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Abstract This paper focuses on the resolution of a large number of small random
symmetric linear systems and its parallel implementation in single precision on graph-
ics processing units (GPUs). The computations involved by each linear system are
independent from the others, and the number of unknowns does not exceed 64. For
this purpose, we present the adaptation to our context of largely used methods that
include: LDLt factorization, Householder reduction to a tridiagonal matrix, parallel
cyclic reduction (PCR) that is not a power of two and the divide and conquer algorithm
for tridiagonal eigenproblems. We not only detail the implementation and optimiza-
tion of each method, but we also compare the sustainability of each solution and its
performance which include both parallel complexity and cache memory occupation.
In the context of solving a large number of small random linear systems on GPUs with
no information about their conditioning, our research indicates that the best strategy
requires the use of Householder tridiagonalization + PCR followed if necessary by a
divide and conquer diagonalization.
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1 Introdution

Several problems in physics and operations research can be divided into subproblems,
solved independently, and processed using various communication steps to determine
the global solution. This is also the case for simulations in mathematical finance, in
particular for the challenging problem of credit valuation adjustment (CVA). When
American contracts are involved, the CVA can be simulated thanks to a nested Monte
Carlo (NMC) that performs a dynamic programming algorithm (DPA) on the inner
trajectories. This procedure constitutes a straight extension of the square Monte Carlo
presented in [1] as a benchmark method for CVA on European contracts. Basically,
the main ingredient of this extension relies on the resolution of a large number of small
random symmetric linear systems.

The CVA simulation is rather the origin and not the purpose of this paper. In this
contribution, we are really focused on the computational effort of adapting to our
context some well-known algorithms. Indeed, we are not aware of any work that deals
with the resolutionongraphics processingunits (GPUs) of a largenumber of symmetric
small linear systems whose common size n = (number of knowns) does not exceed
64. The lack of research done in this direction could be due to the fact that large
linear systems are more difficult to parallelize than smaller ones. Nevertheless, a good
parallelization for small linear systems cannot be considered as straight simplification
of the work done for large systems.

Actually, when targeting performance, we have to be aware that the paradigm of the
parallel implementation changes according to the size. When n ≥ 8, we should also
be aware that the single instruction multiple data (SIMD) parallelization in our context
is far from optimality. Indeed, because of the size of the cached memory available per
block of threads, associating one thread per linear system reduces significantly the
number of threads that can be launched in parallel. Consequently, the parallelization
that we propose is neither SIMD nor straight simplification of known libraries devel-
oped for large linear systems like matrix algebra on GPU and multicore architectures
(MAGMA) [23].

The solution that we propose is suited to the specific problem of solving a large
number of small symmetric linear systems. It is based on the dependence classification
of threads: the class of threads that are independent because involved in different
linear systems, noted TI, and the class of those that communicate because involved
in the same linear system, noted TC. The largest part of this paper is dedicated to the
organization of communicating threads TC and to their use of CUDA shared memory.
Regarding the independent groups of threads TI, their number will be chosen to
saturate the use of the shared memory size available per block or to have a sufficient
work per streaming multiprocessors (SMs).

Our contribution can be summarized in the following points:

– We give the CUDA source code [24] associated with the adaptation of each algo-
rithm: LDLt factorization, Householder reduction, parallel cyclic reduction (PCR)
that is not necessary a power of two, and divide and conquer for eigenproblem. As
one could expect, the adaptation of the divide and conquer was the trickiest one,
since it requires some technicality due to: choosing the right indices for the division
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part, implementing the right algorithm for the solution of the secular equation, and
tuning the deflation parameters to get sufficiently accurate results.

– We provide an in-depth description of each implementation.
– We compare the execution time of the different methods mentioned above.
– We propose an original method to further optimize the adaptation of LDLt factor-
ization to our context.

– We provide an original PCR that can be used for any vector size and not only a
power of two that requires a zero padding.

Although we are interested by small linear systems with n ∼ 32, it is not reasonable
to use LDLt factorization for all situations. In fact, in Sect. 2.2, we show that even
when n = 30 some random linear systems turn out to be ill-conditioned for single
floating-point precision as the one used on our Geforce GPU. For this reason, we found
ourselves obliged to develop both the Householder tridiagonal reduction as well as the
divide and conquer diagonalization of tridiagonal matrices. Subsequently, one could
ask the following legitimate question:

Must we systematically use Householder tridiagonalization with divide and conquer
when we suspect the random linear systems to be ill-conditioned?
Our answer is: Perform Householder tridiagonalization and solve the linear systems
cheaply using parallel cyclic reduction, then take a decision according to the value of
the residue error. If the residue error is small, then we already have good solutions.
Otherwise, we must perform divide and conquer diagonalizations and discard the
smallest eigenvalues. The next time we solve this same kind of linear systems: if
they used to be well conditioned, then we just process LDLt; otherwise, we execute
directly the combination of Householder tridiagonalization and divide and conquer
diagonalization.

The answer above justifies the work detailed in this paper that is organized as
follows. In Sect. 2, we give a brief description of NMC for CVA andwe show a realistic
example where the linear systems are ill-conditioned. Afterward, the presentation
of each resolution algorithm is explained in a separate section: Sect. 3 for LDLt
factorization, Sect. 4 for Householder and parallel cyclic reductions, and Sect. 5 for
divide and conquer diagonalization. Sections 2, 3, 4, and 5 start with a subsection that
describes the headlines of each problem and some references related to it. Section 6
concludes this paper with global remarks and the future work that is in preparation.

2 Brief description of NMC for CVA

2.1 Presentation of CVA and the references

The 2007 economic crisis raises the fear of systemic stability when the default of one
financial institution could be the origin of a cascade of other defaults. To reduce this
risk, several measures were established that include the calculation of the CVA as an
important part of the Basel III prudential rules. Since the paper [6], the CVA can be
viewed as an insurance contract that compensates for the no-recovered sum by the
counterparty when it defaults.

123



Resolving small random symmetric linear systems... 1363

For a comprehensive financial presentation of CVA, we refer to [5]. Regarding
the mathematical aspects, the reference [10] can be viewed as the most recent and
complete summary on the subject. However, little research has been dedicated to the
development of numerical procedures that should be used to perform the computations.
Book [7] is one of the first references that presents the industry practices in computing
CVA. Among research papers, maybe the most devoted to computing CVA are [1,15,
22].

Due to both mathematical and computational complexity, none of the previous ref-
erences provide a benchmark procedure to deal with CVA when American contracts
are involved. This is despite the fact that American contracts are widely exchanged,
especially in some markets. As it will be shown, simulating CVA on American con-
tracts can be overcome thanks to an efficient way of parallelizing the resolution of a
large number of small symmetric systems on GPUs. This latter point is really the heart
of this work. Before detailing the background NMC algorithm in the next subsection,
we introduce below the simplest formulation of the CVA:

CVA0,T = (1 − R)E
(
P+

τ 1t<τ≤T
)
, (1)

where R is the recovery made by the counterparty when it defaults, E denotes the
expectation operator, Pt is the process of the value exposure to the counterparty, τ is
the random default time of the counterparty, T is the protection time horizon, and the
positive part function is denoted by +.

As already explained in [1], one of the most important challenges of the CVA
comes from the fact that the exposure Pt is generally the price of a basket of different
contracts that are written with our counterparty. If these contracts can be priced by
closed expressions, the CVA can be calculated thanks to a one-stage simulation using
either the discretization of a partial differential equation or Monte Carlo method as
in [11]. However, when the underlying contracts must be simulated, it is natural from
expression (1) to perform a two-stage simulation: the inner stage to compute Pt and
the outer stage for the CVA. This two-stage simulation leads to the squareMonte Carlo
simulation used in [1] as a benchmark algorithm.

The squareMonteCarlo proposed in [1] is developed for an exposure Pt ofEuropean
contracts which is a category of contracts that can be exercised only at maturity (≤T ).
Unlike the European case, the American contracts allow an early exercise (≤T ) of the
contract which can be solved using DPA. The most used implementation of this DPA
is the Longstaff–Schwartz algorithm proposed in [27] and theoretically studied in [9].
For CVA simulation, this algorithm is implemented thanks to regressions performed on
the inner trajectories providing a new NMC algorithm that extends the square Monte
Carlo of [1].

2.2 Description of the matrices involved by our new NMC algorithm

As usual, expression (1) is discretized using a fixed number of time steps N that
introduces the sequel 0 = t0 < t1 < · · · < tN = T and the estimation
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Fig. 1 An example of a two-stage simulation with M0 = 2, M6 = 8, and M8 = 4

CVA0,T =
N−1∑

k=0

E
(
P+
tk+1

1τ∈(tk ,tk+1]
)

. (2)

To approximate the expectation E in (2), we simulateM0 outer stage trajectories of the
underlying asset S = (S1, . . . , Sd) onwhich the contracts are established. To compute
the exposure P in (2) at each time tk of the outer trajectories, we simulate Mk inner
stage trajectories of the same underlying asset S. In these outer and inner simulations,
the vector S is a given Markov process whose realizations could be drawn thanks to
a given random number generator like those presented in [3]. An illustration of this
NMC algorithm is given in Fig. 1.

When the exposure P includes American contracts, we perform Longstaff–
Schwartz algorithm on the inner trajectories. This requires N − k − 1 regressions
at each time step k ∈ {1, . . . , N − 1} and for each outer trajectory l ∈ {1, . . . , M0}.
For a fixed couple (k, l), the regression is performed using a projection on the space
generated byψ l(Stk ) = (ψ l

1(Stk ), . . . , ψ
l
n(Stk )). The choice of the latter family should

obviously depend on the considered problem, but generally practitioners use some
family of polynomials.

The regression matrix is the Monte Carlo approximation Âk,l of Ak,l =
E(ψ l(Stk )ψ

l(Stk )
t ) given by

Âk,l = 1

Mk

Mk∑

j=1

ψ l
(
S( j)
tk

)
ψ l

(
S( j)
tk

)t
(3)

where ( j) is the inner trajectory index and t is the transpose operator.
By definition, the correlation matrices Ak,l are symmetric. Moreover, the family

ψ(S) is always chosen to make all {Ak,l}1≤k≤N−1,1≤l≤M0 positive definite, i.e., ∀A ∈
{Ak,l , 1 ≤ k ≤ N − 1, 1 ≤ l ≤ M0}

Xt AX > 0, for every X ∈ R
n − {(0, . . . , 0)}. (4)
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Fig. 2 Condition numbers for
linear regression associated with
Black and Scholes model:
σ = 0.1, μ = 0.1, S0 =
(1, . . . , 1), tk = 0.1, n =
30, Mk = 300 and
l ∈ {1, . . . , 1000}
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However, theMonteCarlo approximations Âk,l ,which are symmetric, donot necessary
fulfill condition (4), since they depend on the convergence parameter Mk . Indeed,
although the values taken by Mk can be sufficient to have a good overall convergence
of NMC, some small values produce either numerical indefiniteness or even negativity.

As already introduced in [17] and adapted to CVA in [2], Mk should be of the order
of

√
M0. In Fig. 2, we give some condition values for the benchmark model of Black

and Scholes (d = 29) with independent coordinates. The parameters of this model
are its volatility σ , interest rate μ, and spot value S0. The regressions performed in
this figure are linear and include the constant 1, i.e., ψ(S) = (1, S1, . . . , S29) which
makes n = 30.

Although the value n = 30 could be considered high by some practitioners, it is
possible to use it especially for sufficiently large exposures to the counterparty, for
instance, the exposure of a bank to another bank. Figure 2 shows, then, an example of
matrices that can corrupt the DPA when implemented in a single precision. In fact, the
number of trusted decimals is not sufficient to make a decision on the early exercise
strategy computed by the DPA. When this kind of situation is confronted, one has to
discard some smallest eigenvalues before resolving any linear system.

3 LDLt decomposition

3.1 Presentation of the algorithm and the references

The resolution of the linear system AX = Y with A symmetric positive definite is
divided into two steps: the factorization of the matrix A that leads to A = LDLt and
the resolution of LZ = Y as well as DLt X = Z , where Lt is the transpose of L . The
matrix D is diagonal, and the matrix L is lower triangular with 1 on its diagonal. The
factorization is performed because of the following expressions:

A = LDLt , Dj, j = A j, j −
j−1∑

k=1

L2
j,k Dk,k,
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Li, j = 1

Dj, j

⎛

⎝Ai, j −
j−1∑

k=1

Li,k L j,k Dk,k

⎞

⎠ if i > j. (5)

Because it prevents the computation of square roots, LDLt factorization is generally
considered as a better alternative to the Cholesky decomposition. Both methods share
the same important stability for symmetric positive definite matrices A characterized
by (4). Furthermore, when the positive definiteness is numerically questioned, one
should avoid the use of either LDLt or Cholesky decomposition. In addition, these two
methods share the same complexity order and the same memory space occupation.
Due to all these similarities and the fact that Cholesky’s literature is larger than LDLts,
we will not distinguish between the references of each method.

The stability property of LDLt and Cholesky is quite important. In fact, when the
correlationmatrix is not numerically singular, these twomethods are so stable that they
do not need any pivoting like those performed for LU decomposition [29]. Escaping
the pivoting phases makes a great advantage for the GPU implementation, since it
reduces communications between threads. Furthermore, LDLt and Cholesky are the
most efficient methods of factorization with a complexity given by O(n3/6), where
n × n is the size of the matrix. They are also the ones that use the least memory space
as they involve only n(n + 1)/2 values. Once the LDLt factorization performed, the
resolution of LZ = Y and the resolution of DLt X = Z are straightforward. These
resolutions are even quadratic in complexity with respect to n.

To the best of our knowledge, [30] is the first reference that implements Cholesky
decomposition on GPUs. Paper [4] comes after, and it theorizes the minimization of
the communication cost involved in Cholesky factorization. Even though both papers
are very interesting, the extent of the work developed their is adapted to large matrices
n ≥ 64. The same can be said for the Cholesky’s code of MAGMA [23]. Indeed,
MAGMA library is even dedicated to heterogeneous CPU/GPU implementations that
are generally justified for sufficiently large sizes.

Actually, to deal with a large matrix, we need to divide it into smaller pieces and
distribute the computations on the blocks of threads. In contrast, with a large number
of small matrices, it is sufficient to distribute directly the matrices on the different
blocks. Moreover, various techniques developed for matrices larger than 64 are not
efficient for large number of matrices smaller than 64. We can cite the one presented
in [30] Section 4.3 which produces another level of parallelism by splitting the dot
product into partial sums. Nevertheless, this level of parallelism is less efficient for
small matrices and increases the execution time, since it competes with the other more
natural levels detailed in Sect. 3.2.

3.2 Adaptation and optimization

We present three different versions of the LDLt factorization:

1. an SIMD version that requires only threads of TI, one for each linear system;
2. a collaborative version that involves n threads of TC for each linear system with n

unknowns;
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Fig. 3 Standard LDLt parallel
strategy

3. an optimal hybrid solution that involves n∗ (n∗ < n) threads of TC for each linear
system with n unknowns.

The number of the TI-independent groups of threads is chosen to saturate the shared
memory or at least to have sufficient work per SMs.

The SIMD version is straightforward and used only to convince the reader of its
inefficiency. Regarding the collaborative and the hybrid versions, they are both based
on a column after column processing. In fact, as shown in Fig. 3, for a fixed value of
j , the different coefficients {Li, j } j+1≤i≤n can be computed concurrently by at most
n − j independent threads. Thus, {Li,1}2≤i≤n involve the largest number of possible
concurrent threads equal to n − 1. In the collaborative version, we use the maximum
n − 1 threads +1 additional thread that intervenes in the copy from global memory to
shared memory and in the solution of the linear system after factorization. This makes
n threads for the collaborative version, and one of these threads is also involved in the
computation of Dj, j which needs a synchronization before calculating Li, j .

For j > n/2 in the collaborative version,more than the half number of threads are in
a wait state. This is not a problem when n is large enough, because the shared memory
is sufficiently filled which limits the possibility of launching independent threads TI

on other linear systems. Nevertheless, when n is small, the communicating threads
TC in a wait state prevent the schedular from the execution of independent threads
TI, even though there is a sufficient shared memory space for other linear systems.
This situation motivates the use of an hybrid solution that either employs about the
half number n∗(n) 	 n/2 of maximum number of communicating threads or all of it
n∗(n) 	 n. As we will see in Fig. 4 for some n, this hybrid solution is significantly
better than the collaborative one. In Algorithm 1, we summarize the different steps of
the hybrid LDLt factorization. 
·� in Algorithm 1 is the ceiling function, i.e., For each
real number, x, 
x� = inf{a ∈ Z; a ≥ x}.

Finally, we precise that we use n(n+1)/2 memory space for the LDLt factorization
+n for the resolution. To keep a coalesced access to the shared memory and reduce
the bank conflicts, the matrices are also stored column after column and not row after
row as it is generally done.
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Algorithm 1: Hybrid LDLt factorization
Input: n × n symmetric positive definite matrix A and the number of collaborative threads n∗
Output: L and D such that A = LDLt

/*Memory copy from the global memory to the shared */
The upper triangular part of A is copied in → s A. The overall copy is performed through several
simultaneous copies of blocks of size ≤ n∗
/*LDLt factorization */
The whole computation is performed directly on s A array; D and the non-unitary values of L are
stored in s A
for column index j ∈ {1, . . . , n} do

– Thread of index 0 computes the diagonal element Dj, j
– for k ∈ {1, . . . , 
(n − j + 1)/n∗�} do
if k < 
(n − j + 1)/n∗� then

All threads are involved concurrently in the computation of {Li, j } j+(k−1)n∗+1≤i≤ j+kn∗
/*We remind that each thread’s index is smaller than n∗ */

else
Threads of index smaller than n − j − (k − 1)n∗ are involved concurrently in the
computation of {Li, j } j+(k−1)n∗+1≤i≤n

end
end

end

/*Memory copy from the shared memory to the global */
s A → D and L
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0
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6
7
8
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15

System size

Hybrid solution
Collaborative solution

Fig. 4 The speedup of the collaborative and the hybrid versions when compared with the SIMD imple-
mentation

3.3 Comparison of the different versions

First, let us introduce the set of matrices used for the tests. The matrices introduced in
Sects. 4.3 and 5.3 are related to the one presented here which are positive definite. It
is straightforward to show that matrices Ξρ given by
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Fig. 5 The optimal number of communicating threads in the hybrid version

Ξρ =

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎝

1 ρ · · · ρ ρ

ρ 1 ρ
...

ρ
. . .

. . .
. . . ρ

... ρ 1 ρ

ρ ρ · · · ρ 1

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎠

with 0 < ρ < 1 (6)

are positive definite. Because these matrices are strongly structured, we prefer to use
randomized version given by A = QΞρ RQ

′
Ξρ

, where R is a diagonally dominant
tridiagonal symmetric random matrix and QΞρ is the orthogonal matrix that results
from the Householder tridiagonalization of Ξρ . The components of R are set using
uniform random variables and the multiplication of the diagonal elements by the
appropriate factor to make R diagonally dominant.

We point out that all the results are obtained from an implementation on anNVIDIA
Geforce 970.

From Fig. 4, we notice that the hybrid solution outperforms the collaborative one
when n < 40. Moreover, the SIMD version is clearly unsatisfactory for all sizes even
when n = 4. The speedup obtained when using communicating threads gets relatively
high according to the size n, and it exceeds the speedup of 14 per linear system when
n = 64.

The optimal number of communicating threads in the hybrid version depends on
the GPU used. In Fig. 5, we give the experimental values obtained for different sizes
n when the implementation is performed on the Geforce 970. We distinguish two
regimes:

n∗(n) 	
{
n/2 if n < 40,
n otherwise.

(7)
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Fig. 6 Number of linear systems that can be solved within a second
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Fig. 7 LDLt resolution: the speedup of CUDA/GPU implementation compared with OpenMP/CPU. This
speedup is measured in terms of the number of solved systems per second

Using theLDLt hybrid implementation,we establishFig. 6 that shows the number of
linear systems that can be solved per second. The curve obtained is almost proportional
to n−3 which coincides with the theoretical result. To push our study further, we
compare, in Fig. 7, our CUDA implementation of the hybrid LDLt resolution to the
OpenMPmultithreaded implementation of theCholesky resolution given in [29]. Since
we are dealing with large number of small systems, the CPU parallelization is a simple
SIMD implementation on an Intel I7-5930K that has 6 cores at 3.5 GHz with 15Mo
memory cache.

The decreasing behavior in Fig. 7 shows the superiority of independent threads TI

when compared with communicating ones TC. As a matter of fact, when n increases,
there is less shared memory space for independent threads that are replaced by less
effective communicatingones.That said, one can easily predict the better performances
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of our implementation on the new Nvidia Pascal architecture that contains twice the
size of the shared memory.

4 Householder and parallel cyclic reductions

4.1 Presentation of the algorithms and the references

Householder tridiagonalization
Similar to the method based on LDLt, we propose here to solve the linear system

AX = Y , with A symmetric, through two steps:

– The tridiagonal Householder decomposition A = QUQt where Q is orthogonal
and U is symmetric tridiagonal.

– The PCR associated with the problemUZ = QtY that allows to recover X thanks
to X = QZ .

When the linear system is symmetric, the Householder tridiagonalization is gen-
erally used as the first step of a diagonalization algorithm which could employ: QR
factorization, bisectionmethod,multiple relatively robust representations or divide and
conquer. We refer to [14] for a sequential comparison between these four algorithms
according to speed and accuracy.

As advised in the introduction, we would like to use the Householder tridiagonal-
ization with PCR and check the residue error before looking for a diagonalization of
the system. This procedure is justified by the fact that PCR is less complex than any of
the four algorithms cited above with a theoretical ratio equal at least to n/log2(n) in
favor of PCR. Moreover, as already shown in [32], PCR is quite stable for symmetric
and positive definite matrices and is suited to parallel architectures like GPUs.

Without going through details that can be found, for instance, in [13,29], let us
present the main points of the Householder tridiagonalization. The basic ingredient
is the Householder matrix H whose expression, for some vector u different from the
zero vector, is given by

H = I − uut/b, b = utu/2. (8)

The idea then is to choose the right vectors un ,…, u3 associated with Hn ,…, H3. The
product of these matrices yields to the orthogonal matrix Q = HnHn−1 . . . H3, and
their successive applications on A provide: U = Qt AQ = Ht

3 . . . Ht
n AHn . . . H3.

In [31, p. 6], the authors discuss two solutions, for Householder reduction, that rely
on CPU/GPU transfer. In our case, the CPU/GPU transfer is naturally harmful to the
effectiveness of threads belonging to TI.
Parallel cyclic reduction

Let us also give some highlights on PCR and refer to [21,32] for more details on
the subject. At this stage, we are interested by the resolution of the linear system
UZ = QtY , where the value of V = QtY = (v1, . . . , vn) is known and U is
tridiagonal and symmetric, i.e.,
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Fig. 8 Cyclic reduction for n = 8 unknowns: communication pattern showing the dataflow between
equations. Letters e′ and e′′ stand for updated equation

U =

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

d1 c1
c1 d2 c2 0

c2 d3
. . .

. . .
. . .

. . .

0
. . .

. . . cn−1
cn−1 dn

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

. (9)

PCR comes from a simple modification of cyclic reduction (CR) which is schematized
in Fig. 8 where the linear equations e1,…, e8 constitute the equality UZ = V when
n = 8. Applied to this symmetric linear system of equations (e1,…, e8), the first step
of CR reduces the number of 8 equations to 4 equations defined by:

⎧
⎪⎪⎨

⎪⎪⎩

e2’: d ′
2z2 + c′

2z4 = v′
2

e4’:c′
2z2 + d ′

4z4 + c′
4z6 = v′

4
e6’:c′

4z4 + d ′
6z6 + c′

6z8 = v′
8

e8’: c′
6z6 + d ′

8z8 = v′
8

with

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d ′
i = di − c2i−1

di−1
− c2i

di+1
c′
i = −ci ci+1/di+1

v′
i = di − ci−1vi−1

di−1
− civi+1

di+1

. (10)

On this new system, we perform another similar reduction that yields to a system
of two equations that only involve z4 and z8. The resolution of the latter systemmakes
possible the backward stage of resolving (10) and, finally, the original system of 8
equations.

CR is specified by a forward reduction phase then a backward phase to recover
the solution. CR suitability to GPU and its implementation were already studied in
both [16,32]. The authors of [16] propose a method to overcome shared memory
bank conflicts during CR, but it uses 50 % more on-chip storage. Because of this
extra storage, this trick must not be used in our case, since it reduces the number of
independent groups of threads involved on different linear systems.
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Unlike CR, PCR requires only forward reductions. In Fig. 8, for instance, the PCR
version would apply two simultaneous reductions in Step 1: a reduction to obtain a
new system involving (z2, z4, z6, z8) and another reduction that provides a new system
involving (z1, z3, z5, z7). Generally speaking, for a system of size n, PCR reduces the
systemofn equations to 2 systems ofn/2 equations, then to 4 systems ofn/4 equations,
and so on until reaching n/2 systems of 2 equations that can be simply solved. This
process makes PCR more suited to parallel architecture and prevent the bank conflicts
of shared memory. Nevertheless, PCR can be improved for large systems n > 64 by
a combination with CR as detailed in [32].

4.2 Adaptation and optimization

Householder tridiagonalization
We present two different versions of the Householder tridiagonal factorization:

1. an SIMD version that requires only threads of TI, one for each linear system;
2. a collaborative version that involves n threads of TC for each linear system with n

unknowns.

The number of the TI-independent groups of threads is taken to be the one that
saturates the shared memory or that executes sufficient work per SMs.

The SIMDversion is a single-threadedCUDAadaptation of the procedure proposed
in [29, p. 470]. The collaborative version is also based on [29], but it provides a multi-
threaded implementation of independent tasks which makes it much more efficient
than the SIMD version. We begin by explaining the algorithmic steps of the common
procedure. The first stage is to compute the tridiagonal form U through successive
zeroing of the columns of matrix A = (Ai, j )i, j=1,...,n . This stage is processed at each
step i = n, . . . , 3 beginning by the vector

uti = (
Ai,1, . . . , Ai,i−1 ± √

σ , 0, . . . , 0
)
, σ =

√
A2
i,1 + · · · + A2

i,i−1, (11)

then calculating the intermediary variables

bi = uti ui
2

, pi = Ui+1ui
bi

, Bi = uti pi
2bi

, qi = pi − Biui (12)

which allow us to set

U = U3 with Ui = Ui+1 − qiu
t
i − uiq

t
i and Un+1 = A. (13)

Now that we have the tridiagonal form U , the second stage is to compute the
orthogonal matrix Q defined by Q = HnHn−1 . . . H3. Furthermore, we remind that a
Householder matrix Hi is completely specified by ui . Consequently, during the first
stage, the nonzero components of ui are stored in the i th row of the shared memory
space allocated for A and ui/bi in the i th column. Thus, the computation of Q is
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performed in the second stage using Q = Qn and the induction

Qi = Hi Qi−1 for i = 4, . . . , n with Q3 = H3. (14)

By definition, Qi is an identity matrix in the last i rows and columns, and only its
elements up to row and column i − 1 need to be computed. These then overwrite ui
and ui/bi stored in A in the first stage.

As far as the first stage is concerned, in addition to the n × n shared memory
space allocated for A, we need 2n + 1 extra shared memory space. The latter space is
used to store the diagonal and the off-diagonal plus 1 value needed for the synchro-
nization between phases where only one thread can be used and the other phases. In
addition, since pi is of size i , its components can be stored temporarily in the place
of undetermined elements of the off-diagonal. Regarding qi , it overwrites pi in the
off-diagonal.

Let us now take a look at the multithreaded parts of the collaborative version. For
the second stage, we can use i − 1 threads of type TC that need synchronization only
when the calculation of Qi is finished. As for the first stage, the computations of pi
and qi in (12) and the induction performed in (13) are all parallelized using i − 1
threads. The other parts of this stage are executed using only one thread. In Algorithm
2, we summarize the different steps of the collaborative Householder reduction.

Algorithm 2: Collaborative Householder reduction
Input: n × n symmetric matrix A
Output: Orthogonal matrix Q and the main diagonal D as well as the first off-diagonal C of the

tridiagonal matrix U where A = QUQt

/*Memory copy from the global memory to the shared */
A → s A

/*First stage: Compute D and C in the tridiagonal form U */
for i ∈ {n, . . . , 2} do

Assign local variables l = i − 1 and sum to be equal to the norm of (s Ai,0, . . . , s Ai,l )
if l ≤ 1 or sum < 0.0000001 f then

Use thread 0 to set Ci = s Ai,l
else

– Use thread 0 to compute Ci , ui , bi and store ui in the ith row of s A
– Use threads of index ≤ l to compute pi and store

ui
bi

in the ith
column of s A

– Use thread 0 to compute Bi
– Use threads of index ≤ l to compute qi
– Use threads of index ≤ l to perform induction (13)

end
end
Copy the diagonal of s A to D

/*Second stage: Compute Q matrix and store its value in s A */
for i ∈ {1, . . . , n} do

Thanks to the values of ui and ui /bi stored in s A, use threads of index ≤ i − 1 to compute (14)
end

/*Memory copy from the shared memory to the global */
s A → A
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Fig. 9 Modified parallel cyclic reduction for n = 8: communication pattern showing the dataflow and
permutation of equations. Letters e′ and e′′ stand for updated equation

Parallel cyclic reduction
It is important to point out that CR and PCR implementations proposed in [16] and

[32] cannot be used directly for any system size. Indeed, the first reference requires a
size that is equal to a power of two plus one and the versions of the second paper are
done for a size equal to a power of two. The simplest way to use both implementations
for any size would be to perform a zero padding. In our case, using this latter technique
is not a good option, since we fill a part of the shared memory with zeros instead of
using it for the resolution of other systems. This fact motivates our version of the PCR
presented below.

We propose to implement the PCRwith permutations of equations in theway shown
in Fig. 9. The idea is to gather the equations involved in the same system and to separate
those that are independent. Indeed, using this simple idea one can deal with any size.
Let us take the example n = 7, the changes that occur on the matrix of the system are
the following:

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

d1 c1
c1 d2 c2

c2 d3 c3
c3 d4 c4

c4 d5 c5
c5 d6 c6

c6 d7

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

(R)

−→

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

d ′
1 0 c′

2
0 d ′

2 0 c′
3

c′
2 0 d ′

3 0 c′
4

c′
3 0 d ′

4 0 c′
5

c′
4 0 d ′

5 0 c′
6

c′
5 0 d ′

6 0
c′
6 0 d ′

7

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

(P)

−→

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜
⎝

d ′
1 c′

2
c′
2 d ′

3 c′
4

c′
4 d ′

5 c′
6

c′
6 d ′

7 0
0 d ′

2 c′
3

c′
3 d ′

4 c′
5

c′
5 d ′

6

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟
⎠
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⎛

⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

d ′
1 c′

2
c′
2 d ′

3 c′
4

c′
4 d ′

5 c′
6

c′
6 d ′

7 0
0 d ′

2 c′
3

c′
3 d ′

4 c′
5

c′
5 d ′

6

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

(R)

−→

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

d ′′
1 0 c′′

2
0 d ′′

3 0 c′′
4

c′′
2 0 d ′′

5 0
c′
4 0 d ′

7 0
0 d ′′

2 0 c′′
3

0 d ′′
4 0

c′′
3 0 d ′′

6

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

(P)

−→

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

d ′′
1 c′′

2
c′′
2 d ′′

5 0
0 d ′′

3 c′′
4

c′′
4 d ′

7 0
0 d ′′

2 c′′
3

c′′
3 d ′′

6 0
0 d ′′

4

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

where (R) and (P) mean, respectively, reductions and permutations, and the empty
parts of the matrices represent the null part. Obviously, one should also set the same
kind of reductions and permutations on the vector of unknowns Z as well as on the
vector of values V . To reorder the final solution, we use an array of size n in addition
to the usual 3n memory space needed for PCR.

4.3 Comparison of versions and comparison with LDLt

In this section, we reuse the matrices A = QΞρ RQ
′
Ξρ

introduced in Sect. 3.3. Unlike
LDLt andPCR, theHouseholder factorization does not require A to be definite positive,
and thus, one can even take R to be only tridiagonal symmetric random matrix and
not diagonally dominant.

As stated before, we ought to tridiagonalize A : A = QUQt then use the PCR
as well as two matrix/vector multiplications UZ = QtY, X = QZ to recover the
solution. The PCR and the multiplications are much faster than the tridiagonal factor-
ization and, like for resolutions LZ = Y and DLt X = Z in LDLt, can be neglected
when compared with the overall execution time.

To make the previous affirmation more quantitative, Fig. 10 shows huge numbers
of PCRs and matrix/vector multiplications that can be computed per second. These
numbers generally exceed those associated to using LDLt shown in Fig. 6 of the
previous section. However, they coincide for very small systems as we do much less
computations on the shared memory compared to the time spent in accessing to the
GPU global memory.

Regarding the benefits of using the collaborative solution instead of the SIMD
version of Householder tridiagonalization, the continuous line in Fig. 11 shows a quite
significant speedup that increases with respect to the size n. In addition, the dashed
line in Fig. 11 shows the execution time superiority of the LDLt hybrid solution when
compared with the collaborative version of the Householder tridigonalization + PCR.
Basically, the LDLt hybrid solution is about 5 times faster than the collaborative
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Fig. 10 Number of “PCRs + two matrix/vector multiplications” that can be performed per second. Each
PCR + matrix/vector multiplication couple are necessary to solve a system, once its Householder factoriza-
tion is known
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Fig. 11 The execution time ratio of: SIMD/collaborative and (tridiagonal + PCR)/LDLt

Householder tridigonalization + PCR on our Geforce 970. Moreover, we already have
a hybrid Householder factorization in our source code [24], but it does not perform
better than the standard collaborative one.

Like for LDLt factorization, we finish this section by comparing our CUDA imple-
mentation of the collaborative Householder solution to the OpenMP multithreaded
implementation of Householder reduction given in [29]. This comparison is also done
between a Geforce 970 and an I7-5930K, and the result is shown in Fig. 12. The
speedup curve inherited its general shape from a combination of the LDLt speedup
of Fig. 7 and the dashed line in Fig. 11. In addition, we remark that the Householder
speedup of Fig. 12 outperforms the LDLt speedup of Fig. 12 when the size n � 16.
This fact can be explained by the fewer operations performed in LDLt which reduce
the cache benefits ofGPUs. However, when n < 16, themassive use of threads belong-
ing to TI makes the LDLt speedup bigger than its Householder counterpart, which
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Fig. 12 Householder reduction + PCR: the speedup of CUDA/GPU implementation compared with
OpenMP/CPU. This speedup is measured in terms of the number of solved systems per second

is more limited because it occupies a larger space in the shared memory. Moreover,
compared with LDLt speedup at n = 4, the Householder speedup does poorly and this
can be explained by the fact that this method requires a larger memory copy between
the shared and the global. The fact that Householder reduction executes more oper-
ations as well as needs more shared/global memory copies explains why the hybrid
Householder solution is less effective than the collaborative one.

5 Divide and conquer algorithm for tridiagonal eigenproblems

5.1 Presentation of the algorithm and the references

We reuse here the Householder tridiagonalization of Sect. 4 as a first stage for the res-
olution of AX = Y with A symmetric. This new resolution procedure is implemented
through the following steps:

– We perform the tridiagonal Householder decomposition A = QUQt where Q is
orthogonal and U is symmetric tridiagonal.

– We use the divide and conquer algorithm for symmetric tridiagonal eigenproblems
to establish the eigenvalues and eigenvectors ofU = ODOt whereO is orthogonal
and D is diagonal. Consequently, we have A = NDNt where the orthogonal
matrix N = QO .

– In the way that is usually done to solve a linear systemwith numerical singularities
[29], we discard the smallest eigenvalues of D that provide a condition number
larger than 105.

Because the first step was already studied and the third step is quite standard, we
are only interested by the divide and conquer part. This latter method goes back to
the reference [12] and it became numerically sustainable, since the work presented
in [19,20]. In [13, p. 216], one can find a quite detailed presentation of divide and

123



Resolving small random symmetric linear systems... 1379

conquer algorithm for eigenproblems. Regarding a GPU version of this algorithm,
the only works we know implement solutions for large matrices and use for that fine-
grained parallel strategies involving both GPU ad CPU. In contrast to [8,31], our GPU
adaptation is dedicated to large number of small matrices and relies then on more
effective coarse-grained parallel procedure.

As far as we are concerned, we study the important points that should be explored
in our adaptation, which are the following:

1. Divide the diagonalization problem in two diagonalization subproblems with
known diagonal factorization.

2. Solve the secular equation.
3. Use Löwner’s Theorem (see [13,28]) for the stability of the overall procedure.
4. Perform a matrix multiplication to conquer the diagonalization problem from the

diagonalized subproblems.

Let a matrixU given by (9), the first point would be to make the following division:

U =

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

d1 c1

c1
. . .

. . .

. . .
. . . cm−1

cm−1 dm − cm 0
0 dm+1 − cm cm+1

cm+1
. . .

. . .

. . .
. . . cn−1
cn−1 dn

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎠

(15)

+ cm1m,m+11
t
m,m+1

=
(
U1 0
0 U2

)
+ cm1m,m+11

t
m,m+1

where 1m,m+1 = (0, . . . , 0, 1, 1, 0, . . . , 0) with only the (m)th and (m + 1)th coordi-
nates equal to 1, and all the other coordinates are null. As assumed, U1 and U2 have
known diagonal factorizations, i.e., there exist diagonal matrices D1, D2 and orthog-
onal matrices O1, O2, such that U1 = O1D1Ot

1 and U2 = O2D2Ot
2. Consequently,

one can rewrite U as

U =
(
O1 0
0 O2

) ((
D1 0
0 D2

)
+ cmuu

t
) (

Ot
1 0
0 Ot

2

)

where

u =
(
Ot
1 0
0 Ot

2

)
1m,m+1 =

(
last column of Ot

1
first column of Ot

2

)
.
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Denote now � = {λ1, . . . , λn} the ordered family of eigenvalues of

(
D1 0
0 D2

)
. It is

easy to show that if cm �= 0 and the eigenvalue λ of U satisfy λ /∈ �, then its value is
obtained as a solution of the secular equation

n∑

i=1

u2i
λi − λ

+ 1

cm
= 0. (16)

The reference [26] provides a good summary on the different methods used for the
solution of (16). It also proposes an hybrid procedure whose performances compete
even with Gragg’s scheme [18] that has a cubic convergence. The major advantage of
the hybrid scheme comes from the fact that it prevents additional computations due to
the second order differentiation of the left term of equality (16).

Once we fix an eigenvalue λ which is solution of (16), the eigenvector Vλ of(
D1 0
0 D2

)
+ cmuut is computed by

Vλ =
((

D1 0
0 D2

)
− λI

)−1

ũ (17)

where the vector ũ is defined in [19] and in [20] thanks to Löwner’s Theorem. Replac-
ing u by ũ is quite important to ensure stability and sustainability of the algorithm,
especially when some eigenvalues are almost equal.

Let us assume now that all eigenvectors W = (Vλ)λ eigenvalue of U are known. To

conquer, we need to compute the eigenvectors of U using the product

(
O1 0
0 O2

)
W .

This last step is the heaviest numerically in the whole algorithm.
Finally,we voluntarily did not present the deflation that appearswhen ui orλi−λi+1

vanish numerically. This is due to the fact that deflation is already well presented in the
references cited above and to the fact that deflation is not so important when matrices
are small.

5.2 Adaptation and optimization

Let us study how the steps 1.→4. should be and are implemented in our source code
[24]. Because step 4. is the heaviest part, we start with it then we go decreasingly until
the first step.

From step 3., we have at our disposal on the shared memory: the eigenvalues of

U , the transpose matrix Wt as well as

(
O1 0
0 O2

)
. Consequently, the computation of

(
O1 0
0 O2

)
W , at step 4., is done using Wt

(
Ot
1 0
0 Ot

2

)
then processing a transpose

operation. Moreover, we do not need to transpose

(
O1 0
0 O2

)
since Wt

(
Ot
1 0
0 Ot

2

)
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involves the dot product of the rows of Wt with the rows of

(
O1 0
0 O2

)
. Associating

one thread for each row of the latter matrix, the memory access is coalescent during
the successive multiplications. The result of the dot product performed by each thread
is stored in the register memory, then it is copied, after a synchronization, to the shared
memory space of each row of Wt . The complexity of step 4. is then O(n3), and we
use 2n2 of the shared memory to perform the matrix multiplication. Because of the

zeros in

(
O1 0
0 O2

)
, it is possible to decrease further the memory occupation but to

the detriment of the readability of the code and shared memory bank conflicts.

From step 2., we have the eigenvalues of U and

(
O1 0
0 O2

)
at our disposal on

the shared memory. We would like to use one thread for the computation of each

eigenvector of

(
D1 0
0 D2

)
+ cmuut to be stored in a column of W . This is performed

thanks to expression (17) and each resulted eigenvector is saved in a row-form to keep
the coalescent access of each thread. Subsequently, we obtain Wt instead of W . The
complexity of this step is O(n2), and it needs 3n shared memory space: n for the
eigenvalues and 2n for both ũ and the diagonal (D1, D2) involved in (17).

From step 1., we have the diagonal (D1, D2), u and

(
O1 0
0 O2

)
at our disposal on

the shared memory. Before starting the resolution of (16), we need to sort (D1, D2)

and build the ordered set� = {λ1, . . . , λ2}. Although multithreaded, this sorting does
not need to be optimized, because its complexity is at most O(n2). Moreover, the
sorting result is stored in a new shared memory space of size n plus some variables
stored temporarily in the memory space of Wt (not used yet). Afterward, we solve
(16) using Gragg’s scheme [18] that has the advantage of a cubic and monotonous
convergence. The fact that this scheme requires a second order differentiation, of the
left term of equality (16), is not an important drawback when the size n is small. In
addition, because n is small, the complexity of the iterative Gragg’s scheme is rather
O(n3) instead of O(n2), considered for big values of n.

Finally, we arrive to step 1. that represents the heart of the algorithm as it sets the
division.One has then to choose a constantm and perform (15), such thatU1 andU2 are
already diagonalized. Otherwise, we have to reiterate the division (15) for U1 and U2
separately and so on till reaching a division that has a diagonal factorization. Assume
now that for all m ∈ {2, . . . , n − 2}, we do not know yet the diagonal factorization
of U1 and the diagonal factorization of U2. What is then the best choice to do on the
value of m?

There are two answers to the previous question depending on whether there exists
m0 such that cm0 = 0 or not:

– If yes, then set m = m0. Moreover, we re-apply directly (15) on the sub-matrices.
– If no, then set m = �n/2� where �·� is the floor function i.e. For each real number

x, �x� = sup{a ∈ Z; a ≤ x}.
The yes case is obvious, since the original linear system can be decomposed, without
conquering, in two independent systems. Regarding the no case, the choice is set in
such a way that the computations induced by each subproblem is comparable with the
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Fig. 13 The division scheme

other. To make this latter fact possible, the best way is to impose the same size (±1)
for both problems.

To simplify the comparison between the Householder tridiagonalization and the
divide and conquer algorithm, we consider only matrices with cm �= 0 for all m ∈
{1, . . . , n − 1}. Our division is then performed using the scheme given in Fig. 13 till
reaching matrices of dimension 1 × 1 or 2 × 2 for which the diagonal form can be
obtained easily. This division scheme requires an extra shared memory storage of size
21+�log2(n−1)�, but it provides a pure divide and conquer algorithm (not a combination
of divide and conquer with another method like QR). In particular, this pure divide
and conquer prevents to have eigenvalues of multiplicity bigger than two at each
conquering step.

Thanks to what is explained above, it is not difficult to conclude that the over-
all shared memory occupation is given by 2n(n + 2) + 21+�log2(n−1)�. In addition,
the complexity t of the proposed implementation can be computed because of the
induction

t (m) = 2t (m/2) + α(m)m3, m ∈ {2, . . . , n} (18)

with t (1) = 1 and α(m) is a decreasing sequence that is bigger than 2 for the sizes

considered in this paper. Using (18), we check that t (n) ≤ α(n)4
3 n3.

In Algorithm 3, we summarize the different steps of our divide and conquer imple-
mentation dedicated to small tridiagonal matrices. Without loss of generality, we
assume that the first off-diagonal does not have any vanishing term. Otherwise, we
have only to divide the original eigenproblem into various sub-eigenproblems. InAlgo-
rithm 3, we also simplify the matrix components’ notation from A = (Ai, j )m≤i, j≤M

to A = (Am≤i, j≤M ).

5.3 Comparison with Householder tridiagonalization

The complexity of the divide and conquer algorithm is generally considered as similar
to the one of Householder tridiagonalization for large matrices (see [13]). This is not
the case in our examples, because we deal with small ones (size does not exceed 64).
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Algorithm 3: Divide and conquer for small tridiagonal matrix
Input: n × n matrix U symmetric tridiagonal without zero in the first off-diagonal
Output: Eigenvalues D and eigenvectors O of U

/*Memory copy from the global memory to the shared */
U → sU

/*Division scheme of Fig. 13: Step 1. */
Introducing a local variable I DX = 2�log2(n−1)�, the division is performed through two steps of
low complexity: ∼ O(nlog2(n)) and ∼ O(n2), respectively:
– Use threads of index < I DX to set the parameters of the division into 1 × 1

and 2 × 2 matrices.
– Use half of threads of index < I DX to compute the eigenvalues and the

eigenvectors of these 1 × 1 and 2 × 2 matrices. Thus, this step initializes the
value of sD and sO which are the shared memory counterpart of D and O .

/*The conquering phase: steps 2., 3., and 4. */
During almost the whole phase, we use all n threads concurrently
To conquer each couple

(
sDm≤i, j≤M , sOm≤i, j≤M

)
from two successive couples(

sDm≤i, j≤m′ , sOm≤i, j≤m′
)
and

(
sDm′+1≤i, j≤M , sOm′+1≤i, j≤M

)
, the number of threads used

is equal to M − m + 1
for j ∈ {2, 4, . . . , I DX} do

/*Step 2. */

For each successive couples
(
sDm≤i, j≤m′ , sOm≤i, j≤m′

)
and

(
sDm′+1≤i, j≤M , sOm′+1≤i, j≤M

)
, solve the secular equation and get the new family of

eigenvalues
{
λm≤i≤M

}

/*Step 3. */
Perform deflation when it is needed, use Löwner’s Theorem to set ũ and use (17) in order to

compute the eigenvectors W = (Vλi )m≤i≤M of

(
sDm≤i, j≤m′ 0

0 sDm′+1≤i, j≤M

)
+ cm′uut

/*Step 4. */
Set the diagonal matrix

(
sDm≤i, j≤M

)
with the new eigenvalues

{
λm≤i≤M

}
. We compute the

multiplication

(
sOm≤i, j≤m′ 0

0 sOm′+1≤i, j≤M

)
W , then we store it in sOm≤i, j≤M .

end

/*Memory copy from the shared memory to the global */
sO → O and sD → D

Moreover, the divide and conquer algorithm suffers from divergence problems
when implemented on GPU. Indeed, the need for deflation in some cases can lead
numerous threads to wait. The necessary use of more synchronization in this algorithm
also reduces the performance. For instance, the resolution of the secular equation is
iterative and, therefore, makes some threads wait for the others.

All the facts mentioned above justify the results obtained in Fig. 14. In particular,
we see that for the largest matrices, 48 ≤ n ≤ 64, the divide and conquer takes at
most three × the execution time of a Householder collaborative factorization.

6 Conclusion and future work

In this work, we explained the importance of proposing a GPU solution for large
number of small systems, and we advocated it using a topical problem inmathematical
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Fig. 14 The execution time of the divide and conquer when compared with the Householder tridiagonal-
ization

finance. Because the small systems can be random, our goal was to know if the use of
Householder tridiagonalization with divide and conquer is the best solution when we
suspect the linear systems to be ill-conditioned.

The safest answer we provided is to first check the residual using Householder tridi-
agonalization + PCR. If the really fast PCR is not sufficient, performing a divide and
conquer diagonalizations and discard the smallest eigenvalues becomes mandatory.
If we are sure that the systems are well conditioned, then we just process an LDLt
decomposition. If we are sure of the converse, we execute directly a combination of
Householder tridiagonalization and divide and conquer diagonalization.

In addition to this answer,we explored, in terms of speedup andmemory occupation,
what we loose when we use the safest strategy instead of the simplest one based on
LDLt. This study required us to implement and optimize our own code, since the work
available in the literature is dedicated to large systems and thus not efficient for large
number of small systems.

Beyond the source code and the main results above, we gave also some insights on
various points including:

– A new version of PCR that can be used for any vector size and not only a power
of two.

– A hybrid optimal LDLt that combines a good balance between communicating
and independent threads.

– As Householder reduction involves more operations as well as needs more
shared/global memory copies, its hybrid version is not optimal.

– Even though the non-optimality of the SIMD versions maybe obvious for systems
larger than 16, it is not for tiny systems smaller than 16. Thus, we quantified to
which extent the SIMD versions are not optimal.

– Comparison of the performance of our CUDA/GPU LDLt and Householder solu-
tions to the standard OpenMP/CPU implementation.
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– Although the divide and conquer is theoretically well suited to parallel architec-
tures, the divergence within each wrap created by deflations reduces its benefit for
small matrices.

As a future work, we plan to explore the accuracy of each method by studying
the rounding errors and error propagation. For that, we aim to present a sufficiently
consistent study of the residue errors as well as compare the results of CADNA [25]
software obtained from the various solutions.
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