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Motivations

Reproducibility of experiments and analysis by others is one of the
pillars ofmodern science

However descriptions of experimental protocols, so�ware, and
analysis is o�en lacunar and rarely allows others to reproduce an
experiment

By numerical reproducibility, wemean getting a bitwise identical
�oating-point result from multiple runs of the same code on the same
inputs.
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Motivations

2016 Petascale: we are able to perform 30 − 40 peta�ops

2017 Petascale: we plan to perform 100 − 200 peta�ops

2020 Exascale: we aim to perform exa�ops (1018 �ops)

⇓

1018 rounding errors per second

Improve the numerical quality and the numerical reproducibility of
computations on high-performance computing (HPC) platforms,
starting from multithreaded computations on multicore processors and
targeting ultimately exascale computations.
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Motivations

BLAS-1 [1979]: y ∶= y + αx α ∈ R; x , y ∈ Rn 2/3
α ∶= α + xT y

BLAS-2 [1988]: A ∶= A+ xyT A ∈ Rn×n; x , y ∈ Rn 2
y ∶= A−1x

BLAS-3 [1990]: C ∶= C + AB A, B,C ∈ Rn×n n/2
C ∶= A−1B

Basic Linear Algebra Subprograms (BLAS)

Refer. BLAS Vendor BLAS GotoBLAS ATLAS

LAPACK FLAME NAG
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Ultimate Goal

Compute BLAS operations with �oating-point numbers fast and precise,
ensuring their reproducibility, on a wide range of architectures

ExBLAS – Exact BLAS
ExBLAS-1: ExSCAL, ExDOT, ExAXPY, ...

ExBLAS-2: ExGER, ExGEMV, ExTRSV, ExSYR, ...

ExBLAS-3: ExGEMM, ExTRSM, ExSYR2K, ...
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Floating-point numbers

Normalized �oating-point numbers F ⊆ R:

x = ± x0.x1 . . . xM−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

mantissa

×be , 0 ≤ xi ≤ b − 1, x0 ≠ 0

b : basis,M : precision, e : exponent such that emin ≤ e ≤ emax
epsilon machine є = b1−M

Approximation of R by F with rounding � ∶ R→ F.
Let x ∈ R then

�(x) = x(1 + δ), ∣δ∣ ≤ u

Unit rounding u = є/2 for rounding to the nearest
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Standardmodel of �oating-point arithmetic
Let x , y ∈ F and ○ ∈ {+,−, ⋅, /}.

he result x ○ y is not in general a �oating-point number

�(x ○ y) = (x ○ y)(1 + δ), ∣δ∣ ≤ u

IEEE 754 standard (1985 and 2008)

Correctly rounded : arithmetic ops (+,−,×, /,√ ) performed as if ûrst
calculated to inûnite precision, then rounded.

Type Size Mantissa Exponent Unit rounding Interval
binary32 32 bits 23+1 bits 8 bits u = 21−24 ≈ 1, 92 × 10−7 ≈ 10±38

binary64 64 bits 52+1 bits 11 bits u = 21−53 ≈ 2, 22 × 10−16 ≈ 10±308
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Error-free transformation (EFT) for addition

x = a ⊕ b ⇒ a + b = x + y with y ∈ F,

Algorithm of Dekker (1971) and Knuth (1974)

Algorithm 1 (EFT of the sum of 2 �oating-point numbers)
function [x , y] = TwoSum(a, b)

x = a ⊕ b
z = x ⊖ a
y = (a ⊖ (x ⊖ z))⊕ (b ⊖ z)
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EFT for multiplication

x = a ⊗ b ⇒ a × b = x + y with y ∈ F,

Given a, b, c ∈ F,
FMA(a, b, c) is the nearest �oating-point number a ⋅ b + c ∈ F

Algorithm 2 (EFT of the product of 2 �oating-point
numbers)
function [x , y] = TwoProduct(a, b)

x = a ⊗ b
y = FMA(a, b,−x)

he FMA is available for example on PowerPC, Itanium, Cell, Xeon Phi,
Haswell processors.
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Floating-point expansions (FPE)

Representation using �oating-point numbers: non-evaluated sum of
�oating-point numbers

n

∑
i=0
fi

where the fi are �oating-point numbers, if possible with exponents
suõciently wide apart so that themantissas do not overlap.
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double-double library

A double-double number is a non-evaluated pair (ah , al) of IEEE 754
�oating-point numbers satisfying a = ah + al et ∣al ∣ ≤ u∣ah∣.

Algorithm 3 (Addition of a double b and a double-double
(ah , al))
function [ch , cl] = add_dd_d(ah , al , b)

[th , tl] = TwoSum(ah , b)
[ch , cl] = TwoSum(th , (tl ⊕ al))
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double-double library

Algorithm 4 (Product of a double-double (ah , al) by a
double b)
function [ch , cl] = prod_dd_d(ah , al , b)

[sh , sl] = TwoProduct(ah , b)
[th , tl] = TwoSum(sh , (al ⊗ b))
[ch , cl] = TwoSum(th , (tl ⊕ sl))
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Kulisch accumulator

Computing without error due to the limited range of �oating-point
numbers

204 S. Siegel, J. Wolff von Gudenberg

Keywords Exact dotproduct · Exact summation · Long accumulator ·
Carry-save adder · Cache

1 Long accumulator

1.1 Fixed-point number interpretation

For a floating-point system F = Fl(β, n, emin, emax) with n mantissa digits to base
β and exponent range emin to emax the length of the long store to accumulate dot
products is t = 2(|emin| + n + emax) + g digits to base β, where g is the number
of guard digits to prevent intermediate overflow. The long store, also known as long
accumulator a thus can be regarded as a t digits fixed-point number. a ∈ Fx(β, t)
where Fx(β, t) describes the t-digit fixed-point system with base β.

a =
t−1∑

i=0

aiβ
i ∈ Fx(β, t) (1)

The same bit string can also be regarded as a sequence of p-ary digits of base β p.

a =
t/p−1∑

i=0




p−1∑

j=0

aip+ j · β j


 · β i p (2)

This grouping of p-ary digits is later used for a byte-wise alignment.
Every floating-point number b ∈ F belongs to that fixed-point system.

b = mb · βeb =
(

n−1∑

i=0

bi · β i

)
· βe where e = eb + 2 ∗ |emin|

b =
t−1∑

i=0

bi · β i (3)

where bi = 0 for i < e ∧ i ≥ e + n
We summarize the well known properties of the long accumulator in the following

remarks.

Remark 1 There are several ways to store the information of the complete, exact sum.
The well known layout is shown in Fig. 1.

Fig. 1 Long accumulator for exact scalar product accumulation

123
In double precision, n = 53 bits, emin = −1022, emax = 1023 and k = 92
bits

A register of length L = k + 2emax + 2∣emin∣ + 2n = 4288 bits is
suõcient (67 words of 64 bits)
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Kulisch accumulator

Comments on Fast and Exact Accumulation of Products 153

interface

register file (or memory access unit)

128

exp(a) exp(b) mant(a) mant(b)

11 11 53 53

adder multiplier 53 × 53

12 106

mant(a)×mant(b)

106

ringshifter

LSB0123

456

MSB

6
6

Fig. 5. Complete register for exact scalar product accumulation

the entire word. In the figure the flag is shown as a dark point. As soon as the
exponent of the summand is available the flags allow selecting and incrementing
the carry word. This can be done simultaneously with adding the summand into
the selected drawers. Similar considerations may be applied to handle a possible
borrow.

5 Circuitry for the Exact Dot Product

Basing on an architecture which is similar to figure 5, a coprocessor chip has been
developed which demonstrates that an EDP may be implemented in hardware
as efficiently as an ordinary dot product in floating-point arithmetic [12,13].

Source: Kulisch ’s papers
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From multi-core to many-cores

Intel Xeon Phi: 50 x86 cores NVIDIA K20: 2496 CUDA cores

Source: http://www.altera.com/technology/system-design/articles/2012/multicore-many-core.html
http://wccftech.com/nvidia-tesla-k20-gk110-specifications-unveiled/
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Execution on many-cores

Source: http://www.pgroup.com/lit/articles/insider/v2n4a1.htm
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Numerical reproducibility

Floating-point operations suòers from rounding error

Floating-point operation (+,×) are commutatives but not associative :

(−1 + 1) + 2−53 ≠ −1 + (1 + 2−53) in double precision.

Consequence: results of �oating-point computations depend on the
order of computation.

Numerical reproducibility: ability to obtain bit-wise identical results
from multiple runs of the same code on the same input data on diòerent
or even similar architectures.
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Motivations

Demands for reproducible �oating-point computations:

Debugging: look inside the code step-by-step, andmight need to
rerun multiple times on the same input data.

Understanding the reliability of output

Contractual reasons (security, liability, etc.)

...

Existing reproducibility failures for numerical simulations in energy,
dynamical weather science, dynamical molecular, dynamical �uid
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Sources of non-reproducibility
A performance-optimized �oating-point library is prone to
inconsistency for various reasons:

Changing Data Layouts:
Data partitioning
Data alignment

Changing Hardware Resources:
Number of threads
FusedMultiply-Add (FMA) support
Intermediate precision (64 bits, 80 bits, 128 bits, etc)
Data path (SSE, AVX, GPU warp, etc)
Cache line size
Number of processors
Network topology
...
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Numerical reproducibility for Exascale

Exascale : ability to execute 1018 �oating-point operations per second
usingO(109) processors

Highly dynamic scheduling
Network heterogeneity
increased communication time

Cost = Arithmetic + Communication
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Numerical reproducibility for Exascale
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Numerical reproducibility for Exascale
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Numerical reproducibility for Exascale
Top 10 Challenges to Exascale 

�  Energy efficiency:  
!  Creating more energy efficient circuit, 

power, and cooling technologies. 

�  Interconnect technology:  
!  Increasing the performance and energy 

efficiency of data movement. 

�  Memory Technology:  
!  Integrating advanced memory 

technologies to improve both capacity 
and bandwidth. 

�  Scalable System Software:  
!  Developing scalable system software 

that is power and resilience aware. 

�  Programming systems:  
!  Inventing new programming 

environments that express massive 
parallelism, data locality, and resilience 

�  Data management:  
!  Creating data management software that 

can handle the volume, velocity and 
diversity of data that is anticipated.  

�  Scientific productivity:  
!  Increasing the productivity of 

computational scientists with new software 
engineering tools and environments. 

�  Exascale Algorithms:  
!  Reformulating science problems and 

refactoring their solution algorithms for 
exascale systems. 

�  Algorithms for discovery, 
design, and decision:  

!  Facilitating mathematical optimization and 
uncertainty quantification for exascale 
discovery, design, and decision making. 

�  Resilience and correctness:  
!  Ensuring correct scientific computation in 

face of faults, reproducibility, and 
algorithm verification challenges. 

 

3 Hardware, 4 Software, 3 Algorithms/Math Related 

Source: Dongarra ’s slides, http://www.scan2014.uni-wuerzburg.de/fileadmin/10030000/scan2014/talks/plenary_6.pdf
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Numerical reproducibility

Source of �oating-point non-reproducibility: rounding errors lead to
dependence of computed result on order of computations

To obtain reproducibility:

Fix the order of computations:
sequential computations: high cost on parallel machines
ûxed reduction tree: communication cost→ Intel CNR

Eliminate/Reduce the rounding errors:
ûxed-point arithmetic: limited range of exponent
higher precision: higher probability but not always→ Taufer et al.
computation without rounding-error (pre-rounding)→ Demmel et
al.
exact arithmetic (only one rounding at the end)
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Numerical reproducibility for summation

Aim: compute
n

∑
i=1

xi for some �oating-point xi .

Algorithm 5 (Recursive summation algorithm)
function res = Sum(x)

s = 0;
for i = 1 ∶ n

s = s ⊕ xi

res = s
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Reproducible reduction tree
Demmel et al. 2013

Idea: ûx the reduction tree ahead of computing time so that its shape
does not depends on available resources at runtime.

Strategy:
Split input vectors into chunks of ûxed size,
Impose the reduction tree over chunks (not threads).

Intel Conditional Numerical Reproducibility (CNR) library for Intel
MKL (Math Kernel Library)
→ works only for the same version ofMKL on the same hardware
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Reproducible reduction tree
Demmel et al. 2013Reproducible reduction tree: Properties

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I Tree height is of order log(n), n is number of chunks

I No need to be stored explicitly,

I Total number of data transfers (intra/inter-node): ⇡ n.

I Wost case: nb of inter-node communications is O(p log(n))

I Additional memory storage: log(n/p)
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Reproducible reduction tree
Demmel et al. 2013
Reproducible reduction tree: Properties (2)

thread 0 thread 1 thread 2 thread 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I Best case: nb of inter-node communications is p � 1

I Wost case: nb of inter-node communications is O(p log(n))

I Additional memory storage: log(n/p)
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Reproducible reduction tree
Demmel et al. 2013

Reproducible reduction tree: Properties (2)

thread 0 thread 1 thread 2 thread 3 thread 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Pre-rounding technique
Demmel and al. 2013, 2014,2015Pre-rounding technique

EMAX EMIN

x1
x2
x3
x4
x5
x6
...

Rounding occurs after each addition. Computation’s error
depending on the intermediate results, which depend on the
computation order.

Rounding occurs at each addition. Computation’s error depends on the
intermediate results, which depend on the order of computation.
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Pre-rounding technique
Pre-rounding technique

EMAX EMIN

x1
x2
x3
x4
x5
x6
...

Boundary

Bits discarded

in advance

No rounding error at each addition. Computation’s error depends
on Boundary, which depends on max �xi �, not on the ordering.No rounding error at each addition. Computation’s error depends on

the boundary, which depends on max ∣xi ∣, not on the ordering.
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Approach with superaccumulator

Aims at beneûting from both FPEs and Kulisch long
accumulators:

Fast and accurate computations with FPEs

‘‘Inûnite’’ precision of Kulisch long accumulators when needed

Algorithm 1 FPE of size n
Function = ExpansionAccumu-
late(x)

1: for i = 0 ∶ n − 1 do
2: (ai , x)← TwoSum(ai , x)
3: end for
4: if x ≠ 0 then
5: Superaccumulate(x)
6: end if

Kulisch long
accumulator
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Multi-Level Reproducible Summation

Parallel algorithm with
5-levels

Suitable for today’s
parallel architectures

Based on FPE with EFT
and Kulisch accumulator

Guarantees ‘‘inf’’
precision

→ bit-wise reproductibility
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Level 1: FilteringLevel 1: Filtering
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Level 2 and 3: Scalar Superaccumulator
Level 2 and 3: Scalar Superaccumulator
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Level 4 and 5: Reduction and RoundingLevel 4 and 5: Reduction and Rounding
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Experimental Environments

Table : Hardware platforms employed in the experimental evaluation

Intel Core i7-4770 (Haswell) 4 cores with HT

Mesu cluster (Intel Sandy Bridge) 64 × 2 × 8 cores
Intel Xeon Phi 3110P 60 cores × 4-way MT

NVIDIA Tesla K20c 13 SMs × 192 CUDA cores

NVIDIA Quadro K5000 8 SMs × 192 CUDA cores

AMD Radeon HD 7970 32 CUs × 64 units
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Parallel Summation
Performance Scaling on NVIDIA Tesla K20c
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Parallel Summation
Performance Scaling on Intel Xeon Phi
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Parallel Summation
Data-Dependent Performance on NVIDIA Tesla K20c

n = 67e06
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Parallel Summation with MPI
Performance Scaling on Mesu cluster; n = 16e06
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Parallel Dot Product
Performance Scaling on NVIDIA Tesla K20c

DDOT: α ∶= xT y = ∑N

i xi yi
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TwoProduct(a, b)

1: r ← a ∗ b
2: s ←
FMA(a, b,−r)
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Multi-Level Reproducible DGEMM

DGEMM: C ∶= αAB + βC

Source: CUDA C Programming Guide

One FPE and Kulisch
accumulator per thread

Algorithm consists of 3 steps:
Filtering
Private SuperAccumulation
Rounding

Each thread computes multiple
elements ofmatrix C to reduce
memory pressure
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Parallel Matrix Multiplication

GEMM (General matrix multiplication): C ∶= αAB + βC

C

+=m

n

ml

nl

A

×

k

kl
ml

B

n
kl
nl

Work-group blocking

Cb

+=ml

nl
ms

ns

Ab

×

kl

Bb

nl

Work-item blocking
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Parallel Matrix Multiplication
Performance Scaling on NVIDIA Tesla K20c

DGEMM: C ∶= αAB + βC
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Triangular Solver

TRSV (Triangular solver): Lx = b

L x=b

Algorithm 2 Forward substitu-
tion

1: x1 ← b1/l11
2: for i = 2→ n do
3: s ← bi
4: for j = 1→ i − 1 do
5: s ← s − li jx j

6: end for
7: xi ← s/lii
8: end for
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Triangular Solver
Matrix Partitioning

TRSV

TRSV

TRSV

TRSV

GEMV
GEMV

GEMV

b

Figure : Partitioning of L in
GotoBLAS
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Triangular Solver
Matrix Partitioning

TRSV
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GEMV
GEMV

GEMV

b

Figure : Partitioning of L in
GotoBLAS

Source: A fast triangular solve on GPUs by Hogg
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Triangular Solver
Accuracy

∥x−x̂∥
∥x∥ ≤ n ⋅ u ⋅ cond(T , x) +O(u2)
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1: x1 ← f l(b1/l11)
2: for i = 2→ n do
3: s ← bi
4: for j = 1→ i − 1 do
5: s ← s − li jx j

6: end for
7: xi ← f l(RN(s)/lii)
8: end for
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Multi-Level Reproducible TRSV
Performance Scaling on NVIDIA Quadro K5000

TRSV: Lx = b
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Reproducible TRSV with iterative reûnement

Algorithm 3 Reproducible TRSV with iterative reûnement
1: x̂ ← T−1b ExTRSV
2: for i = 1→ nbiter do
3: r ← b − T x̂ ExGEMV
4: d ← T−1r ExTRSV
5: x̂ ← x̂ + d ExAXPY
6: end for
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Reproducible TRSV with iterative reûnement
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Reproducible LU factorization

TRSV

TRSV

TRSV
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WG2

(b) Hogg’s

Fig. 2: Partitioning of a lower triangular matrix L, where bs stands
for a block size and WGx is a number of a work group x.

A. Iterative Refinement to Improve the ExTRSV Accuracy

Concerning the accuracy of the reproducible triangular
solver, as it can been seen in Fig. 3, ExTRSV delivers
the same or often better accuracy as the double precision
triangular solver. Indeed, the accuracy of the reproducible
triangular solver can be improved through using double-double
precision. However, this approach is already 9 slower than
TRSV and, moreover, it does not provide any guarantees on
the reproducibility of the results. Therefore, we propose here to
apply the iterative refinement [11] in order to obtain correctly
rounded results of the exact triangular solver.
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Fig. 3: Accuracy of DTRSV and ExDTRSV with respect to the
condition number of the matrix A.

The reproducible triangular solver with the iterative refine-
ment is presented in Alg. 5. At first, we apply the ExTRSV
routine to solve a triangular system. In order to improve the
accuracy of the solution bx, we rely on the classic iterative
refinement process that is expressed in terms of the ExBLAS
routines. On each iteration of this process, we find the residual
r by applying the ExGEMV routine. Then, we solve the
triangular system with the vector-residual r as a right-hand
side in order to improve the accuracy of the solution. Finally,

we either call the ExAXPY routine (y := ↵x + y) or add two
vectors directly as the correct rounding of their accumulation is
guaranteed. The process is continued until the desired accuracy
is reached. In practice, one iteration of the iterative refinement
is sufficient. That is also advocated by the cost of each step
of the process.

Algorithm 5: The reproducible triangular solver with the
reproducible iterative refinement.

bx := T�1b ExTRSV
for i = 1 : nbiter do

r := b� T bx ExGEMV
d := T�1r ExTRSV
x := bx + d ExAXPY

end

V. REPRODUCIBLE LU FACTORIZATION

We consider an unblocked variant for computing the LU
factorization without pivoting [25]. This algorithm decomposes
an m ⇥ n matrix A in the product of an m ⇥ min(m, n)
unit lower triangular matrix L and an min(m, n) ⇥ n upper
triangular matrix U :

A = LU.

The computation is performed by calling three BLAS routines,
namely TRSV, DOT, and GEMV.

Algorithm 6: An unblocked algorithm for the LU fac-
torization.

Partition

A!
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ABL ABR

◆

where ATL is 0⇥ 0

While size(ATL) < size(A) do
Repartition
✓

ATL ATR

ABL ABR

◆
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endwhile

The unblocked variant of the LU factorization is presented
using the FLAME notation [3], [25]. This notation makes it
easier to identify what regions of the matrix are updated and
used, see Fig. 4. In Alg. 6, size(A) indicates the number of
columns of the matrix A; ’T’, ’B’, ’L’, and ’R’ stand for
’Top’, ’Bottom’, ’Left’, and ’Right’, respectively. Before the
computation starts, the matrix A is virtually partitioned into

A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

i

1

m − i − 1

i 1 n − i − 1
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Reproducible LU factorization
Performance of ExLU on NVIDIA K20c.
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Reproducible linear algebra libraries

ReproBLAS : http://bebop.cs.berkeley.edu/reproblas/

developed at University of California, Berkeley by Jim Demmel and
Hong Diep Nguyen

ExBLAS : https://exblas.lip6.fr/

developed at LIP6, UPMC by Sylvain Collange, Stef Graillat, David
Defour and Roman Iakymchuk
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Conclusions

he ProposedMulti-Level Algorithm
Computes the results with no errors due to rounding

Provides bit-wise identical reproducibility, regardless of
Data permutation, data assignment
hread scheduling, etc.

Is eõcient – delivers comparable performance to the
standard parallel summation and dot product

Scales with the increase of the problem size or the
number of cores

he ExGEMM and ExLU performances need to be
enhanced
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FutureWork

ExBLAS on more architectures (Intel Phi and
Intel CPUs)

ExBLAS for large scale systems (ExaScale) with
several nodes

Use of Communication-Avoiding Algorithms

ExBLAS – Exact BLAS
ExBLAS-1: ExSCAL, ExDOT, ExAXPY, ...

ExBLAS-2: ExGER, ExGEMV, ExTRSV, ...

ExBLAS-3: ExGEMM, ExTRMM, ExSYR2K, ...
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