Pseudozero Set of Interval Polynomials

Stef Graillat and Philippe Langlois
Université de Perpignan Via Domitia

graillat@univ-perp.fr
http://gala.univ-perp.fr/~graillat

The 21st Annual ACM Symposium on Applied Computing
Dijon, France, April 23-27, 2006
Outline of the talk

I — Pseudozero set
• Definition and computation

II — Pseudozero set of interval polynomials
• Real pseudozero set of polynomials
• Presentation of PSIP
Pseudozeros: definition, computation and motivation
Pseudozero set: definition

Perturbation:
Neighborhood of polynomial p

$$N_\varepsilon(p) = \{ \hat{p} \in \mathbb{C}_n[z] : \| p - \hat{p} \| \leq \varepsilon \}.$$

Definition of the ε-pseudozero set:

$$Z_\varepsilon(p) = \{ z \in \mathbb{C} : \hat{p}(z) = 0 \text{ for } \hat{p} \in N_\varepsilon(p) \}.$$

$\| \cdot \|$ a norm on the vector of the coefficients of p

This set is formed by the zeros of polynomials “near p”.

S. Graillat
Pseudozeros : brief survey of existing references

► Mosier (1986) : Definition and study form the ∞-norm.
► Hinrichsen and Kelb : spectral value sets
► Trefethen and Toh (1994) : Study for the 2-norm.
 pseudozeros \approx pseudospectra of the companion matrix.
► Chatelin and Frayssé (1996) : propose a Synthesis in Lectures on Finite Precision Computations (SIAM)
► Zhang (2001) : Study of the influence of the basis for the 2-norm (condition number of the evaluation).
► Karow (2003) : thesis on Spectral value sets
Pseudozeros are easily computable

Theorem:
The \(\varepsilon \)-pseudozeros set satisfies

\[
Z_\varepsilon(p) = \left\{ z \in \mathbb{C} : |g(z)| := \frac{|p(z)|}{\|z\|_*} \leq \varepsilon \right\},
\]

where \(z = (1, z, \ldots, z^n) \) and \(\| \cdot \|_* \) is the dual norm of \(\| \cdot \| \),

\[
\|y\|_* = \sup_{x \neq 0} \frac{|y^*x|}{\|x\|}
\]
Algorithm of computation

Algorithm to draw the \(\varepsilon \)-pseudzero set:

1. We mesh a square containing all the roots of \(p \) (MATLAB command: `meshgrid`).
2. We compute \(g(z) := \frac{|p(z)|}{\|z\|_*} \) for all the nodes \(z \) in the grid.
3. We draw the contour level \(|g(z)| = \varepsilon \) (MATLAB command: `contour`).
A famous example

Pseudozero set of the \textit{Wilkinson} polynomial

\[W_{20} = (z - 1)(z - 2) \cdots (z - 20), \]
\[= z^{20} - 210z^{19} + \cdots + 20!. \]

We perturb only the coefficient of \(z^{19} \) with \(\varepsilon = 2^{-23} \).

One use the weighted-norm \(\| \cdot \|_\infty \):

\[\| p \|_\infty = \max_i \left| \frac{p_i}{m_i} \right| \text{ with } m_i \text{ non negative} \]

with \(m_{19} = 1 \), \(m_i = 0 \) otherwise and the convention \(m/0 = \infty \) if \(m > 0 \) and \(0/0 = 0 \).
Pseudozero set of interval polynomials
Interval polynomial

An interval polynomial is a polynomial whose coefficients are real intervals.

We denote by $\mathbb{IR}[z]$ the set of interval polynomials and by $\mathbb{IR}_n[z]$ the set of interval polynomials with degree at most n.

Let $p \in \mathbb{IR}_n[z]$. We can write

$$p(z) = \sum_{i=0}^{n} [a_i, b_i] z^i.$$

The zeros of an interval polynomial is the set

$$Z(p) := \{z \in \mathbb{C} : \text{there exist } m_i \in [a_i, b_i], i = 0 : n \text{ such that } \sum_{i=0}^{n} m_i z^i = 0 \}.$$

\implies Compute $Z(p)$.

S. Graillat
Definition of real pseudozero set

Let \(p = \sum_{i=0}^{n} p_i z^i \) be a polynomial of \(\mathbb{R}_n[z] \)

Perturbations:
Real neighborhood of \(p \)

\[
N^R_\varepsilon(p) = \{ \hat{p} \in \mathbb{R}_n[z] : \|p - \hat{p}\| \leq \varepsilon \}.
\]

Definition of the real \(\varepsilon \)-pseudozero set

\[
Z^R_\varepsilon(p) = \{ z \in \mathbb{C} : \hat{p}(z) = 0 \text{ for } \hat{p} \in N^R_\varepsilon(p) \}.
\]
Computation of the real pseudozero set

Theorem:
The real ε-pseudozero set satisfies

$$Z_{\varepsilon}^R(p) = Z(p) \cup \left\{ z \in \mathbb{C} \setminus Z(p) : h(z) := d(G_R(z), \mathbb{R}G_I(z)) \geq \frac{1}{\varepsilon} \right\},$$

where d is defined for $x, y \in \mathbb{R}^{n+1}$ by

$$d(x, \mathbb{R}y) = \inf_{\alpha \in \mathbb{R}} \|x - \alpha y\|_*$$

and where $G_R(z)$, $G_I(z)$ are the real and imaginary part of

$$G(z) = \frac{1}{p(z)}(1, z, \ldots, z^n)^T, \ z \in \mathbb{C} \setminus Z(p)$$

Can be viewed as a special case of *spectral value set* [Karow 03]
What for $\mathbb{R} \cap Z^R_\epsilon(p)$?

Lemma. Given $z \in \mathbb{R}$, z belongs to $Z^R_\epsilon(p)$ if and only if z belongs to $Z_\epsilon(p)$.

Draw the complex pseudozero set or the real pseudozero set on the real axis is similar.
Some properties

The function d defined for $x, y \in \mathbb{R}^{n+1}$ by

$$d(x, Ry) = \inf_{\alpha \in \mathbb{R}} \|x - \alpha y\|_*$$

satisfies

$$d(x, Ry) = \begin{cases}
\sqrt{\|x\|_2^2 - \frac{(x,y)^2}{\|y\|_2^2}} & \text{if } y \neq 0, \\
\|x\|_2 & \text{if } y = 0
\end{cases}$$

for the norm $\| \cdot \|_2$

$$d(x, Ry) = \begin{cases}
\min_{i=0:n; y_i \neq 0} \|x - (x_i/y_i)y\|_1 & \text{if } y \neq 0, \\
\|x\|_1 & \text{if } y = 0
\end{cases}$$

for the norm $\| \cdot \|_\infty$
Some properties (cont’d)

Proposition 1:
The real ε-pseudozero set $Z^R_\varepsilon(p)$ is symmetric with respect to the real axis.

Proposition 2:
The real ε-pseudozero set $Z^R_\varepsilon(p)$ is included in the complex ε-pseudozero set.
Algorithm to draw real pseudozero set

Drawing of real ε-pseudozero set :

1. We mesh a square containing all the roots of p (MATLAB command : meshgrid).
2. We compute $h(z) := d(G_R(z), R G_I(z))$ for all the nodes z in the grid.
3. We draw the contour level $|h(z)| = \frac{1}{\varepsilon}$ (MATLAB command : contour).
Pseudozero set with weighted norm

\[p(z) = \sum_{i=0}^{n} p_i z^i. \]

- Identification of \(p \) with the vector \((p_0, p_1, \ldots, p_n)^T\)
- \(d := (d_0, \ldots, d_n)^T \in \mathbb{R}^{n+1} \) represents the weight of the coefficients of \(p \)
- \(\| \cdot \|_{\infty,d} \) defined by

\[\|p\|_{\infty,d} = \max_{i=0:n} \{|p_i|/|d_i|\}. \]
Let us denote p_c the central polynomial defined by

$$p_c(z) = \sum_{i=0}^{n} c_i z^i,$$

with $c_i = (a_i + b_i)/2$.

Let us denote $d_i := (b_i - a_i)/2$.

Proposition :
With the notation above, we have

$$\mathbf{Z}(p) = Z_{\varepsilon}^R(p_c) \text{ with } \varepsilon = 1.$$
Example 1

\[p(z) = [1, 2]z^4 + [3, 3.2]z^3 + [10, 14]z^2 + [3, 5\sqrt{2}]z + [5, 7] \]
Example 2

\[p(z) = z^3 + z^2 + [3, 8]z + [1.5, 4] \]
Problem : choice of the grid

Lemma:
Let \(p(z) = \sum_{i=0}^{n} [a_i, b_i] z^i \) an interval polynomial and

\[
R := 1 + \frac{\max_{i=0:n} \{\max \{|a_i|, |b_i|\}\}}{\min \{|a_n|, |b_n|\}}.
\]

Then

\[Z(p) \subset B(O, R), \]

where \(B(O, R) \) the ball in \(\mathbb{C} \) of centre \(O \) and radius \(R \).
Problems : discontinuities

Lemma [Hinrichsen et Kelb] :

The function

\[d : \mathbb{R}^{n+1} \times \mathbb{R}^{n+1} \rightarrow \mathbb{R}_+, \quad (x, y) \mapsto d(x, R_y) \]

is continue for all \((x, y)\) with \(y \neq 0\) or \(x = 0\) and discontinue for all \((x, 0) \in \mathbb{R}^{n+1} \times \mathbb{R}^{n+1}, x \neq 0\).

Those discontinuities imply some difficulties for drawing near the real axis.

Solution : on the real axis, we draw complex pseudozero set.
Presentation of PSIP

A tool to draw zeros of interval polynomials
Presentation of PSIP (cont’d)

- a graphical interface for MATLAB (version 6.5 (R13))
- computation of grid that contains all the zeros
- possibilities of zoom and mesh refinement

Limitations:
- problem if the leading interval contains 0
- problems with discontinuities
Conclusion and future work

We have presented
 • a tool to draw pseudozero set of interval polynomial

Future work
 • certification of the drawing