene Gm �Gm+1 is insigni�ant, the exat signi�antbits of Gm+1 are ommon with g, up to p+ 1.6 Numerial experimentsNumerial experiments have been arried out using DSA implemented in theCADNA library. Two examples are presented: the omputation of a de�niteintegral and the omputation of an integral on an in�nite interval.6.1 Computation of a de�nite integralLet us onsider the integral I = Z 10 6x3 � 15x2 � 28x+ 229x2 + 12x+ 4 dx = 1.I has been estimated with the trapezoidal and Simpson's rules using thestrategy desribed in setion 2. Approximations In have been omputed withstep 12n until the di�erene In � In+1 is insigni�ant. From setion 2, we anguarantee that the exat signi�ant bits of the last iterate IN are in ommonwith the exat value of I, up to one.Table 1 presents for both rules the approximations of I obtained in singleand double preision. The number of exat signi�ant digits of eah result hasbeen estimated using DSA. For eah sequene, the exat signi�ant digits ofthe last iterate are reported in table 1.We an notie that the exat signi�ant digits of eah approximation obtained19



Table 1Approximations of Irule in single preision in double preisiontrapezoidal I9 = 0:10000E + 01 I21 = 0:100000000000E + 001Simpson I8 = 0:100000E + 01 I13 = 0:1000000000000E + 001are in ommon with I. The number of iterations requested for the stoppingriterion to be satis�ed depends of ourse on the preision hosen, but alsoon the quadrature method used. Whatever the preision is, less iterations areperformed with Simpson's rule than with the trapezoidal rule. This is dueto the di�erent onvergene speeds of the omputed sequenes. Indeed theapproximation of I is of order 2 with the trapezoidal rule and of order 4with Simpson's rule. For eah rule, the error on the last iterate jIN � Ij isinsigni�ant. Beause of round-o� error propagation, the omputer an notdistinguish IN from I.6.2 Computation of an improper integralLet us onsider the improper integral g = Z 10 e�ax dx = 1a , where a > 0.g has been estimated using the strategy desribed in 5.2. Using the samenotations as in 5.2, let gm = Pmj=0 fj, where fj = R (j+1)LjL e�ax dx. The approx-imations of the integrals fj are omputed with Simpson's rule using DSA. Forevery j, a sequene is omputed until the di�erene between two suessiveiterates is insigni�ant.As gm � g = R1(m+1)L e�ax dx = �m+1a , where � = e�aL, the sequene (gm)onverges linearly to g. Therefore theorem 5 an apply: if the onvergenezone is reahed, the signi�ant bits ommon to two suessive iterates are alsoommon to g, up to log2( 11��).Let Gm be the approximation of gm omputed using DSA. The sequene (Gm)is omputed until the di�erene between two suessive iterates is insigni�ant.We denote by M the iteration at whih GM�1 � GM = �:0. Aording tosetion 5.2, the exat signi�ant bits of GM are in ommon with g, up tolog2( 11��) + 1. Therefore the exat signi�ant deimal digits of GM are inommon with g up to Æ, where Æ = log10( 21��).Table 2 presents for a = 1 and di�erent values of L the approximations GMobtained in double preision. The number of exat signi�ant digits of GM notin ommon with g is approximated by Æ. As the length L inreases, the numberM of integrals fj to be approximated dereases. Only the exat signi�ant20



digits of GM are reported: the other signi�ant digits are a�eted by round-o� error propagation. We notie that the number of exat signi�ant digitsobtained (from thirteen to �fteen) is satisfying for omputations arried out indouble preision. The exat signi�ant digits whih are not in ommon withthe exat value g = 1 an easily be identi�ed. For example, if L = 10�1,among the fourteen exat signi�ant digits of GM , the two last digits are notin ommon with g. We notie that, for every approximation GM reported intable 2, its exat signi�ant digits are in ommon with g up to dÆe.Table 2Results obtained with Simpson's rule for a = 1L Æ � M GM10�2 2.3 2335 0.9999999999276E+00010�1 1.3 284 0.99999999999953E+0001 0.5 33 0.999999999999996E+00010 0.3 4 0.99999999999999E+00050 0.3 2 0.10000000000004E+001Table 3 presents for a = 10�5 and di�erent values of L the exat signi�antdigits of the approximations GM obtained in double preision. As in table 2,we notie that if the length L inreases, the number M of integrals fj to beapproximated dereases. For eah approximation GM obtained, we an easilyidentify its exat signi�ant digits whih are in ommon with the exat valueg = 105. As in table 2, we notie that the exat signi�ant digits of GM are inommon with g up to dÆe.Table 3Results obtained with Simpson's rule for a = 10�5L Æ � M GM102 3.3 19136 0.999999995109E+005103 2.3 2346 0.9999999999352E+005104 1.3 279 0.99999999999923E+005105 0.5 33 0.999999999999995E+005106 0.3 5 0.99999999999999E+005
7 ConlusionDisrete Stohasti Arithmeti an be used to dynamially determine the op-timal iterate of a onverging sequene. Furthermore, if the sequene onverges21



at least linearly, the number of signi�ant digits of this iterate ommon withthe limit an be estimated. This number depends on the speed of onvergeneof the sequene.If an arithmetial operation is performed on the optimal iterates of two se-quenes, we an determine the signi�ant digits of the omputed result om-mon with the exat result of the same operation performed on the two limits.This allows a dynamial ontrol of numerial algorithms involving the om-putation of several sequenes. Integrals on an in�nite interval an be approxi-mated by omputing several onverging sequenes. By ontrolling dynamiallyeah sequene, we an determine the signi�ant digits of the approximationommon with the exat value of the integral.The sequenes examined in this paper all onverge to a salar value. A per-spetive to this work ould be the numerial validation of sequenes of vetorsinvolved for example in iterative methods for solving linear systems.Referenes[1℄ R. L. Burden and J. D. Faires, Numerial analysis, 7th ed., Brooks-ColePublishing, 2001.[2℄ J.-M. Chesneaux, Study of the omputing auray by using probabilistiapproah, in: Contribution to omputer arithmeti and self-validating numerialmethods, C. Ullrih ed., IMACS, New Brunswik, NJ, 1990, pp. 19-30.[3℄ J.-M. Chesneaux, The equality relations in sienti� omputing, Num. Algo. 7(1994) 129-143.[4℄ J.-M. Chesneaux, L'arithm�etique stohastique et le logiiel CADNA,Habilitation �a diriger des reherhes, Universit�e Pierre et Marie Curie, Paris,1995.[5℄ J.-M. Chesneaux and F. J�ez�equel, Dynamial ontrol of omputations using theTrapezoidal and Simpson's rules, J. Univ. Comput. Si. 4 (1) (1998) 2-10.[6℄ J.-M. Chesneaux and J. Vignes, Sur la robustesse de la m�ethode CESTAC, C.R. Aad. Si. Paris S�er. I Math. 307 (1988) 855-860.[7℄ J.-M. Chesneaux and J. Vignes, Les fondements de l'arithm�etique stohastique,C. R. Aad. Si. Paris S�er. I Math. 315 (1992) 1435-1440.[8℄ M. K. Jain, R. K. Jain and S. R. K. Iyengar, Numerial methods for sienti�and engineering omputation, Halsted Press, 1985.[9℄ J. H. Mathews, Numerial methods for mathematis, siene and engineering,2nd ed., Prentie-Hall, 1992. 22
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