Reliability of numerical algorithms : structured pseudosolutions and accuracy

Stef Graillat

Université de Perpignan Via Domitia Laboratoire LP2A Équipe de recherche en Informatique DALI

> November, 30th 2005 Advisor: Philippe Langlois

Which problems to solve with numerical algorithms?

Main problems in numerical polynomial and linear algebra

- Polynomial evaluation
 - Newton's method, interpolation, ...
- Computation of zeros of polynomial, polynomial systems
 - computer aided design, robotics, ...
- Solving linear systems
 - finite element method for PDE, ...
- Computation of eigenvalues, eigenvectors of matrices
 - stability in control theory, PageRank (Google), ...

Pseudozeros and application in control theory Accurate polynomial evaluation Other results Summary and future work

Real problems and implemented algorithms are uncertain

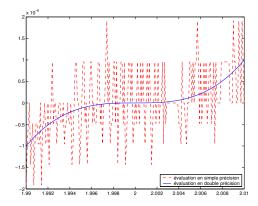
Solving the previous problems suffers from two difficulties:

- Uncertainties in the data
 - influence on the zeros: pseudozeros
 - influence real/complex perturbations
 - influence of the structure in some matrix problems
- Uncertainties in the computation: finite precision
 - for the polynomial evaluation

How to deal with such uncertainties?

Loss of accuracy in the polynomial evaluation

Evaluation of the polynomial $p(x) = (x-2)^3 = x^3 - 6x^2 + 12x - 8$ for about 200 points near x = 2 in single and double precision



Pseudozeros and application in control theory Accurate polynomial evaluation Other results Summary and future work

Problems in finite precision computation

Aims : Solving the previous problems being accurate and reliable

- Understanding the influence of the finite precision on the numerical quality of numerical software
 - inaccurate results;
 - numerical instabilities.
- controlling and limiting harmful effect

How to be more accurate without large overheads?

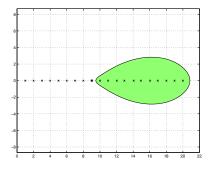
Data known with uncertainties

Computing the zeros of the Wilkinson polynomial of degree 20

$$W(x) = (x-1)(x-2)\cdots(x-20)$$

= $x^{20} - 210x^{19} + \cdots + 20!$

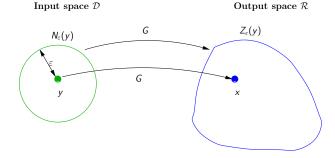
Uncertainty of 2^{-23} on the coefficient of x^{19}



Stef Graillat Reliability of numerical algorithms

Pseudozeros and application in control theory Accurate polynomial evaluation Other results Summary and future work

How to deal with uncertainties on the data?

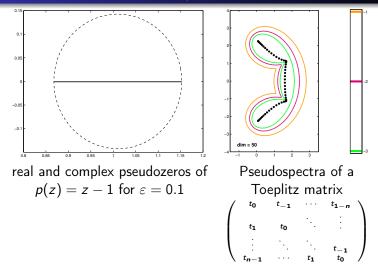


- \bullet computation of polynomial zeros \longrightarrow pseudozeros
- computation of eigenvalues pseudospectra

Does the notion of pseudosolutions enable us to solve some problems?

Pseudozeros and application in control theory Accurate polynomial evaluation Other results Summary and future work

Influence of the structure of perturbations



Pseudozeros and application in control theory Accurate polynomial evaluation Other results Summary and future work

Different types and sizes of perturbations

Influence of the size and the structure of perturbations

- Structured perturbations:
 - polynomials: real coefficients
 - matrices: symmetric, Toeplitz, Hankel, circulant, ...

Does the taking into account of the structure enable us to improve the accuracy and stability of algorithms?

- Size of perturbations:
 - $\bullet \ infinitely \ small \longrightarrow \ condition \ number$
 - $\bullet~$ finite \longrightarrow backward error, pseudosolutions

Notion of structured condition number, real pseudozeros and structured pseudospectra

Pseudozeros and application in control theory Accurate polynomial evaluation Other results Summary and future work

Problems in computing with uncertainties

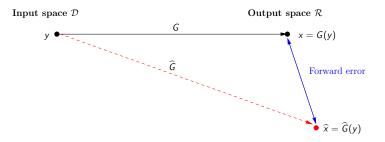
Understanding the difficulties to deal with uncertainties:

- Controlling the effects of uncertainties:
 - How to measure the difficulty of solving the problem?
 - How to appreciate the reliability of the algorithm?
 - How to estimate the accuracy of the computed solution?
- Limiting the effect of finite precision
 - How to improve the accuracy of the solution?

Which notions to answer these questions?

Pseudozeros and application in control theory Accurate polynomial evaluation Other results Summary and future work

Error analysis



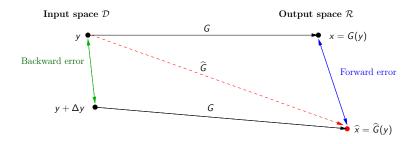
• Forward error analysis

• Backward error analysis

Identify \hat{x} as the solution of a perturbed problem: $\hat{x} = G(y + \Delta y).$

Pseudozeros and application in control theory Accurate polynomial evaluation Other results Summary and future work

Error analysis



- Forward error analysis
- Backward error analysis
 Identify x as the solution of a perturbed problem:

 $\widehat{x} = G(y + \Delta y).$

Advantages of backward error analysis

• How to estimate the accuracy of the computed solution? At the first order, we have the rule of thumb:

forward error $~\lesssim~$ condition number $~\times~$ backward error.

• How to measure the difficulty of solving the problem ? Condition number measures the sensitivity of the solution to perturbation in the data

Condition number :
$$K(P, y) := \lim_{\varepsilon \to 0} \sup_{\Delta y \in \mathcal{P}(\varepsilon)} \left\{ \frac{\|\Delta x\|_{\mathcal{R}}}{\|\Delta y\|_{\mathcal{D}}} \right\}$$

• How to appreciate the reliability of the algorithm? Backward error measures the distance between the problem we solved and the initial problem.

Backward error :
$$\eta(\widehat{x}) = \min_{\Delta y \in \mathcal{D}} \{ \|\Delta y\|_{\mathcal{D}} : \widehat{x} = G(y + \Delta y) \}$$

Advantages of backward error analysis

• How to estimate the accuracy of the computed solution? At the first order, we have the rule of thumb:

forward error $\,\lesssim\,$ condition number $\,\times\,$ backward error.

• How to measure the difficulty of solving the problem ? Condition number measures the sensitivity of the solution to perturbation in the data

Condition number :
$$\mathcal{K}(P, y) := \lim_{\varepsilon \to 0} \sup_{\Delta y \in \mathcal{P}(\varepsilon)} \left\{ \frac{\|\Delta x\|_{\mathcal{R}}}{\|\Delta y\|_{\mathcal{D}}} \right\}$$

• How to appreciate the reliability of the algorithm? Backward error measures the distance between the problem we solved and the initial problem.

Backward error :
$$\eta(\widehat{x}) = \min_{\Delta y \in \mathcal{D}} \{ \|\Delta y\|_{\mathcal{D}} : \widehat{x} = G(y + \Delta y) \}$$

Advantages of backward error analysis

• How to estimate the accuracy of the computed solution? At the first order, we have the rule of thumb:

forward error $\,\lesssim\,$ condition number $\,\times\,$ backward error.

• How to measure the difficulty of solving the problem ? Condition number measures the sensitivity of the solution to perturbation in the data

Condition number :
$$\mathcal{K}(P, y) := \lim_{\varepsilon \to 0} \sup_{\Delta y \in \mathcal{P}(\varepsilon)} \left\{ \frac{\|\Delta x\|_{\mathcal{R}}}{\|\Delta y\|_{\mathcal{D}}} \right\}$$

• How to appreciate the reliability of the algorithm? Backward error measures the distance between the problem we solved and the initial problem.

Backward error :
$$\eta(\widehat{x}) = \min_{\Delta y \in \mathcal{D}} \{ \|\Delta y\|_{\mathcal{D}} : \widehat{x} = G(y + \Delta y) \}$$

Motivations

2 Pseudozeros and application in control theory

3 Accurate polynomial evaluation

④ Other results

- Real perturbations
- Influence of the structure
- 5 Summary and future work

Pseudozeros: definition (1/2)

 \mathcal{P}_n : polynomials of $\mathbb{C}[z]$ of degree at most n \mathcal{M}_n : monic polynomials of \mathcal{P}_n of degree n

$$p(z) = \sum_{i=0}^{n} p_i z^i, \quad \|p\| = (\sum_{i=0}^{n} |p_i|^2)^{1/2}$$

Definition 1 (Perturbation)

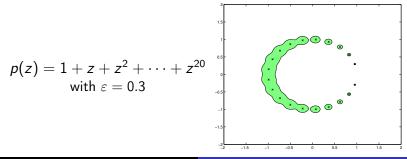
Neighborhood of polynomial $p \in \mathcal{M}_n$

$$N_{\varepsilon}(p) = \{\widehat{p} \in \mathcal{M}_n : \|p - \widehat{p}\| \leq \varepsilon\}$$

Pseudozeros: definition (2/2)

Definition 2 (ε -pseudozero set)

$$Z_{\varepsilon}(p) = \{z \in \mathbb{C} : \widehat{p}(z) = 0 \text{ for } \widehat{p} \in N_{\varepsilon}(p)\}$$



Pseudozeros are computable

Theorem 1 (Trefethen and Toh, 1994)

The ε -pseudozero set satisfies

$$Z_arepsilon(p) = \left\{ z \in \mathbb{C} : g(z) := rac{|p(z)|}{\| {oldsymbol Z} \|} \leq arepsilon
ight\},$$

where $\underline{z} = (1, z, ..., z^{n-1}).$

Algorithm 1 (Drawing of ε -pseudozero set)

- We mesh a square containing all the pseudozeros of p (MATLAB command: meshgrid).
- 2 We compute $g(z) := \frac{|p(z)|}{||z||}$ for all the nodes z of the grid.
- **3** We plot the contour level $|g(z)| = \varepsilon$ (MATLAB command: contour).

History of pseudozero set

- Mosier (1986) : definition and study for the ∞ -norm.
- Trefethen and Toh (1994) : study for the 2-norm. pseudozeros \approx pseudospectra of the companion matrix.
- Zhang (2001) : use pseudozero as a tool to study condition number for the polynomial evaluation.
- Stetter (2004) : *Numerical Polynomial Algebra* (SIAM). General framework for working with polynomials only known with uncertainties

Can we use pseudozero sets to solve some problems?

Stability of polynomials

Definition 3

A polynomial is stable if all its zeros have negative real part.

The function *abscissa* $a: \mathcal{P} \to \mathbb{R}$ is defined by

$$a(p) = \max\{\operatorname{Re}(z) : p(z) = 0\}.$$

A polynomial
$$p$$
 is stable $\iff a(p) < 0$

Motivations

In control theory, transfer function are often written as $H(p) = \frac{N(p)}{D(p)}$ where N and D are polynomials.

The system is stable if D is a stable polynomial

Question : If D is stable, is it still stable when perturbed?

(we assume that *D* is monic)

Pseudozero abscissa mapping

Definition 4

 $\varepsilon\text{-pseudozero}$ abscissa mapping $a_{\varepsilon}:\mathcal{P}_n\to\mathbb{R}$:

 $a_{\varepsilon}(p) = \max\{\operatorname{Re}(z) : z \in Z_{\varepsilon}(p)\}.$

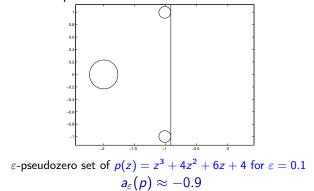
A polynomial p is ε -robustly stable $\iff a_{\varepsilon}(p) < 0$

Statement of the problem:

Given a polynomial $p \in M_n$ and $\varepsilon > 0$, let us compute $a_{\varepsilon}(p)$.

A plotting algorithm

- Draw the ε -pseudozero set
- Draw the vertical line that intersects the right-most point within the ε -pseudozero set



Our solution

The results

- an algorithm computing $a_{arepsilon}(p)$ with a tolerance au
- a drawing of the $\varepsilon\text{-pseudozero set}$
 - \longrightarrow qualitative analysis of the result
 - \longrightarrow visualization of the result

Tools

- an explicit formula that defines the pseudozero set
- the continuous dependency of the zeros w.r.t the polynomial coefficients
- the Sturm sequences to count the number of real zeros

Another characterization of the pseudozero set

Let us denote $h_{p,\varepsilon}: \mathbb{R}^2 \to \mathbb{R}$ the function

$$h_{p,\varepsilon}(x,y) = |p(x+iy)|^2 - \varepsilon^2 \sum_{j=0}^{n-1} (x^2 + y^2)^j.$$

Then

$$Z_arepsilon(oldsymbol{
ho})=\{(x,y)\in\mathbb{R}^2:h_{oldsymbol{
ho},arepsilon}(x,y)\leq0\}$$

 $\implies h_{p,\varepsilon}(\cdot,y)$ and $h_{p,\varepsilon}(x,\cdot)$ are polynomials of degree 2n.

Theorem 2 For any real $x \ge a(p)$, $x \le a_{\varepsilon}(p)$ if and only if the equation $h_{p,\varepsilon}(x,y) = 0$ has a real solution y.

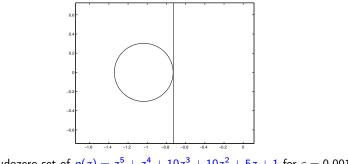
A symbolic-numerical bisection algorithm

Algorithm 2

Require: a stable polynomial p, the parameter ε , the tolerance τ on the accuracy of $a_{\varepsilon}(p)$ **Ensure:** a number α such that $|\alpha - a_{\varepsilon}(p)| \leq \tau$ 1: $\gamma := a(p), \quad \delta := \|p\| + \varepsilon$ 2: while $|\gamma - \delta| > \tau$ do 3: $x := \frac{\gamma + \delta}{2}$ 4: if the equation $h_{p,\varepsilon}(x,y) = 0$ has a solution y real then 5: $\delta := x$ 6: **else** 7: $\gamma := x$ 8: end if 9: end while 10: return $\alpha = \frac{\gamma + \delta}{2}$

Numerical simulation

For $p(z) = z^5 + z^4 + 10z^3 + 10z^2 + 5z + 1$, $\varepsilon = 0.001$ and $\tau = 0.00001$ the algorithm gives $a_{\varepsilon}(p) \approx -0.719669$



arepsilon-pseudozero set of $p(z)=z^5+z^4+10z^3+10z^2+5z+1$ for arepsilon=0.001

Outline

Motivations

2 Pseudozeros and application in control theory

3 Accurate polynomial evaluation

Other results

Real perturbations

• Influence of the structure

5 Summary and future work

Floating point number

Floating point system $\mathbb{F} \subset \mathbb{R}$:

$$x = \pm \underbrace{x_0.x_1...x_{p-1}}_{mantissa} \times \overset{b^e}{b^e}, \quad 0 \le x_i \le b-1, \quad x_0 \ne 0$$

b: basis, p: precision, e: exponent range s.t. $e_{\min} \le e \le e_{\max}$ Machine epsilon $\epsilon = b^{1-p}$, $|1^+ - 1| = \epsilon$

Approximation of \mathbb{R} by \mathbb{F} , rounding fl : $\mathbb{R} \to \mathbb{F}$ Let $x \in \mathbb{R}$ then

$$fl(x) = x(1 + \delta), \quad |\delta| \le u.$$

Unit roundoff $\mathbf{u} = \epsilon/2$ for round-to-nearest

Standard model of floating point arithmetic

Let $x, y \in \mathbb{F}$,

 $\mathsf{fl}(x \circ y) = (x \circ y)(1 + \delta), \quad |\delta| \le \mathsf{u}, \quad \circ \in \{+, -, \cdot, /\}$

IEEE 754 standard (1985)

					Range
Double	64 bits	52+1 bits	11 bits	$u = 2^{-53} \approx 1, 11 \times 10^{-16}$	$pprox 10^{\pm 308}$

For a more precise evaluation scheme

- Accurate evaluation of p(x): the compensated Horner scheme and the compensated rule of thumb ¹
- An improved and validated error bound
- Theoretical and experimental results exhibit the
 - actual accuracy: twice the current working precision behavior,
 - actual speed: twice faster than the corresponding double-double implementation

¹SG, N. Louvet, PhL. Compensated Horner Scheme. Submitted to SISC

More accuracy, how ?

More internal precision:

- hardware
 - extended precision in x86 architecture
- software
 - fixed length expansions libraries: double-double (Briggs, Bailey, Hida, Li), quad-double (Bailey, Hida, Li)
 - arbitrary length expansions libraries: Priest, Shewchuk
 - arbitrary multiprecision libraries: MP, MPFUN/ARPREC, MPFR

Correcting rounding errors:

- compensated summation (Kahan,1965) and doubly compensated summation (Priest,1991), etc.
- accurate sum and dot product: Ogita, Rump and Oishi (2005)
 → twice the current working precision behavior and fast compared to double-double library

More accuracy, how ?

More internal precision:

- hardware
 - extended precision in x86 architecture
- software
 - fixed length expansions libraries: double-double (Briggs, Bailey, Hida, Li), quad-double (Bailey, Hida, Li)
 - arbitrary length expansions libraries: Priest, Shewchuk
 - arbitrary multiprecision libraries: MP, MPFUN/ARPREC, MPFR

Correcting rounding errors:

- compensated summation (Kahan,1965) and doubly compensated summation (Priest,1991), etc.
- accurate sum and dot product: Ogita, Rump and Oishi (2005)
 → twice the current working precision behavior and fast
 compared to double-double library

At current working precision ...

Rule of thumb for backward stable algorithms :

solution accuracy \approx condition number \times computing precision

- IEEE-754 precision: double ($\mathbf{u} = 2^{-53} \approx 10^{-16}$)
- **2** Condition number for the evaluation of $p(x) = \sum_{i=0}^{n} a_i x^i$:

$$\operatorname{cond}(p,x) = rac{\sum_{i=0}^n |a_i| |x|^i}{|\sum_{i=0}^n a_i x^i|} = rac{\widetilde{p}(|x|)}{|p(x)|}, ext{ always } \geq 1.$$

3 Accuracy of the solution $\hat{p}(x)$:

$$rac{|p(x) - \widehat{p}(x)|}{|p(x)|} \leq lpha(n) imes {
m cond}(p, x) imes {
m u}$$

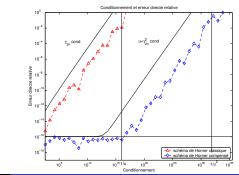
with $\alpha(n) \approx 2n$

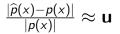
What means "twice the working precision behavior"?

Compensated rule of thumb:

solution accuracy $\lesssim precision$ + condition number \times $precision^2$

Three regimes in precision for the evaluation of $\hat{p}(x)$: 1) condition number $\leq 1/u$: the accuracy of $\hat{p}(x)$ is optimal



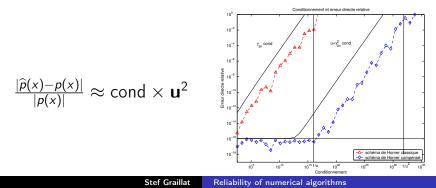


What means "twice the working precision behavior"?

Compensated rule of thumb:

solution accuracy $\lesssim {\rm precision} + {\rm condition} \ {\rm number} \times {\rm precision}^2$

Three regimes in precision for the evaluation of $\hat{p}(x)$: 2) $1/\mathbf{u} \leq \text{condition number} \leq 1/\mathbf{u}^2$: the result $\hat{p}(x)$ verifies



What means "twice the working precision behavior"?

Compensated rule of thumb:

solution accuracy $\lesssim precision$ + condition number \times $precision^2$

Three regimes in precision for the evaluation of $\hat{p}(x)$: 3) no more accuracy when condition number > $1/u^2$.

> Conditionnement et erreur directe relative 10 10-2 $u + \gamma_{2n}^2$ cond 10-4 10 Erreur directe relative 10-4 10 10 10 10 10-1 háma da Hornar classir 10¹⁵1/u 10²⁰ 105 1010 1/u 1025 Conditionnement

> > Stef Graillat Reliability of numerical algorithms

The Horner scheme

```
Algorithm 3 (Horner scheme)

function res = Horner(p, x)

s_n = a_n

for i = n - 1 : -1 : 0

p_i = fl(s_{i+1} \cdot x)

s_i = fl(p_i + a_i)

end

res = s_0
```

% rounding error π_i % rounding error σ_i

 $\gamma_n = n\mathbf{u}/(1 - n\mathbf{u}) \approx n\mathbf{u}$ $rac{|p(x) - \operatorname{Horner}(p, x)|}{|p(x)|} \leq \underbrace{\gamma_{2n}}_{\approx 2n\mathbf{u}} \operatorname{cond}(p, x)$

Error-free transformations for sum and product

$$\begin{array}{ll} x = \mathsf{fl}(a \pm b) & \Rightarrow & a \pm b = x + y & \text{with } y \in \mathbb{F}, \\ x = \mathsf{fl}(a \cdot b) & \Rightarrow & a \cdot b = x + y & \text{with } y \in \mathbb{F}, \end{array}$$

For the sum, algorithms by Dekker (1971) and Knuth (1974)

Algorithm 4 (Error-free transformation of the sum of 2 floating point numbers)

function
$$[x, y] = \text{TwoSum}(a, b)$$

 $x = \text{fl}(a + b)$
 $z = \text{fl}(x - a)$
 $y = \text{fl}((a - (x - z)) + (b - z))$

Product : algorithm TwoProduct by Veltkamp and Dekker (1971)

Error-free transformation for the Horner scheme

$$p(x) = ext{Horner}(p,x) + (p_\pi + p_\sigma)(x)$$

Algorithm 5 (Error-free transformation for the Horner scheme) function [Horner(p, x), p_{π}, p_{σ}] = EFTHorner(p, x) $s_n = a_n$ for $i = n - 1 \cdot - 1 \cdot 0$ $[p_i, \pi_i] = \text{TwoProduct}(s_{i+1}, x)$ $[s_i, \sigma_i] = \operatorname{TwoSum}(p_i, a_i)$ Let π_i be the coefficient of degree *i* of p_{π} Let σ_i be the coefficient of degree *i* of p_{σ} end Horner $(p, x) = s_0$

Compensated Horner scheme

Algorithm 6 (Compensated Horner scheme)

```
function res = CompHorner(p, x)
[h, p_{\pi}, p_{\sigma}] = \text{EFTHorner}(p, x)
c = \text{Horner}(p_{\pi} + p_{\sigma}, x)
res = fl(h + c)
```

Accuracy of the compensated Horner scheme

Theorem 3

Let p be a polynomial of degree n with floating point coefficients, and x be a floating point value. Then if no underflow occurs,

$$rac{| ext{CompHorner}(p,x)-p(x)|}{|p(x)|} \leq \mathsf{u} + \underbrace{\gamma^2_{2n}}_{pprox 4n^2\mathsf{u}^2} \operatorname{cond}(p,x).$$

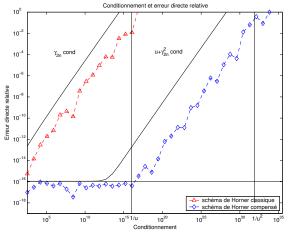
• Key point in the proof:

$$(\widetilde{p_{\pi}} + \widetilde{p_{\sigma}})(|x|) \leq \gamma_{2n}\widetilde{p}(|x|)$$

• a similar bound is proved in presence of underflow

Numerical experiments: testing the accuracy

Evaluation of $p_n(x) = (x-1)^n$ for x = fl(1.333) and $n = 3, \dots, 42$



Stef Graillat Reliability of numerical algorithms

Numerical experiments: testing the speed efficiency

We compare

- Horner: IEEE 754 double precision Horner scheme
- CompHorner: our Compensated Horner scheme
- DDHorner: Horner scheme with internal double-double computation

All computations are performed in C language and IEEE 754 double precision

Pentium 4: 3.0GHz, 1024kB cache L2 - GCC 3.4.1				
ratio	minimum	mean	maximum	theoretical
CompHorner/Horner	1.5	2.9	3.2	13
DDHorner/Horner	2.3	8.4	9.4	17

 \rightarrow compensated Horner scheme = Horner scheme with double-double without renormalization

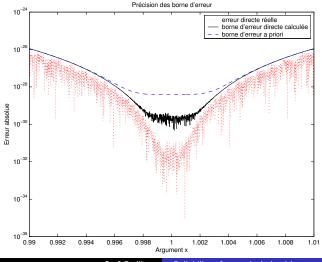
A dynamic error bound

Theorem 4

Given a polynomial p of degree n with floating point coefficients, and a floating point value x, we consider res = CompHorner(p, x). The absolute forward error affecting the evaluation is bounded according to

 $|\texttt{CompHorner}(p, x) - p(x)| \leq \\ \mathsf{fl}((\mathsf{u}|\texttt{res}| + (\gamma_{4n+2}\texttt{Horner}(\widetilde{
ho_{\pi}} + \widetilde{
ho_{\sigma}}, |x|) + 2\mathsf{u}^2|\texttt{res}|))).$

Accuracy of the bound for $p_5(x) = (x-1)^5$



Stef Graillat Reliability of numerical algorithms

Real perturbations Influence of the structure

Outline

Motivations

2 Pseudozeros and application in control theory

3 Accurate polynomial evaluation

Other results

- Real perturbations
- Influence of the structure
- 5 Summary and future work

Real perturbations Influence of the structure

Real perturbations (1/2)

Motivations :

- rounding errors are always real
- uncertain data in engineering are often real

Results :

- Real condition number and backward error for polynomial evaluation and zeros
 - \rightarrow explicit formulas for those condition numbers and backward errors

 \rightarrow the ratio between the real condition number and the classical condition number lies in the interval $[1,\sqrt{2}]$

 \rightarrow The real backward error can be larger that the classical backward error

Real perturbations Influence of the structure

Real perturbations (2/2)

- Zeros of interval polynomials²
 - \rightarrow Matlab tool for drawing zeros of interval polynomials

Real pseudozero set for multivariate polynomials³
 → an explicit formula for computing this set

 ²SG & PhL. Pseudozero set of interval polynomials. ACM SAC 2006
 SG. Pseudozero set of multivariate polynomials. Poster CASC 2005

Real perturbations Influence of the structure

Pseudospectra and structured condition numbers (1/2)

Motivations :

- structured error analysis
- classical structures Toeplitz, Hankel, circulant, symmetric, ...
- structures deriving from Lie and Jordan algebras

Results :

- Structured condition numbers for matrix problems⁴
 - \rightarrow structured error analysis with Lie and Jordan algebras

 \rightarrow little or no differences between structured and unstructured condition numbers for these structures, similar results for the backward error

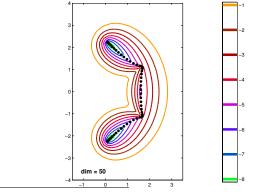
⁴F. Tissseur & SG. Structured Condition Numbers and Backward Errors in Scalar Product Spaces, Research Report

Real perturbations Influence of the structure

Pseudospectra and structured condition numbers (2/2)

• Pseudospectra and structures⁵

 \rightarrow for Toeplitz, Hankel, circulant structures, the pseudospectra equals the structured pseudospectra



 $^{5}\mathrm{SG.}$ A note on structured pseudospectra. J. Comput. Appl. Math., 2006.

Stef Graillat

Reliability of numerical algorithms

Outline

Motivations

Pseudozeros and application in control theory

3 Accurate polynomial evaluation

④ Other results

Real perturbations

• Influence of the structure

5 Summary and future work

Summary and future work on improving the accuracy

Summary

- A compensated Horner scheme: accurate polynomial evaluation
- Fast and accurate computation of geometric predicates

Future work

- double-double and XBLAS without renormalization
- Increasing the accuracy of algorithms with Newton's methods and iterative refinement

Summary and future work on the use of pseudozero set

Summary

- Applications of pseudozero set to test the approximate coprimeness of polynomials⁶
- Applications of pseudozero set to compute stability radius and pseudozero abscissa⁷

Future work

• Certify the drawing of pseudozero set using interval arithmetic (for example the Sivia algorithm by Jaulin and Walter)

⁶SG & PhL. Testing polynomial primality with pseudozeros. RNC'5

 $^{^{7}\}mathrm{SG.}$ Computation of pseudozero abscissa. SYNASC 2004

Summary and future work on real perturbations

Summary

- Real condition number and real backward error for polynomial evaluation and zeros
- MATLAB tool for drawing pseudozeros of interval polynomials
- Generalization of real pseudozero set to multivariate polynomials

Future work

- Generalization to real pseudospectra
- Real condition number for generalized eigenvalue problems

Summary and future work on structured linear algebra

Summary

- Structured pseudospectra for Toeplitz, Hankel, circulant, symmetric, skew-symmetric structures
- Structured error analysis for structures deriving from Lie and Jordan algebra for linear systems, distance to singularity and inversion

Future work

- Structured error analysis for least square problems and Penrose-Moore inversion
- Same thing with Drazin inversion (singular linear systems)

Thank you for your attention