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Motivations

Computing summation is a basic task in scientific computing

Classic algorithm is recursive summation algorithm

Algorithm 1 (Recursive summation algorithm)

function res = Sum(p)
s = 0
for i = 1 : n

s = fl(s+pi)
res= s

But due to rounding errors, the computed result can be far from
the exact result
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Floating-point numbers

Normalized floating-point numbers F⊂R:

x =±x0.x1 . . .xM−1︸ ︷︷ ︸
mantissa

×be, 0 ≤ xi ≤ b−1, x0 6= 0

b : basis, M : precision, e : exponent such that emin ≤ e ≤ emax

Approximation of R by F with rounding fl :R→ F.
Let x ∈R then

fl(x) = x(1+δ), |δ| ≤ u

Unit rounding u = b1−M /2 for rounding to nearest
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Standard model of floating-point arithmetic

Let x,y ∈ F and ◦ ∈ {+,−, ·,/}.

The result x◦y is not in general a floating-point number

fl(x◦y) = (x◦y)(1+δ), |δ| ≤ u

IEEE 754 standard (1985 and 2008)

Type Size Mantissa Exponent Unit rounding Interval
Single 32 bits 23+1 bits 8 bits u = 2−24 ≈ 5,86×10−8 ≈ 10±38

Double 64 bits 52+1 bits 11 bits u = 2−53 ≈ 1,11×10−16 ≈ 10±308
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Error analysis for the recursive algorithm

Algorithm 2 (Recursive summation algorithm)

function res = Sum(p)
s = 0
for i = 1 : n

s = fl(s+pi)
res= s

Lemma 1 (Higham)
Let s =∑n

i=1 pi. Then we have

|res− s| ≤ γn−1

n∑
i=1

|pi|

where γn = nu
1−nu
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Verified computing

As

|res− s| ≤ γn−1

n∑
i=1

|pi|

then getting a tight error bound needs to accurately evaluate

n∑
i=1

|pi|

→ need to accurately evaluate the sum of nonnegative numbers
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Conditioning of summation

Condition numbers measure the sensitivity of the solution of a
problem to perturbation in the data

cond
(∑

pi
)

:= lim
ε→0

sup

{∣∣∣∣∑(pi + p̃i)−∑
pi

ε
∑

pi

∣∣∣∣ : |p̃i| ≤ ε|p|
}

It is well-known that

cond
(∑

pi
)= ∑ |pi|

|∑pi|
So for nonnegative numbers

cond
(∑

pi
)= 1

The problem is then well-conditioned
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Recursive algorithm with nonnegative numbers

Algorithm 3 (Recursive summation algorithm)

function res = Sum(p)
s = 0
for i = 1 : n

s = fl(s+pi)
res= s

If s :=∑
pi 6= 0 then

|res− s|
|s| ≤ γn−1 ≈ (n−1)u

Good accuracy if n is small but possibly no accuracy at all if n ≈ 1/u
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Getting more accuracy with compensated
algorithms

Assume floating point arithmetic adhering IEEE 754 with rounding
to nearest with rounding unit u (no underflow nor overflow)

Error free transformations are properties and algorithms to compute
the generated elementary rounding errors,

a,b entries ∈ F, a◦b = fl(a◦b)+e, with e ∈ F
Key tools for accurate computation

fixed length expansions libraries: double-double (Briggs, Bailey,
Hida, Li), quad-double (Bailey, Hida, Li)

arbitrary length expansions libraries: Priest, Shewchuk

compensated algorithms (Kahan, Priest, Ogita-Rump-Oishi,
Graillat-Langlois-Louvet)
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EFT for the summation

x = fl(a±b) ⇒ a±b = x+y with y ∈ F,

Algorithms of Dekker (1971) and Knuth (1974)

Algorithm 4 (EFT of the sum of 2 floating point numbers
with |a| ≥ |b|)
function [x,y] = FastTwoSum(a,b)

x = fl(a+b)
y = fl((a−x)+b)

Algorithm 5 (EFT of the sum of 2 floating point numbers)

function [x,y] = TwoSum(a,b)
x = fl(a+b)
z = fl(x−a)
y = fl((a− (x−z))+ (b−z))
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Error bound for EFT of the sum

Theorem 1
Let a,b ∈ F and let x,y ∈ F such that [x,y] = TwoSum(a,b). Then,

a+b = x+y, x = fl(a+b), |y| ≤ u|x|, |y| ≤ u|a+b|.

The algorithm TwoSum requires 6 flops.
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Compensated summation algorithm

TwoSumTwoSum TwoSum TwoSum· · ·

p1 p2 pn−1 pn

q2 q3 qn−1 qn

π2 πn−1 πnπn−2π3p1

+ +·· ·

+

+ +

Algorithm 6 (Ogita, Rump, Oishi (2005))

function res = CompSum(p)
π1 = p1 ; σ1 = 0;
for i = 2 : n

[πi,qi] = TwoSum(πi−1,pi)
σi = fl(σi−1 +qi)

res= fl(πn +σn)
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Compensated summation algorithm

Algorithm 7 (Ogita, Rump, Oishi (2005))

function res = CompSum(p)
π1 = p1 ; σ1 = 0;
for i = 2 : n

[πi,qi] = TwoSum(πi−1,pi)
σi = fl(σi−1 +qi)

res= fl(πn +σn)

Let s =∑n
i=1 pi. Then one has (Ogita, Rump, Oishi 2005)

|res− s| ≤ u|
n∑

i=1
pi|+γ2

n−1

n∑
i=1

|pi|

where γn = nu
1−nu
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Faithful rounding (1/3)

Floating point predecessor and successor of a real number r
satisfying min{f : f ∈R} < r < max{f : f ∈ F} :

pred(r) := max{f ∈ F : f < r} and succ(r) := min{f ∈ F : r < f }.

Definition 1
A floating point number f ∈ F is called a faithful rounding of a real
number r ∈R if

pred(f ) < r < succ(f ).

We denote this by f ∈�(r). For r ∈ F, this implies that f = r.

Faithful rounding means that the computed result is equal to the
exact result if the latter is a floating point number and otherwise is
one of the two adjacent floating point numbers of the exact result.
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Faithful rounding (2/3)

r

f

Lemma 2 (Rump, Ogita and Oishi, 2005)
Let r,δ ∈R and r̃ := fl(r). Suppose that 2|δ| < u|r̃|. Then r̃ ∈�(r+δ),
that means r̃ is a faithful rounding of r+δ.
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Faithful rounding (3/3)

Let res= CompSum(p)

Theorem 2 (Graillat 2011)
Suppose CompSum algorithm is applied to nonnegative floating-point
number pi ∈ F, 1 ≤ i ≤ n and that

n < 1+
p

1−up
2
p

1+u+p
1−u

u−1/2.

Then the result res is a faithful rounding of s :=∑
pi ≥ 0.

If n <αu−1/2 where α≈ 0.4 then the result is faithfully rounded

In double precision where u = 2−53, if n. 3 ·107, we get a faithfully
rounded result
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Classic method for computing product

The classic method for evaluating a product of n numbers
a = (a1,a2, . . . ,an)

p =
n∏

i=1
ai

is the following algorithm.

Algorithm 8 (Product evaluation)

function res = Prod(a)
p1 = a1

for i = 2 : n
pi = fl(pi−1 ·ai)% rounding error πi

end
res = pn

This algorithm requires n−1 flops
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Error analysis

γn := nu

1−nu
for n ∈N.

A forward error bound is

|a1a2 · · ·an −res| ≤ γn−1|a1a2 · · ·an|

A validated error bound is

|a1a2 · · ·an −res| ≤ fl

(
γn−1|res|

1−2u

)
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EFT for the product (1/3)

x = fl(a ·b) ⇒ a ·b = x+y with y ∈ F,

Algorithm TwoProduct by Veltkamp and Dekker (1971)

a = x+y and x and y non overlapping with |y| ≤ |x|.

Algorithm 9 (Error-free split of a floating point number
into two parts)

function [x,y] = Split(a,b)
factor = fl(2s +1) % u = 2−p , s = dp/2e
c = fl(factor ·a)
x = fl(c− (c−a))
y = fl(a−x)
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EFT for the product (2/3)

Algorithm 10 (EFT of the product of 2 floating point
numbers)
function [x,y] = TwoProduct(a,b)

x = fl(a ·b)
[a1,a2] = Split(a)
[b1,b2] = Split(b)
y = fl(a2 ·b2 − (((x−a1 ·b1)−a2 ·b1)−a1 ·b2))

Theorem 3
Let a,b ∈ F and let x,y ∈ F such that [x,y] = TwoProduct(a,b) . Then,

a ·b = x+y, x = fl(a ·b), |y| ≤ u|x|, |y| ≤ u|a ·b|,

The algorithm TwoProduct requires 17 flops.
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EFT for the product (3/3)

Given a,b,c ∈ F,

FMA(a,b,c) is the nearest floating point number a ·b+ c ∈ F

Algorithm 11 (EFT of the product of 2 floating point
numbers)
function [x,y] = TwoProductFMA(a,b)

x = fl(a ·b)
y = FMA(a,b,−x)

The FMA is available for example on PowerPC, Itanium, Cell
processors.
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Compensated method for computing product

Algorithm 12 (Product evaluation with a compensated
scheme (Graillat 2008))
function res = CompProd(a)

p1 = a1

e1 = 0
for i = 2 : n

[pi,πi] = TwoProduct(pi−1,ai)
ei = fl(ei−1ai +πi)

end
res = fl(pn +en)

This algorithm requires 19n−18 flops
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Error analysis

Theorem 4 (Graillat 2008)
Suppose Algorithm CompProd is applied to floating point number
ai ∈ F, 1 ≤ i ≤ n, and set p =∏n

i=1 ai. Then,

|res−p| ≤ u|p|+γnγ2n|p|
Condition number of the product evaluation:

cond(a) = lim
ε→0

sup

{ |(a1 +∆a1) · · · (an +∆an)−a1 · · ·an|
ε|a1a2 · · ·an|

: |∆ai| ≤ ε|ai|
}

A standard computation yields

cond(a) = n
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Validated error bound

Lemma 3 (Graillat 2008)
Suppose Algorithm CompProd is applied to floating point numbers
ai ∈ F, 1 ≤ i ≤ n and set p =∏n

i=1 ai. Then, the absolute forward error
affecting the product is bounded according to

|res−p| ≤ fl

((
u|res|+ γnγ2n|a1a2 · · ·an|

1− (n+3)u

)
/ (1−2u)

)
.
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Faithful rounding

Let res= CompProd(p)

Lemma 4

If n <
p

1−up
2
p

2+u+2
p

(1−u)u
u−1/2 then res is a faithful rounding of p.

If n <αu−1/2 where α≈ 1/2 then the result is faithfully rounded

In double precision where u = 2−53, if n < 225 ≈ 5 ·107, we get a
faithfully rounded result

S. Graillat (Univ. Paris 6) Faithful roundings of nonnegative sums 26 / 35



Validated error bound and faithful rounding

If

fl

(
2
γnγ2n|a1a2 · · ·an|

1− (n+3)u

)
< fl(u|res|)

then we got a faitfully rounded result. This makes it possible to
check a posteriori if the result is faithfully rounded.
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Various results

Similar results apply for other compensated algorithm for dot
product or Horner scheme with nonnegative entries

Compensated dot product : computing xT y

Algorithm 13 (Ogita, Rump and Oishi 2005)

function res= Dot2(x,y)
[p,s] = TwoProduct(x1,y1)
for i = 2 : n

[h,r] = TwoProduct(xi,yi)
[p,q] = TwoSum(p,h)

s = fl(s+ (q+ r))
end
res= fl(p+ s)

S. Graillat (Univ. Paris 6) Faithful roundings of nonnegative sums 28 / 35



Compensated dot product

Algorithm 14 (Ogita, Rump and Oishi 2005)

function res= Dot2(x,y)
[p,s] = TwoProduct(x1,y1)
for i = 2 : n

[h,r] = TwoProduct(xi,yi)
[p,q] = TwoSum(p,h)

s = fl(s+ (q+ r))
end
res= fl(p+ s)

Then one has (Ogita, Rump, Oishi 2005)

|res−xT y| ≤ u|xT y|+γ2
2n|x|T |y|

where γn = nu
1−nu
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The Horner scheme

Evaluation of p(x) =
n∑

i=0
aix

i

Algorithm 15 (Horner scheme)

function res= Horner(p,x)
sn = an

for i = n−1 : −1 : 0
pi = fl(si+1 ·x) % rounding error πi

si = fl(pi +ai) % rounding error σi

end
res= s0

|p(x)−Horner(p,x)|
|p(x)| ≤ γ2n︸︷︷︸

≈2nu

cond(p,x) with cond(p,x) :=
∑n

i=0 |ai||x|i
|∑n

i=0 aixi|
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Error-free transformation for the Horner scheme

p(x) = Horner(p,x)+ (pπ+pσ)(x)

Algorithm 16 (Error-free transformation for the Horner
scheme (Graillat,Louvet,Langlois 2005))

function [Horner(p,x),pπ,pσ] = EFTHorner(p,x)
sn = an

for i = n−1 : −1 : 0
[pi,πi] = TwoProduct(si+1,x)
[si,σi] = TwoSum(pi,ai)
Let πi be the coefficient of degree i of pπ
Let σi be the coefficient of degree i of pσ

end
Horner(p,x) = s0
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Compensated Horner scheme and its accuracy

Algorithm 17 (Compensated Horner scheme)

function res= CompHorner(p,x)[
h,pπ,pσ

]= EFTHorner(p,x)
c = Horner(pπ+pσ,x)
res= fl(h+ c)

Theorem 5 (Graillat,Louvet,Langlois 2005)
Let p be a polynomial of degree n with floating point coefficients, and
x be a floating point value. Then if no underflow occurs,

|CompHorner(p,x)−p(x)|
|p(x)| ≤ u+ γ2

2n︸︷︷︸
≈4n2u2

cond(p,x).
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Numerical experiments: testing the accuracy

Evaluation of pn(x) = (x−1)n for x = fl(1.333) and n = 3, . . . ,42
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Conclusion and future work

Conclusion

Compensated algorithms make it possible to accurately
compute with nonnegative entries

It makes it possible to compute some accurate error bounds

Future work

Computing accurately the 2-norm of a vector
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Thank you for your attention
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