
Numerical reproducibility and
High-performance computing

Stef Graillat
LIP6/PEQUAN, Sorbonne Universités, UPMC Univ Paris 06, CNRS

Webinar on Reproducible Research: Numerical reproducibility
May 3rd, 2016, Grenoble, France

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 1 / 66

Outline of the talk

1 Introduction - motivations

2 Floating-point arithmetic

3 Numerical reproducibility andHPC

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 2 / 66

Outline of the talk

1 Introduction - motivations

2 Floating-point arithmetic

3 Numerical reproducibility andHPC

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 3 / 66

Motivations

Reproducibility of experiments and analysis by others is one of the
pillars ofmodern science

However descriptions of experimental protocols, so�ware, and
analysis is o�en lacunar and rarely allows others to reproduce an
experiment

By numerical reproducibility, wemean getting a bitwise identical
�oating-point result from multiple runs of the same code on the same
inputs.

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 4 / 66

Motivations

2016 Petascale: we are able to perform 30 − 40 peta�ops

2017 Petascale: we plan to perform 100 − 200 peta�ops

2020 Exascale: we aim to perform exa�ops (1018 �ops)

⇓

1018 rounding errors per second

Improve the numerical quality and the numerical reproducibility of
computations on high-performance computing (HPC) platforms,
starting from multithreaded computations on multicore processors and
targeting ultimately exascale computations.

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 5 / 66

Motivations

2016 Petascale: we are able to perform 30 − 40 peta�ops

2017 Petascale: we plan to perform 100 − 200 peta�ops

2020 Exascale: we aim to perform exa�ops (1018 �ops)

⇓

1018 rounding errors per second

Improve the numerical quality and the numerical reproducibility of
computations on high-performance computing (HPC) platforms,
starting from multithreaded computations on multicore processors and
targeting ultimately exascale computations.

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 5 / 66

Motivations

2016 Petascale: we are able to perform 30 − 40 peta�ops

2017 Petascale: we plan to perform 100 − 200 peta�ops

2020 Exascale: we aim to perform exa�ops (1018 �ops)

⇓

1018 rounding errors per second

Improve the numerical quality and the numerical reproducibility of
computations on high-performance computing (HPC) platforms,
starting from multithreaded computations on multicore processors and
targeting ultimately exascale computations.

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 5 / 66

Motivations

2016 Petascale: we are able to perform 30 − 40 peta�ops

2017 Petascale: we plan to perform 100 − 200 peta�ops

2020 Exascale: we aim to perform exa�ops (1018 �ops)

⇓

1018 rounding errors per second

Improve the numerical quality and the numerical reproducibility of
computations on high-performance computing (HPC) platforms,
starting from multithreaded computations on multicore processors and
targeting ultimately exascale computations.

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 5 / 66

Motivations

BLAS-1 [1979]: y ∶= y + αx α ∈ R; x , y ∈ Rn 2/3
α ∶= α + xT y

BLAS-2 [1988]: A ∶= A+ xyT A ∈ Rn×n; x , y ∈ Rn 2
y ∶= A−1x

BLAS-3 [1990]: C ∶= C + AB A, B,C ∈ Rn×n n/2
C ∶= A−1B

Basic Linear Algebra Subprograms (BLAS)

Refer. BLAS Vendor BLAS GotoBLAS ATLAS

LAPACK FLAME NAG

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 6 / 66

Motivations

BLAS-1 [1979]: y ∶= y + αx α ∈ R; x , y ∈ Rn 2/3
α ∶= α + xT y

BLAS-2 [1988]: A ∶= A+ xyT A ∈ Rn×n; x , y ∈ Rn 2
y ∶= A−1x

BLAS-3 [1990]: C ∶= C + AB A, B,C ∈ Rn×n n/2
C ∶= A−1B

Basic Linear Algebra Subprograms (BLAS)

Refer. BLAS Vendor BLAS GotoBLAS ATLAS

LAPACK FLAME NAG

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 6 / 66

Ultimate Goal

Compute BLAS operations with �oating-point numbers fast and precise,
ensuring their reproducibility, on a wide range of architectures

ExBLAS – Exact BLAS
ExBLAS-1: ExSCAL, ExDOT, ExAXPY, ...

ExBLAS-2: ExGER, ExGEMV, ExTRSV, ExSYR, ...

ExBLAS-3: ExGEMM, ExTRSM, ExSYR2K, ...

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 7 / 66

Outline of the talk

1 Introduction - motivations

2 Floating-point arithmetic

3 Numerical reproducibility andHPC

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 8 / 66

Floating-point numbers

Normalized �oating-point numbers F ⊆ R:

x = ± x0.x1 . . . xM−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

mantissa

×be , 0 ≤ xi ≤ b − 1, x0 ≠ 0

b : basis,M : precision, e : exponent such that emin ≤ e ≤ emax
epsilon machine є = b1−M

Approximation of R by F with rounding � ∶ R→ F.
Let x ∈ R then

�(x) = x(1 + δ), ∣δ∣ ≤ u

Unit rounding u = є/2 for rounding to the nearest

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 9 / 66

Standardmodel of �oating-point arithmetic
Let x , y ∈ F and ○ ∈ {+,−, ⋅, /}.

he result x ○ y is not in general a �oating-point number

�(x ○ y) = (x ○ y)(1 + δ), ∣δ∣ ≤ u

IEEE 754 standard (1985 and 2008)

Correctly rounded : arithmetic ops (+,−,×, /,√) performed as if ûrst
calculated to inûnite precision, then rounded.

Type Size Mantissa Exponent Unit rounding Interval
binary32 32 bits 23+1 bits 8 bits u = 21−24 ≈ 1, 92 × 10−7 ≈ 10±38

binary64 64 bits 52+1 bits 11 bits u = 21−53 ≈ 2, 22 × 10−16 ≈ 10±308

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 10 / 66

Error-free transformation (EFT) for addition

x = a ⊕ b ⇒ a + b = x + y with y ∈ F,

Algorithm of Dekker (1971) and Knuth (1974)

Algorithm 1 (EFT of the sum of 2 �oating-point numbers)
function [x , y] = TwoSum(a, b)

x = a ⊕ b
z = x ⊖ a
y = (a ⊖ (x ⊖ z))⊕ (b ⊖ z)

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 11 / 66

EFT for multiplication

x = a ⊗ b ⇒ a × b = x + y with y ∈ F,

Given a, b, c ∈ F,
FMA(a, b, c) is the nearest �oating-point number a ⋅ b + c ∈ F

Algorithm 2 (EFT of the product of 2 �oating-point
numbers)
function [x , y] = TwoProduct(a, b)

x = a ⊗ b
y = FMA(a, b,−x)

he FMA is available for example on PowerPC, Itanium, Cell, Xeon Phi,
Haswell processors.

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 12 / 66

Floating-point expansions (FPE)

Representation using �oating-point numbers: non-evaluated sum of
�oating-point numbers

n

∑
i=0
fi

where the fi are �oating-point numbers, if possible with exponents
suõciently wide apart so that themantissas do not overlap.

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 13 / 66

double-double library

A double-double number is a non-evaluated pair (ah , al) of IEEE 754
�oating-point numbers satisfying a = ah + al et ∣al ∣ ≤ u∣ah∣.

Algorithm 3 (Addition of a double b and a double-double
(ah , al))
function [ch , cl] = add_dd_d(ah , al , b)

[th , tl] = TwoSum(ah , b)
[ch , cl] = TwoSum(th , (tl ⊕ al))

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 14 / 66

double-double library

Algorithm 4 (Product of a double-double (ah , al) by a
double b)
function [ch , cl] = prod_dd_d(ah , al , b)

[sh , sl] = TwoProduct(ah , b)
[th , tl] = TwoSum(sh , (al ⊗ b))
[ch , cl] = TwoSum(th , (tl ⊕ sl))

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 15 / 66

Kulisch accumulator

Computing without error due to the limited range of �oating-point
numbers

204 S. Siegel, J. Wolff von Gudenberg

Keywords Exact dotproduct · Exact summation · Long accumulator ·
Carry-save adder · Cache

1 Long accumulator

1.1 Fixed-point number interpretation

For a floating-point system F = Fl(β, n, emin, emax) with n mantissa digits to base
β and exponent range emin to emax the length of the long store to accumulate dot
products is t = 2(|emin| + n + emax) + g digits to base β, where g is the number
of guard digits to prevent intermediate overflow. The long store, also known as long
accumulator a thus can be regarded as a t digits fixed-point number. a ∈ Fx(β, t)
where Fx(β, t) describes the t-digit fixed-point system with base β.

a =
t−1∑

i=0

aiβ
i ∈ Fx(β, t) (1)

The same bit string can also be regarded as a sequence of p-ary digits of base β p.

a =
t/p−1∑

i=0




p−1∑

j=0

aip+ j · β j


 · β i p (2)

This grouping of p-ary digits is later used for a byte-wise alignment.
Every floating-point number b ∈ F belongs to that fixed-point system.

b = mb · βeb =
(

n−1∑

i=0

bi · β i

)
· βe where e = eb + 2 ∗ |emin|

b =
t−1∑

i=0

bi · β i (3)

where bi = 0 for i < e ∧ i ≥ e + n
We summarize the well known properties of the long accumulator in the following

remarks.

Remark 1 There are several ways to store the information of the complete, exact sum.
The well known layout is shown in Fig. 1.

Fig. 1 Long accumulator for exact scalar product accumulation

123
In double precision, n = 53 bits, emin = −1022, emax = 1023 and k = 92
bits

A register of length L = k + 2emax + 2∣emin∣ + 2n = 4288 bits is
suõcient (67 words of 64 bits)

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 16 / 66

Kulisch accumulator

Comments on Fast and Exact Accumulation of Products 153

interface

register file (or memory access unit)

128

exp(a) exp(b) mant(a) mant(b)

11 11 53 53

adder multiplier 53 × 53

12 106

mant(a)×mant(b)

106

ringshifter

LSB0123

456

MSB

6
6

Fig. 5. Complete register for exact scalar product accumulation

the entire word. In the figure the flag is shown as a dark point. As soon as the
exponent of the summand is available the flags allow selecting and incrementing
the carry word. This can be done simultaneously with adding the summand into
the selected drawers. Similar considerations may be applied to handle a possible
borrow.

5 Circuitry for the Exact Dot Product

Basing on an architecture which is similar to figure 5, a coprocessor chip has been
developed which demonstrates that an EDP may be implemented in hardware
as efficiently as an ordinary dot product in floating-point arithmetic [12,13].

Source: Kulisch ’s papers

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 17 / 66

Bibliography

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 18 / 66

Bibliography

What every computer scientist should know about �oating-point
arithmetic. David Goldberg. ACM Computing Surveys, 23(1):5–48, 1991.

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 19 / 66

Outline of the talk

1 Introduction - motivations

2 Floating-point arithmetic

3 Numerical reproducibility andHPC

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 20 / 66

From multi-core to many-cores

Intel Xeon Phi: 50 x86 cores NVIDIA K20: 2496 CUDA cores

Source: http://www.altera.com/technology/system-design/articles/2012/multicore-many-core.html
http://wccftech.com/nvidia-tesla-k20-gk110-specifications-unveiled/

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 21 / 66

http://www.altera.com/technology/system-design/articles/2012/multicore-many-core.html
http://wccftech.com/nvidia-tesla- k20-gk110-specifications-unveiled/

Execution on many-cores

Source: http://www.pgroup.com/lit/articles/insider/v2n4a1.htm

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 22 / 66

http://www.pgroup.com/lit/articles/insider/v2n4a1.htm

Numerical reproducibility

Floating-point operations suòers from rounding error

Floating-point operation (+,×) are commutatives but not associative :

(−1 + 1) + 2−53 ≠ −1 + (1 + 2−53) in double precision.

Consequence: results of �oating-point computations depend on the
order of computation.

Numerical reproducibility: ability to obtain bit-wise identical results
from multiple runs of the same code on the same input data on diòerent
or even similar architectures.

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 23 / 66

Motivations

Demands for reproducible �oating-point computations:

Debugging: look inside the code step-by-step, andmight need to
rerun multiple times on the same input data.

Understanding the reliability of output

Contractual reasons (security, liability, etc.)

...

Existing reproducibility failures for numerical simulations in energy,
dynamical weather science, dynamical molecular, dynamical �uid

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 24 / 66

Sources of non-reproducibility
A performance-optimized �oating-point library is prone to
inconsistency for various reasons:

Changing Data Layouts:
Data partitioning
Data alignment

Changing Hardware Resources:
Number of threads
FusedMultiply-Add (FMA) support
Intermediate precision (64 bits, 80 bits, 128 bits, etc)
Data path (SSE, AVX, GPU warp, etc)
Cache line size
Number of processors
Network topology
...

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 25 / 66

Numerical reproducibility for Exascale

Exascale : ability to execute 1018 �oating-point operations per second
usingO(109) processors

Highly dynamic scheduling
Network heterogeneity
increased communication time

Cost = Arithmetic + Communication

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 26 / 66

Numerical reproducibility for Exascale

ExaScale Computing Study:
Technology Challenges in

Achieving Exascale Systems

Peter Kogge, Editor & Study Lead
Keren Bergman
Shekhar Borkar
Dan Campbell
William Carlson
William Dally
Monty Denneau
Paul Franzon
William Harrod
Kerry Hill
Jon Hiller
Sherman Karp
Stephen Keckler
Dean Klein
Robert Lucas
Mark Richards
Al Scarpelli
Steven Scott
Allan Snavely
Thomas Sterling
R. Stanley Williams
Katherine Yelick

September 28, 2008

This work was sponsored by DARPA IPTO in the ExaScale Computing Study with Dr. William Harrod
as Program Manager; AFRL contract number FA8650-07-C-7724. This report is published in the
interest of scientific and technical information exchange and its publication does not constitute the
Government’s approval or disapproval of its ideas or findings

NOTICE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or permission to
manufacture, use, or sell any patented invention that may relate to them.

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED.

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 27 / 66

Numerical reproducibility for Exascale

DOE$ASCAC$Subcommi.ee$Report$
February$10,$2014$$

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 27 / 66

Numerical reproducibility for Exascale
Top 10 Challenges to Exascale

�  Energy efficiency:
!  Creating more energy efficient circuit,

power, and cooling technologies.

�  Interconnect technology:
!  Increasing the performance and energy

efficiency of data movement.

�  Memory Technology:
!  Integrating advanced memory

technologies to improve both capacity
and bandwidth.

�  Scalable System Software:
!  Developing scalable system software

that is power and resilience aware.

�  Programming systems:
!  Inventing new programming

environments that express massive
parallelism, data locality, and resilience

�  Data management:
!  Creating data management software that

can handle the volume, velocity and
diversity of data that is anticipated.

�  Scientific productivity:
!  Increasing the productivity of

computational scientists with new software
engineering tools and environments.

�  Exascale Algorithms:
!  Reformulating science problems and

refactoring their solution algorithms for
exascale systems.

�  Algorithms for discovery,
design, and decision:

!  Facilitating mathematical optimization and
uncertainty quantification for exascale
discovery, design, and decision making.

�  Resilience and correctness:
!  Ensuring correct scientific computation in

face of faults, reproducibility, and
algorithm verification challenges.

3 Hardware, 4 Software, 3 Algorithms/Math Related

Source: Dongarra ’s slides, http://www.scan2014.uni-wuerzburg.de/fileadmin/10030000/scan2014/talks/plenary_6.pdf

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 28 / 66

http://www.scan2014.uni-wuerzburg.de/fileadmin/10030000/scan2014/talks/plenary_6.pdf

Numerical reproducibility

Source of �oating-point non-reproducibility: rounding errors lead to
dependence of computed result on order of computations

To obtain reproducibility:

Fix the order of computations:
sequential computations: high cost on parallel machines
ûxed reduction tree: communication cost→ Intel CNR

Eliminate/Reduce the rounding errors:
ûxed-point arithmetic: limited range of exponent
higher precision: higher probability but not always→ Taufer et al.
computation without rounding-error (pre-rounding)→ Demmel et
al.
exact arithmetic (only one rounding at the end)

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 29 / 66

Numerical reproducibility for summation

Aim: compute
n

∑
i=1

xi for some �oating-point xi .

Algorithm 5 (Recursive summation algorithm)
function res = Sum(x)

s = 0;
for i = 1 ∶ n

s = s ⊕ xi

res = s

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 30 / 66

Reproducible reduction tree
Demmel et al. 2013

Idea: ûx the reduction tree ahead of computing time so that its shape
does not depends on available resources at runtime.

Strategy:
Split input vectors into chunks of ûxed size,
Impose the reduction tree over chunks (not threads).

Intel Conditional Numerical Reproducibility (CNR) library for Intel
MKL (Math Kernel Library)
→ works only for the same version ofMKL on the same hardware

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 31 / 66

Reproducible reduction tree
Demmel et al. 2013Reproducible reduction tree: Properties

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I Tree height is of order log(n), n is number of chunks

I No need to be stored explicitly,

I Total number of data transfers (intra/inter-node): ⇡ n.

I Wost case: nb of inter-node communications is O(p log(n))

I Additional memory storage: log(n/p)

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 32 / 66

Reproducible reduction tree
Demmel et al. 2013
Reproducible reduction tree: Properties (2)

thread 0 thread 1 thread 2 thread 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I Best case: nb of inter-node communications is p � 1

I Wost case: nb of inter-node communications is O(p log(n))

I Additional memory storage: log(n/p)

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 33 / 66

Reproducible reduction tree
Demmel et al. 2013

Reproducible reduction tree: Properties (2)

thread 0 thread 1 thread 2 thread 3 thread 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I Best case: nb of inter-node communications is p � 1

I Wost case: nb of inter-node communications is O(p log(n))

I Additional memory storage: log(n/p)

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 34 / 66

Pre-rounding technique
Demmel and al. 2013, 2014,2015Pre-rounding technique

EMAX EMIN

x1
x2
x3
x4
x5
x6
...

Rounding occurs after each addition. Computation’s error
depending on the intermediate results, which depend on the
computation order.

Rounding occurs at each addition. Computation’s error depends on the
intermediate results, which depend on the order of computation.

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 35 / 66

Pre-rounding techniquePre-rounding technique

EMAX EMIN

x1
x2
x3
x4
x5
x6
...

proc 1

proc 2

proc 3

Rounding occurs after each addition. Computation’s error
depending on the intermediate results, which depend on the
computation order.

Rounding occurs at each addition. Computation’s error depends on the
intermediate results, which depend on the order of computation.

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 36 / 66

Pre-rounding technique
Pre-rounding technique

EMAX EMIN

x1
x2
x3
x4
x5
x6
...

Boundary

Bits discarded

in advance

No rounding error at each addition. Computation’s error depends
on Boundary, which depends on max �xi �, not on the ordering.No rounding error at each addition. Computation’s error depends on

the boundary, which depends on max ∣xi ∣, not on the ordering.

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 37 / 66

Pre-rounding techniquePre-rounding technique

EMAX EMIN

x1
x2
x3
x4
x5
x6
...

Boundary

proc 1

proc 2

proc 3

Bits discarded

in advance

No rounding error at each addition. Computation’s error depends
on Boundary, which depends on max �xi �, not on the ordering.No rounding error at each addition. Computation’s error depends on

the boundary, which depends on max ∣xi ∣, not on the ordering.

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 38 / 66

Approach with superaccumulator

Aims at beneûting from both FPEs and Kulisch long
accumulators:

Fast and accurate computations with FPEs

‘‘Inûnite’’ precision of Kulisch long accumulators when needed

Algorithm 1 FPE of size n
Function = ExpansionAccumu-
late(x)

1: for i = 0 ∶ n − 1 do
2: (ai , x)← TwoSum(ai , x)
3: end for
4: if x ≠ 0 then
5: Superaccumulate(x)
6: end if

Kulisch long
accumulator

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 39 / 66

Multi-Level Reproducible Summation

Parallel algorithm with
5-levels

Suitable for today’s
parallel architectures

Based on FPE with EFT
and Kulisch accumulator

Guarantees ‘‘inf’’
precision

→ bit-wise reproductibility

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 40 / 66

Level 1: FilteringLevel 1: Filtering

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 41 / 66

Level 2 and 3: Scalar Superaccumulator
Level 2 and 3: Scalar Superaccumulator

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 42 / 66

Level 4 and 5: Reduction and RoundingLevel 4 and 5: Reduction and Rounding

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 43 / 66

Experimental Environments

Table : Hardware platforms employed in the experimental evaluation

Intel Core i7-4770 (Haswell) 4 cores with HT

Mesu cluster (Intel Sandy Bridge) 64 × 2 × 8 cores
Intel Xeon Phi 3110P 60 cores × 4-way MT

NVIDIA Tesla K20c 13 SMs × 192 CUDA cores

NVIDIA Quadro K5000 8 SMs × 192 CUDA cores

AMD Radeon HD 7970 32 CUs × 64 units

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 44 / 66

Parallel Summation
Performance Scaling on NVIDIA Tesla K20c

 0.0001

 0.001

 0.01

 0.1

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

T
im

e
[s

ec
s]

Array size

Parallel FP Sum
Superaccumulator

Expansion 2
Expansion 3
Expansion 4
Expansion 8

Expansion 8 early-exit

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 45 / 66

Parallel Summation
Performance Scaling on Intel Xeon Phi

 0

 5

 10

 15

 20

 25

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

G
ac

c/
s

Array size

Parallel FP sum
Demmel fast

TBB deterministic
Superacc

FPE2 + Superacc
FPE3 + Superacc
FPE4 + Superacc

FPE8EE + Superacc

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 46 / 66

Parallel Summation
Data-Dependent Performance on NVIDIA Tesla K20c

n = 67e06

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 1e+20
 1e+40

 1e+60
 1e+80

 1e+100
 1e+120

 1e+140

G
ac

c/
s

Dynamic range

Parallel FP Sum
Demmel fast

Superacc
FPE2 + Superacc
FPE3 + Superacc
FPE4 + Superacc
FPE8 + Superacc

FPE8EE + Superacc

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 47 / 66

Parallel Summation with MPI
Performance Scaling on Mesu cluster; n = 16e06

 0

 2

 4

 6

 8

 10

ParallelFPSum

bitrep2

bitrep3

R
eproB

LA
S

D
em

m
elFast

TB
B
D

eterm
inistic

Superacc

FPE2+Superacc

FPE4+Superacc

FPE8EE+Superacc

ParallelFPSum

bitrep2

bitrep3

R
eproB

LA
S

D
em

m
elFast

TB
B
D

eterm
inistic

Superacc

FPE2+Superacc

FPE4+Superacc

FPE8EE+Superacc

ParallelFPSum

bitrep2

bitrep3

R
eproB

LA
S

D
em

m
elFast

TB
B
D

eterm
inistic

Superacc

FPE2+Superacc

FPE4+Superacc

FPE8EE+Superacc

ParallelFPSum

bitrep2

bitrep3

R
eproB

LA
S

D
em

m
elFast

TB
B
D

eterm
inistic

Superacc

FPE2+Superacc

FPE4+Superacc

FPE8EE+Superacc

ParallelFPSum

bitrep2

bitrep3

R
eproB

LA
S

D
em

m
elFast

TB
B
D

eterm
inistic

Superacc

FPE2+Superacc

FPE4+Superacc

FPE8EE+Superacc

ParallelFPSum

bitrep2

bitrep3

R
eproB

LA
S

D
em

m
elFast

TB
B
D

eterm
inistic

Superacc

FPE2+Superacc

FPE4+Superacc

FPE8EE+Superacc

ParallelFPSum

bitrep2

bitrep3

R
eproB

LA
S

D
em

m
elFast

TB
B
D

eterm
inistic

Superacc

FPE2+Superacc

FPE4+Superacc

FPE8EE+Superacc

N
o

rm
il

iz
ed

 t
im

e
to

 p
ar

al
le

l
su

m
m

at
io

n

Number of processors

Computation
Reduction

6432168421

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 48 / 66

Parallel Dot Product
Performance Scaling on NVIDIA Tesla K20c

DDOT: α ∶= xT y = ∑N

i xi yi

 0.0001

 0.001

 0.01

 0.1

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

T
im

e
[s

ec
s]

Array size

Parallel DDOT
Superaccumulator

Expansion 3
Expansion 4
Expansion 8

Expansion 4 early-exit
Expansion 8 early-exit

Based on TwoProduct
and Reproducible
Summation
TwoProduct(a, b)

1: r ← a ∗ b
2: s ←
FMA(a, b,−r)

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 49 / 66

Multi-Level Reproducible DGEMM

DGEMM: C ∶= αAB + βC

Source: CUDA C Programming Guide

One FPE and Kulisch
accumulator per thread

Algorithm consists of 3 steps:
Filtering
Private SuperAccumulation
Rounding

Each thread computes multiple
elements ofmatrix C to reduce
memory pressure

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 50 / 66

Multi-Level Reproducible DGEMM

DGEMM: C ∶= αAB + βC

Source: CUDA C Programming Guide

One FPE and Kulisch
accumulator per thread

Algorithm consists of 3 steps:
Filtering
Private SuperAccumulation
Rounding

Each thread computes multiple
elements ofmatrix C to reduce
memory pressure

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 50 / 66

Parallel Matrix Multiplication

GEMM (General matrix multiplication): C ∶= αAB + βC

C

+=m

n

ml

nl

A

×

k

kl
ml

B

n
kl
nl

Work-group blocking

Cb

+=ml

nl
ms

ns

Ab

×

kl

Bb

nl

Work-item blocking

Partitioning ofmatrix-matrix multiplication

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 51 / 66

Parallel Matrix Multiplication
Performance Scaling on NVIDIA Tesla K20c

DGEMM: C ∶= αAB + βC

 0

 0.5

 1

 1.5

 2

 0 500 1000 1500 2000

T
im

e
[s

ec
s]

Matrix size [m = n = k]

DGEMM
Superaccumulator

Expansion 3
Expansion 4
Expansion 6
Expansion 8

Expansion 4 early-exit

12dn3 �ops, d
is size of FPE

Up to 76n3

morememory
usage

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 52 / 66

Triangular Solver

TRSV (Triangular solver): Lx = b

L x=b

Algorithm 2 Forward substitu-
tion

1: x1 ← b1/l11
2: for i = 2→ n do
3: s ← bi
4: for j = 1→ i − 1 do
5: s ← s − li jx j

6: end for
7: xi ← s/lii
8: end for

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 53 / 66

Triangular Solver
Matrix Partitioning

TRSV

TRSV

TRSV

TRSV

GEMV
GEMV

GEMV

b

Figure : Partitioning of L in
GotoBLAS

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 54 / 66

Triangular Solver
Matrix Partitioning

TRSV

TRSV

TRSV

TRSV

GEMV
GEMV

GEMV

b

Figure : Partitioning of L in
GotoBLAS

Source: A fast triangular solve on GPUs by Hogg

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 54 / 66

Triangular Solver
Accuracy

∥x−x̂∥
∥x∥ ≤ n ⋅ u ⋅ cond(T , x) +O(u2)

100 1010 1020 1030 1040 1050

10−15

10−10

10−5

100

Condition Number

R
el

at
iv

e
F

or
w

ar
d

E
rr

or

DTRSV
ExDTRSV

1: x1 ← f l(b1/l11)
2: for i = 2→ n do
3: s ← bi
4: for j = 1→ i − 1 do
5: s ← s − li jx j

6: end for
7: xi ← f l(RN(s)/lii)
8: end for

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 55 / 66

Multi-Level Reproducible TRSV
Performance Scaling on NVIDIA Quadro K5000

TRSV: Lx = b

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2000 4000 6000 8000 10000 12000 14000 16000

T
im

e
[s

ec
s]

Matrix size [n]

Parallel DTRSV
Superaccumulator

Expansion 3
Expansion 4
Expansion 6
Expansion 8

Expansion 6 early-exit

Use of n × b
threads and
superaccumulators

Higher usage of
memory and
switches to
accumulators→
lower performance

But, it is
reproducible

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 56 / 66

Reproducible TRSV with iterative reûnement

Algorithm 3 Reproducible TRSV with iterative reûnement
1: x̂ ← T−1b ExTRSV
2: for i = 1→ nbiter do
3: r ← b − T x̂ ExGEMV
4: d ← T−1r ExTRSV
5: x̂ ← x̂ + d ExAXPY
6: end for

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 57 / 66

Reproducible TRSV with iterative reûnement

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 58 / 66

Reproducible TRSV with iterative reûnement

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000

T
im

e
[s

ec
s]

Matrix size [n]

Parallel DTRSV
ExTRSV w FPE4

ExTRSV w ExIR/Superacc
ExTRSV w ExIR/FPE3
ExTRSV w ExIR/FPE4
ExTRSV w ExIR/FPE8

ExTRSV w ExIR/FPE4EE
ExTRSV w ExIR/FPE8EE

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 59 / 66

Reproducible LU factorization

TRSV

TRSV

TRSV

TRSV

GEMV

GEMV

GEMV

bs

(a) GotoBLAS

bs

WG1

WG0

WG3

WG2

(b) Hogg’s

Fig. 2: Partitioning of a lower triangular matrix L, where bs stands
for a block size and WGx is a number of a work group x.

A. Iterative Refinement to Improve the ExTRSV Accuracy

Concerning the accuracy of the reproducible triangular
solver, as it can been seen in Fig. 3, ExTRSV delivers
the same or often better accuracy as the double precision
triangular solver. Indeed, the accuracy of the reproducible
triangular solver can be improved through using double-double
precision. However, this approach is already 9 slower than
TRSV and, moreover, it does not provide any guarantees on
the reproducibility of the results. Therefore, we propose here to
apply the iterative refinement [11] in order to obtain correctly
rounded results of the exact triangular solver.

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
0

10
10

10
20

10
30

10
40

10
50

R
e
la

ti
v
e
 f

o
rw

a
rd

 e
rr

o
r

Condition number

DTRSV

ExTRSV

Fig. 3: Accuracy of DTRSV and ExDTRSV with respect to the
condition number of the matrix A.

The reproducible triangular solver with the iterative refine-
ment is presented in Alg. 5. At first, we apply the ExTRSV
routine to solve a triangular system. In order to improve the
accuracy of the solution bx, we rely on the classic iterative
refinement process that is expressed in terms of the ExBLAS
routines. On each iteration of this process, we find the residual
r by applying the ExGEMV routine. Then, we solve the
triangular system with the vector-residual r as a right-hand
side in order to improve the accuracy of the solution. Finally,

we either call the ExAXPY routine (y := ↵x + y) or add two
vectors directly as the correct rounding of their accumulation is
guaranteed. The process is continued until the desired accuracy
is reached. In practice, one iteration of the iterative refinement
is sufficient. That is also advocated by the cost of each step
of the process.

Algorithm 5: The reproducible triangular solver with the
reproducible iterative refinement.

bx := T�1b ExTRSV
for i = 1 : nbiter do

r := b� T bx ExGEMV
d := T�1r ExTRSV
x := bx + d ExAXPY

end

V. REPRODUCIBLE LU FACTORIZATION

We consider an unblocked variant for computing the LU
factorization without pivoting [25]. This algorithm decomposes
an m ⇥ n matrix A in the product of an m ⇥ min(m, n)
unit lower triangular matrix L and an min(m, n) ⇥ n upper
triangular matrix U :

A = LU.

The computation is performed by calling three BLAS routines,
namely TRSV, DOT, and GEMV.

Algorithm 6: An unblocked algorithm for the LU fac-
torization.

Partition

A!
✓

ATL ATR

ABL ABR

◆

where ATL is 0⇥ 0

While size(ATL) < size(A) do
Repartition
✓

ATL ATR

ABL ABR

◆
!

0
@

A00 a01 A02

aT
10 ↵11 aT

12

A20 a21 A22

1
A

where ↵11 is 1⇥ 1

aT
10 := aT

10U
�1
00 (TRSV)

↵11 := ↵11 � aT
10a01 (DOT)

aT
12 := aT

12 � aT
10A02 (GEMV)

Continue with
✓

ATL ATR

ABL ABR

◆

0
@

A00 a01 A02

aT
10 ↵11 aT

12

A20 a21 A22

1
A

endwhile

The unblocked variant of the LU factorization is presented
using the FLAME notation [3], [25]. This notation makes it
easier to identify what regions of the matrix are updated and
used, see Fig. 4. In Alg. 6, size(A) indicates the number of
columns of the matrix A; ’T’, ’B’, ’L’, and ’R’ stand for
’Top’, ’Bottom’, ’Left’, and ’Right’, respectively. Before the
computation starts, the matrix A is virtually partitioned into

A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

i

1

m − i − 1

i 1 n − i − 1

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 60 / 66

Reproducible LU factorization
Performance of ExLU on NVIDIA K20c.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 500 1000 1500 2000

T
im

e
[s

ec
s]

Matrix size [m = n]

Parallel DLU
Superacc

FPE3 + Superacc
FPE4 + Superacc
FPE8 + Superacc

FPE8EE + Superacc

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 61 / 66

Reproducible linear algebra libraries

ReproBLAS : http://bebop.cs.berkeley.edu/reproblas/

developed at University of California, Berkeley by Jim Demmel and
Hong Diep Nguyen

ExBLAS : https://exblas.lip6.fr/

developed at LIP6, UPMC by Sylvain Collange, Stef Graillat, David
Defour and Roman Iakymchuk

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 62 / 66

http://bebop.cs.berkeley.edu/reproblas/
https://exblas.lip6.fr/

Conclusions

he ProposedMulti-Level Algorithm
Computes the results with no errors due to rounding

Provides bit-wise identical reproducibility, regardless of
Data permutation, data assignment
hread scheduling, etc.

Is eõcient – delivers comparable performance to the
standard parallel summation and dot product

Scales with the increase of the problem size or the
number of cores

he ExGEMM and ExLU performances need to be
enhanced

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 63 / 66

Conclusions

he ProposedMulti-Level Algorithm
Computes the results with no errors due to rounding

Provides bit-wise identical reproducibility, regardless of
Data permutation, data assignment
hread scheduling, etc.

Is eõcient – delivers comparable performance to the
standard parallel summation and dot product

Scales with the increase of the problem size or the
number of cores

he ExGEMM and ExLU performances need to be
enhanced

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 63 / 66

Conclusions

he ProposedMulti-Level Algorithm
Computes the results with no errors due to rounding

Provides bit-wise identical reproducibility, regardless of
Data permutation, data assignment
hread scheduling, etc.

Is eõcient – delivers comparable performance to the
standard parallel summation and dot product

Scales with the increase of the problem size or the
number of cores

he ExGEMM and ExLU performances need to be
enhanced

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 63 / 66

FutureWork

ExBLAS on more architectures (Intel Phi and
Intel CPUs)

ExBLAS for large scale systems (ExaScale) with
several nodes

Use of Communication-Avoiding Algorithms

ExBLAS – Exact BLAS
ExBLAS-1: ExSCAL, ExDOT, ExAXPY, ...

ExBLAS-2: ExGER, ExGEMV, ExTRSV, ...

ExBLAS-3: ExGEMM, ExTRMM, ExSYR2K, ...

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 64 / 66

References I

J. Demmel,H. D. Nguyen.
Fast reproducible �oating-point summation.
Proceedings of the 21st IEEE Symposium on Computer Arithmetic,
Austin, Texas, USA, 2013, pp. 163–172.

A. Arteaga, O. Fuhrer, T. Hoe�er.
Designing bit-reproducible portable high-performance applications.
Proceedings of the 2014 IEEE 28th International Parallel and
Distributed Processing Symposium, IPDPS ’14, IEEE Computer
Society,Washington, DC, USA, 2014, pp. 1235–1244.

J. Demmel andH. D. Nguyen.
Parallel Reproducible Summation.
IEEE Transactions on Computers, 64(7):2060–2070, 2015.

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 65 / 66

References II

S. Collange, D. Defour, S. Graillat, and R. Iakymchuk.
Numerical Reproducibility for the Parallel Reduction on Multi- and
Many-Core Architectures.
Parallel Computing, 49:83–97, 2015.

M. Taufer,M. Becchi.
he Numerical Reproducibility Fair Trade: Facing the Concurrency
Challenges at the Extreme Scale
Challenges in 21st Century Experimental Mathematical
Computation. Institute for Computational and Experimental
Research in Mathematics (ICERM). Providence, RI, USA, 2014

S. Graillat (Univ. Paris 6) Numerical reproducibility and HPC 66 / 66

	Introduction - motivations
	Floating-point arithmetic
	Numerical reproducibility and HPC

