A parallel algorithm for dot product over word-size finite field using floating-point arithmetic

Stef Graillat

Joint work with Jérémy Jean

LIP6/PEQUAN - Université Pierre et Marie Curie (Paris 6) - CNRS
SYNASC 2010
12th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing
Timisoara, Romania, September 23-26, 2010

S. Graillat (Univ. Paris 6)

A parallel algorithm for dot product

Motivations

- Dot products: key tool in numerical linear algebra
- Fast algorithms in scientific computing
- Cryptology
- Error-correcting codes
- Computer algebra

Floating-point numbers

Normalized floating-point numbers $\mathbb{F} \subset \mathbb{R}$:

$$
x= \pm \underbrace{x_{0} \cdot x_{1} \ldots x_{M-1}}_{\text {mantissa }} \times b^{e}, \quad 0 \leq x_{i} \leq b-1, \quad x_{0} \neq 0
$$

b : basis, M : precision, e : exponent such that $e_{\min } \leq e \leq e_{\max }$

Approximation of \mathbb{R} by \mathbb{F} with rounding $\mathbf{f l}: \mathbb{R} \rightarrow \mathbb{F}$.
Let $x \in \mathbb{R}$ then

$$
\mathbf{f l}(x)=x(1+\delta), \quad|\delta| \leq \mathbf{u}
$$

Unit rounding $\mathbf{u}=b^{1-M}$ for rounding toward zero

Standard model of floating-point arithmetic

Let $x, y \in \mathbb{F}$ and $\circ \in\{+,-, \cdot, /\}$.

The result $x \circ y$ is not in general a floating-point number

$$
\mathbf{f l}(x \circ y)=(x \circ y)(1+\delta), \quad|\delta| \leq \mathbf{u}
$$

IEEE 754 standard (1985)

Type	Size	Mantissa	Exponent	Unit rounding	Interval
Single	32 bits	$23+1$ bits	8 bits	$\mathbf{u}=2^{1-24} \approx 1,92 \times 10^{-7}$	$\approx 10^{ \pm 38}$
Double	64 bits	$52+1$ bits	11 bits	$\mathbf{u}=2^{1-53} \approx 2,22 \times 10^{-16}$	$\approx 10^{ \pm 308}$

Finite field \mathbb{F}_{p} (p prime)

$\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}=G F(p)=\{0,1, \ldots, p-1\}$ is a finite field with characteristic p

Finite field \mathbb{F}_{p} (p prime)

$\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}=G F(p)=\{0,1, \ldots, p-1\}$ is a finite field with characteristic p

Operations in the field, for $a, b \in \mathbb{Z} / p \mathbb{Z}$:

- Addition: $a+b \in\{0, \ldots, 2(p-1)\} \rightarrow a+b(\bmod p) \in \mathbb{Z} / p \mathbb{Z}$
- Multiplication: $a b \in\left\{0, \ldots,(p-1)^{2}\right\} \rightarrow a b(\bmod p) \in \mathbb{Z} / p \mathbb{Z}$

Finite field \mathbb{F}_{p} (p prime)

$\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}=G F(p)=\{0,1, \ldots, p-1\}$ is a finite field with characteristic p

Operations in the field, for $a, b \in \mathbb{Z} / p \mathbb{Z}$:

- Addition: $a+b \in\{0, \ldots, 2(p-1)\} \rightarrow a+b(\bmod p) \in \mathbb{Z} / p \mathbb{Z}$
- Multiplication: $a b \in\left\{0, \ldots,(p-1)^{2}\right\} \rightarrow a b(\bmod p) \in \mathbb{Z} / p \mathbb{Z}$

Reduction modulo p for $a \in \mathbb{Z} / p \mathbb{Z}$:

$$
a \quad(\bmod p)=a-\left\lfloor\frac{a}{p}\right\rfloor p=a-\lfloor\operatorname{a.inv} P\rfloor p
$$

Aim

Let $p \geq 3$ a prime number and $\left(a_{i}\right)_{i},\left(b_{i}\right)_{i}$ two vectors of N scalars in $\mathbb{Z} / p \mathbb{Z}$. We want to compute the dot product of a and b in $\mathbb{Z} / p \mathbb{Z}$:

$$
a \cdot b=\sum_{i=1}^{N} a_{i} b_{i} \quad(\bmod p)
$$

Aim

Let $p \geq 3$ a prime number and $\left(a_{i}\right)_{i},\left(b_{i}\right)_{i}$ two vectors of N scalars in $\mathbb{Z} / p \mathbb{Z}$. We want to compute the dot product of a and b in $\mathbb{Z} / p \mathbb{Z}$:

$$
a \cdot b=\sum_{i=1}^{N} a_{i} b_{i} \quad(\bmod p)
$$

Assumptions:

- The integers are stored as floating-point numbers $\longrightarrow \mathbb{F} \cap \mathbb{N}$
- The prime p satisfies $\quad p-1<2^{M-1}$
- The numbers are assumed to be nonnegative
- The rounding mode is rounding toward zero

Rounding toward zero in \mathbb{R}^{+}

Let $x \in \mathbb{R}^{+} \quad \mathbf{f l}(x)$ be the rounding toward zero of x in \mathbb{F}

- Equivalent to a truncation

Rounding toward zero in \mathbb{R}^{+}

Let $x \in \mathbb{R}^{+} \quad \mathbf{f l}(x)$ be the rounding toward zero of x in \mathbb{F}

- Equivalent to a truncation
- The rounding is less or equal to the exact number:

$$
\forall x \in \mathbb{R}^{+}, \mathbf{f l}(x) \leq x
$$

Rounding toward zero in \mathbb{R}^{+}

Let $x \in \mathbb{R}^{+}$
$\mathbf{f l}(x)$ be the rounding toward zero of x in \mathbb{F}

- Equivalent to a truncation
- The rounding is less or equal to the exact number:

$$
\forall x \in \mathbb{R}^{+}, \mathbf{f l}(x) \leq x
$$

- The rounding error is nonnegative:

$$
\forall x \in \mathbb{R}^{+}, x-\mathbf{f l}(x) \geq 0
$$

Error-free Transformations (EFT)

Problem : the result of a floating-point operation is generally not representable by a floating-point numbers.

Solution: Error-free transformations

- non-evaluated sum of two floating-point numbers
- the floating-point result of the operation
- the rounding error (which is representable in \mathbb{F} in our cases)
- For $a, b \in \mathbb{F} \cap \mathbb{N}$ and $\circ \in\{+, \times\}$,

$$
a \circ b=\mathbf{f l}(a \circ b)+e, \text { with } e \in \mathbb{F}
$$

which is mathematically true.

Error-free Transformations for the product (1/2)

For $a, b, c \in \mathbb{F}$,

- $\operatorname{FMA}(a, b, c)$ is the rounding of $a \cdot b+c$

$$
\begin{aligned}
& \text { Algorithm } 1 \text { (EFT for the product of two floating-point numbers) } \\
& \text { function }[x, y]=\text { TwoProductFMA }(a, b) \\
& x=\mathrm{fl}(a \cdot b) \\
& y=\operatorname{FMA}(a, b,-x)
\end{aligned}
$$

The FMA is now included in the IEEE 754-2008 standard

Error-free Transformations for the product (2/2)

Theorem 1

Let $a, b \in \mathbb{F} \cap \mathbb{N}$ and $x, y \in \mathbb{F}$ such that

$$
[x, y] \leftarrow \operatorname{TwoProductFMA}(a, b)
$$

Then

$$
a b=x+y, \quad x=\mathbf{f l}(a b), \quad 0 \leq y<\mathbf{u} \cdot \mathbf{u f p}(x), \quad 0 \leq x \leq a b
$$

Algorithm TwoProductFMA requires 2 flops.

Binary euclidean division (1/2)

For $a, d \in \mathbb{F} \cap \mathbb{N}, d \neq 0$, the euclidean division of a by d is

$$
a=q d+r, \quad 0 \leq r<d
$$

For $a \in \mathbb{F} \cap \mathbb{N}$ and $\sigma=2^{k}, \sigma \geq a$, one defines

Algorithm 2 (Split of a floating-point numbers)

function $[x, y]=$ ExtractScalar (σ, a)

$$
\begin{aligned}
& q=\mathrm{fl}(\sigma+a) \\
& x=\mathrm{fl}(q-\sigma) \\
& y=\mathrm{fl}(x-a)
\end{aligned}
$$

fl is rounding toward zero
Algorithm first proposed by Rump, Ogita and Oishi in rounding to the nearest

Binary euclidean division (2/2)

Theorem 2
Let $a \in \mathbb{F} \cap \mathbb{N}, \sigma=2^{k}, \sigma \geq a$ and $x, y \in \mathbb{F}$ such that

$$
[x, y] \leftarrow \text { ExtractScalar }(\sigma, a)
$$

Then

$$
a=x+y, \quad 0 \leq y<\mathbf{u} \sigma, \quad 0 \leq x \leq a, \quad x \in \mathbf{u} \sigma \mathbb{N}
$$

Algorithm ExtractScalar requires 3 flops.
Remark:

$$
a=x+y=x^{\prime} \mathbf{u} \sigma+r, \quad x^{\prime} \in \mathbb{N}, \quad 0 \leq r<\mathbf{u} \sigma
$$

Computation of dot products

$$
\text { Assumption: } \quad p-1<2^{M-1} \quad \text { and } \quad N<2^{M / 2}
$$

Computation of dot products

Assumption: $\quad p-1<2^{M-1} \quad$ and $\quad N<2^{M / 2}$
Idea :

- Split the number with a representation with only half the mantissa
- Sum them without error
- Reduction modulo p only at the end

Computation of dot products

Assumption: $\quad p-1<2^{M-1} \quad$ and $\quad N<2^{M / 2}$
Idea :

- Split the number with a representation with only half the mantissa
- Sum them without error
- Reduction modulo p only at the end

Use ExtractScalar to get:

$$
s_{1}=\left\lfloor\frac{M}{2}\right\rfloor
$$

$$
\forall i \in[1, N], \quad a_{i} b_{i}=\alpha_{i}+\beta_{i}+\gamma_{i}+\delta_{i}=A_{i} 2^{M+s_{1}}+B_{i} 2^{M}+C_{i} 2^{s_{1}}+D_{i}
$$

$$
a \cdot b=2^{M+s_{1}} \sum_{i=1}^{N} A_{i}+2^{M} \sum_{i=1}^{N} B_{i}+2^{s_{1}} \sum_{i=1}^{N} C_{i}+\sum_{i=1}^{N} D_{i}(\bmod p)
$$

Principle of the splitting of $a_{i} b_{i}(1 / 2)$

Principle of the splitting of $a_{i} b_{i}(1 / 2)$

Principle of the splitting of $a_{i} b_{i}(1 / 2)$

Principle of the splitting of $a_{i} b_{i}(1 / 2)$

Principle of the splitting of $a_{i} b_{i}(1 / 2)$

Principle of the splitting of $a_{i} b_{i}(1 / 2)$

Principle of the splitting of $a_{i} b_{i}(1 / 2)$

Principle of the splitting of $a_{i} b_{i}(1 / 2)$

Principle of the splitting of $a_{i} b_{i}(2 / 2)$

Split $\longrightarrow 4$ vectors of $N<2^{M / 2}$ elements with at most $M / 2$ bits

Principle of the splitting of $a_{i} b_{i}(2 / 2)$

Split $\longrightarrow 4$ vectors of $N<2^{M / 2}$ elements with at most $M / 2$ bits

Principle of the splitting of $a_{i} b_{i}(2 / 2)$

Split $\longrightarrow 4$ vectors of $N<2^{M / 2}$ elements with at most $M / 2$ bits

Results

Final results:

$$
a \cdot b=\sum_{i=1}^{N} \alpha_{i}+\sum_{i=1}^{N} \beta_{i}+\sum_{i=1}^{N} \gamma_{i}+\sum_{i=1}^{N} \delta_{i} \quad(\bmod p)
$$

Total cost: $16 \mathrm{~N}+\mathrm{O}(1)$ flops

Environments

Sequential algorithms

- Intel Itanium 21.5 GHz
- FMA instruction
- Double precision
- $p-1<2^{53-1}$

GPU algorithms

- Intel Core 2 Quad Processor Q8200 2.33 GHz
- GPU: NVIDIA Tesla C1060
- FMA instruction
- Double precision
- $p-1<2^{53-1}$

Comparison to a sequential GMP-based version.

GPU implementation

Timings for GPU implementations.

$$
p=2147483647\left(\approx 2^{31}\right)
$$

Speedups:

- 10 for λ
- > 40 for $(\alpha, \beta, \gamma, \delta)$

Transfer time ignored.

Conclusion and future work

Conclusion:

- An efficient algorithms using floating-point arithmetic well suited for parallelism
- Usage of error-free transformations when rounding toward zero

Future work:

- Port RNS algorithms to GPU
- Tests on new NVIDIA Fermi cards

Thank you for your attention

