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Motivations

e Computing summation is a basic task in scientific computing

@ Classic algorithm is recursive summation algorithm

Algorithm 1 (Recursive summation algorithm)

function res = Sum(p)
s=0
fori=1:n
s=1l(s+ pj)
res=s

v

@ But due to rounding errors, the computed result can be far from
the exact result

S. Graillat (Univ. Paris 6)

Faithful roundings of nonnegative sums



Outline of the talk

@ Motivations

Basic of floating-point arithmetic

e Faithful roundings of sum with nonnegative entries

Faithful roundings of product of floating-point numbers

@ Conclusion and future work
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Floating-point numbers

Normalized floating-point numbers F c R:

X=+Xx0.X1... X1 xb%, 0=<x;<b-1, xp#0
N———
mantissa
b: basis, M : precision, e: exponent such that ey, < e < enax
Approximation of R by F with rounding fl: R — F.

Let x€ R then
flx) =x(1+0), |0|<u

Unit rounding u = b'~™/2 for rounding to nearest
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Standard model of floating-point arithmetic

Letx,yeFandoe {+,—,-,/}.

The result xo yis not in general a floating-point number

fi(xoy) =(xoy)(1+6), [6l<u

IEEE 754 standard (1985 and 2008)

Type | Size | Mantissa | Exponent | Unitrounding | Interval
Single | 32bits | 23+1bits | 8bits u=2"2%%586x10"8 | =108
Double | 64bits | 52+1bits | 11 bits u=2"3~1,11x10"16 | ~10%308
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Error analysis for the recursive algorithm

Algorithm 2 (Recursive summation algorithm)

function res = Sum(p)
s=0
fori=1:n
s=1l(s+ p;)

res=3S§

Lemma 1 (Higham)

Lets=3"  pi. Then we have

n
lres —s| <yn-1)_ Ipil
i=1
nu

wherey, = 15~

U; N
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Verified computing

As i
lres — sl < yn1 ) Ipil

i=1

then getting a tight error bound needs to accurately evaluate

n
X Ipil
i=1

— need to accurately evaluate the sum of nonnegative numbers
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Conditioning of summation

Condition numbers measure the sensitivity of the solution of a
problem to perturbation in the data

‘Z(Piﬂ?i)—ZPi
EXPi

cond(Zpi)::lg?)sup{ :pil S€|I9|}

It is well-known that

2 |pil
cond (2 pi) = |2Z,-|

So for nonnegative numbers

cond () pi) =1

The problem is then well-conditioned
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Recursive algorithm with nonnegative numbers

Algorithm 3 (Recursive summation algorithm)

function res = Sum(p)
s=0
fori=1:n
s=1l(s+ p))

res=3$§

If s:=) p; #0then

lres —s|
|

<Yn-1=(m-1u

Good accuracy if n is small but possibly no accuracy at allif n= 1/u
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Getting more accuracy with compensated

algorithms

Assume floating point arithmetic adhering IEEE 754 with rounding
to nearest with rounding unit u (no underflow nor overflow)

Error free transformations are properties and algorithms to compute
the generated elementary rounding errors,

a,bentries €F, aob={fl(aob)+e, withecF

Key tools for accurate computation

e fixed length expansions libraries: double-double (Briggs, Bailey;,
Hida, Li), quad-double (Bailey, Hida, Li)

e arbitrary length expansions libraries: Priest, Shewchuk

e compensated algorithms (Kahan, Priest, Ogita-Rump-Oishi,
Graillat-Langlois-Louvet)
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EFT for the summation

x=fllath) = ax+xb=x+y withyeF,
Algorithms of Dekker (1971) and Knuth (1974)

Algorithm 4 (EFT of the sum of 2 floating point numbers

with |al = |bl)

function [x, y] = FastTwoSum(a, b)
x=1l(a+ b)
y=1l((a—x)+b)

Algorithm 5 (EFT of the sum of 2 floating point numbers)

function [x, y] = TwoSum(a, b)
x=1fl(a+ b)
z=1l(x—a)
y=1l((a-(x-2) +(b-2)
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Error bound for EFT of the sum

Leta,beF and let x,y € F such that [x,y] = TwoSum(a, b). Then,

a+b=x+y, x=flla+b), lyl<ulxl, |yl<ula+bl.

The algorithm TwoSum requires 6 flops.
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Compensated summation algorithm

Pk b

. T,
—B Twosum TwoSum o TwoSum TwoSum
$ q2 i a3 i qn-1 ¢67n

‘ + + + + W
Algorithm 6 (Ogita, Rump, Oishi (2005))

function res = CompSum(p)
T =p1,01=0;
fori=2:n
[}, qil = TwoSum(;_1, p;)
oi=fl(oi1+qg5)
res =fl(;w,, + o)
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Compensated summation algorithm

Algorithm 7 (Ogita, Rump, Oishi (2005))

function res = CompSum(p)
T =p1,01=0;
fori=2:n
[}, qil = TwoSum(;_1, p;)
oi=Ml(oi1+q;)
res=fl(m,+0,)

Let s=3 ", p;. Then one has (Ogita, Rump, Oishi 2005)

n n
lres—sl<ul pil+y5_; Y Ipil

i=1 i=1

where v, = 15— fﬁu
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Faithful rounding (1/3)

Floating point predecessor and successor of a real number r
satisfying min{f: f € R} < r < max{f: f e F}:

pred(r):=max{feF:f<r} and succ(r):=min{felF:r<f}.

A floating point number f € [ is called a faithful rounding of a real
numberreR if

pred(f) < r < succ(f).
We denote this by f € LI(r). For r € F, this implies that f =r.

Faithful rounding means that the computed result is equal to the
exact result if the latter is a floating point number and otherwise is
one of the two adjacent floating point numbers of the exact result.
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Faithful rounding (2/3)

Lemma 2 (Rump, Ogita and Oishi, 2005)

Letr,0 € R and 7:=1l(r). Suppose that 2|6| <ul|7|. Then 7 e (r+9),
that means 7 is a faithful rounding of r+ 0.
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Faithful rounding (3/3)

Let res = CompSun(p)

Theorem 2 (Graillat 2011)

Suppose CompSum algorithm is applied to nonnegative floating-point
number p; € F, 1 < i< nand that

vVi-u ~1/2
n<l+ u .
V2V1+u++vV1-u

Then the resultres is a faithful rounding of s:=)_ p; = 0.

If n < au™'’? where a = 0.4 then the result is faithfully rounded

In double precision where u =27, if n <3-107, we get a faithfully
rounded result
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Classic method for computing product

The classic method for evaluating a product of n numbers
a= (al)a2y---yan)

n
p=[la
i=1
is the following algorithm.

Algorithm 8 (Product evaluation)

function res = Prod(a)
p1=a1
fori=2:n
pi = fl(p;-1 - a;) % rounding error 7;
end
res = py

This algorithm requires n— 1 flops
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Error analysis

nu

Yn: forneN.

T 1-nu
A forward error bound is

layay---ap—res|<yu_1laraz---ayl

A validated error bound is

Yn—1|reSI)

aqar---a,—res|<fl
la; az n | ( 1—70

S. Graillat (Univ s 6 Faithful roundings of nonnegative sums



EFT for the product (1/3)

x=flla-b) = a-b=x+y withyeF,
Algorithm TwoProduct by Veltkamp and Dekker (1971)

a=x+y and xand ynon overlapping with |y| < |x].

Algorithm 9 (Error-free split of a floating point number

into two parts)

function [x, y] = Split(a, b)
factor = f1(25+ 1) %u=2"7,s=[p/2]
c=fl(factor-a)
x=1l(c- (c—a))
y="fl(a—x)
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EFT for the product (2/3)

Algorithm 10 (EFT of the product of 2 floating point
numbers)

function [x, y] = TwoProduct(a, b)
x=1fl(a-b)

(a1, a2] = Split(a)
(b1, b2] = Split(b)
y=M(ax-bo— ((x—ay1-b) —ax-b1) —ay - b))

Theorem 3

| A

Leta,beF and let x,y € F such that [x,y] = TwoProduct(a, b) . Then,

a-b=x+y, x=fla-b), lyl<ulxl, |yl<ula-bl,

The algorithm TwoProduct requires 17 flops.
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EFT for the product (3/3)

Given a, b,ceF,
@ FMA(a, b, ¢) is the nearest floating point number a- b+ ceF

Algorithm 11 (EFT of the product of 2 floating point

numbers)

function [x, y] = TwoProductFMA(a, b)
x=1fl(a-b)
y=FMA(a, b, —x)

The FMA is available for example on PowerPC, Itanium, Cell
processors.
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Compensated method for computing product

Algorithm 12 (Product evaluation with a compensated
scheme (Graillat 2008))

function res = CompProd(a)
p1=a
ey = 0
fori=2:n

[pi, ;] = TwoProduct(p;-1,a;)
e;=fl(ej1a;+ )

end

res =fl(p, + ey)

This algorithm requires 197 — 18 flops
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Error analysis

Theorem 4 (Graillat 2008)

Suppose Algorithm CompProd is applied to floating point number
a;eF,1<i<n,andsetp=[I", a;. Then,

lres — pl < ulpl+ynyanlpl

Condition number of the product evaluation:

(a1 +Aay)---(an+ Aay) — ay -+~ ay|

cond(a) = lin&sup{ JAay < slail}
6—»

elajaz--- apl

A standard computation yields

cond(a) =n
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Validated error bound

Lemma 3 (Graillat 2008)
Suppose Algorithm CompProd is applied to floating point numbers
a;€F,1<i<nandsetp=T]?, a;. Then, the absolute forward error
affecting the product is bounded according to

YnY2nlaraz -+ - ay|
1-(n+3)u

lres — pl Sﬂ((ulres|+ )/ (1—2u)).
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Faithful rounding

Let res = CompProd(p)

Ifn< - u''? thenres is a faithful rounding of p.

V2v2+u+2y/I-wu

1

If n < au™'/? where a = 1/2 then the result is faithfully rounded

In double precision where u =27, if n< 225 ~5-10, we get a
faithfully rounded result
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Validated error bound and faithful rounding

If
YnYenlaraz -+ - apl

1-(n+3)u

fl12 < fl(u|res|)

then we got a faitfully rounded result. This makes it possible to
check a posteriori if the result is faithfully rounded.
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Various results

e Similar results apply for other compensated algorithm for dot
product or Horner scheme with nonnegative entries

e Compensated dot product : computing x’y

Algorithm 13 (Ogita, Rump and Oishi 2005)

function res =Dot2(x, y)
[p, sl = TwoProduct(xy, 1)
fori=2:n
[h, r] = TwoProduct(x; y;)
[p, q] = TwoSun(p, h)
s=1fl(s+(g+ 1)
end
res=fl(p+5s)
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Compensated dot product

function res =Dot2(x, )
[p, sl = TwoProduct(xi, y1)

fori=2:n
[h, r] = TwoProduct(x; y;)
[p, q] = TwoSun(p, h)

s=1fl(s+(g+1)

end

res=fl(p+5)

Then one has (Ogita, Rump, Oishi 2005)

T T 2 T
lres —x"yl <ulx" yl +v5,Ix]" |yl

where y, = 155
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The Horner scheme

Evaluation of p(x) = }_ a;x'
i=0
Algorithm 15 (Horner scheme)

function res = Horner(p, x)

Sp=ap
fori=n-1:-1:0
pi =fl(si+1- %)
si=fl(pi+ a)
end

res =

% rounding error 7;
% rounding error o;

H , o laillxl’
|p(x) —Horner(p,x)| _ < v, cond(p, x) with cond(p, x) := |ZZO—l’
a;x'|

[p(x)| Nl
=2nu
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Error-free transformation for the Horner scheme

| p(x) = Horner (p,x) + (pz + po) () |

Algorithm 16 (Error-free transformation for the Horner

scheme (Graillat,Louvet,Langlois 2005))

function [Horner(p, X), pr, po] = EFTHorner(p, x)
Sp=ap
fori=n-1:-1:0
[pi, il = TwoProduct(si+1,X)
[si,0 ] = TwoSum(p;, a;)
Let 7; be the coefficient of degree i of p,
Let o; be the coefficient of degree i of p,
end
Horner(p,x) = s
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Compensated Horner scheme and its accuracy

Algorithm 17 (Compensated Horner scheme)

function res = CompHorner(p, x)
[, Pr, Po | = EFTHorner(p, x)
c¢=Horner(p; + pg, X)

res =fl(h+c)

Theorem 5 (Graillat,Louvet,Langlois 2005)

Let p be a polynomial of degree n with floating point coefficients, and
x be a floating point value. Then if no underflow occurs,

H AT
|CompHorner (p, x) — p(x)| <u+ y5, cond(p,x).
Ip(x)| =

~4n?u?
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Relative forward error

Numerical experiments: testing the accuracy

Evaluation of p,(x) = (x—1)" for x=11(1.333) and n=3,...,42

Condition number and relative forward error
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Conclusion and future work

Conclusion

e Compensated algorithms make it possible to accurately
compute with nonnegative entries

e It makes it possible to compute some accurate error bounds

Future work
e Computing accurately the 2-norm of a vector
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Thank you for your attention

Faithful roundi



