Faithful roundings of sum with nonnegative entries

Stef Graillat ステフ・グライヤ

LIP6／PEQUAN－Université Pierre et Marie Curie（Paris 6）－CNRS

JSIAM Meeting 2011
Doshisha University，Kyoto，Japan，September 14－16， 2011

Motivations

- Computing summation is a basic task in scientific computing
- Classic algorithm is recursive summation algorithm

Algorithm 1 (Recursive summation algorithm)

function res $=\operatorname{Sum}(p)$
$s=0$
for $i=1: n$
$s=\mathrm{fl}\left(s+p_{i}\right)$
res $=s$

- But due to rounding errors, the computed result can be far from the exact result

Outline of the talk

- Motivations
- Basic of floating-point arithmetic
- Faithful roundings of sum with nonnegative entries
- Faithful roundings of product of floating-point numbers
- Conclusion and future work

Floating-point numbers

Normalized floating-point numbers $\mathbb{F} \subset \mathbb{R}$:

$$
x= \pm \underbrace{x_{0} \cdot x_{1} \ldots x_{M-1}}_{\text {mantiss } a} \times b^{e}, \quad 0 \leq x_{i} \leq b-1, \quad x_{0} \neq 0
$$

b : basis, M : precision, e : exponent such that $e_{\min } \leq e \leq e_{\max }$

Approximation of \mathbb{R} by \mathbb{F} with rounding $\mathrm{fl}: \mathbb{R} \rightarrow \mathbb{F}$.
Let $x \in \mathbb{R}$ then

$$
\mathrm{fl}(x)=x(1+\delta), \quad|\delta| \leq \mathbf{u}
$$

Unit rounding $\mathbf{u}=b^{1-M} / 2$ for rounding to nearest

Standard model of floating-point arithmetic

Let $x, y \in \mathbb{F}$ and $\circ \in\{+,-, \cdot, /\}$.

The result $x \circ y$ is not in general a floating-point number

$$
\mathrm{fl}(x \circ y)=(x \circ y)(1+\delta), \quad|\delta| \leq \mathbf{u}
$$

IEEE 754 standard (1985 and 2008)

Type	Size	Mantissa	Exponent	Unit rounding	Interval
Single	32 bits	$23+1$ bits	8 bits	$\mathbf{u}=2^{-24} \approx 5,86 \times 10^{-8}$	$\approx 10^{ \pm 38}$
Double	64 bits	$52+1$ bits	11 bits	$\mathbf{u}=2^{-53} \approx 1,11 \times 10^{-16}$	$\approx 10^{ \pm 308}$

Error analysis for the recursive algorithm

Algorithm 2 (Recursive summation algorithm)

function res $=\operatorname{Sum}(p)$

$$
\begin{aligned}
& s=0 \\
& \text { for } i=1: n \\
& \quad s=\mathrm{fl}\left(s+p_{i}\right) \\
& \mathrm{res}=s
\end{aligned}
$$

Lemma 1 (Higham)

Let $s=\sum_{i=1}^{n} p_{i}$. Then we have

$$
\mid \text { res }-s\left|\leq \gamma_{n-1} \sum_{i=1}^{n}\right| p_{i} \mid
$$

where $\gamma_{n}=\frac{n \mathbf{u}}{1-n \mathbf{u}}$

Verified computing

As

$$
\mid \text { res }-s\left|\leq \gamma_{n-1} \sum_{i=1}^{n}\right| p_{i} \mid
$$

then getting a tight error bound needs to accurately evaluate

$$
\sum_{i=1}^{n}\left|p_{i}\right|
$$

\rightarrow need to accurately evaluate the sum of nonnegative numbers

Conditioning of summation

Condition numbers measure the sensitivity of the solution of a problem to perturbation in the data

$$
\operatorname{cond}\left(\sum p_{i}\right):=\lim _{\varepsilon \rightarrow 0} \sup \left\{\left|\frac{\sum\left(p_{i}+\tilde{p}_{i}\right)-\sum p_{i}}{\varepsilon \sum p_{i}}\right|:\left|\tilde{p}_{i}\right| \leq \varepsilon|p|\right\}
$$

It is well-known that

$$
\operatorname{cond}\left(\sum p_{i}\right)=\frac{\sum\left|p_{i}\right|}{\left|\sum p_{i}\right|}
$$

So for nonnegative numbers

$$
\operatorname{cond}\left(\sum p_{i}\right)=1
$$

The problem is then well-conditioned

Recursive algorithm with nonnegative numbers

Algorithm 3 (Recursive summation algorithm)

function res $=\operatorname{Sum}(p)$

$$
\begin{aligned}
& s=0 \\
& \text { for } i=1: n \\
& \quad s=\mathrm{fl}\left(s+p_{i}\right) \\
& \text { res }=s
\end{aligned}
$$

If $s:=\sum p_{i} \neq 0$ then

$$
\frac{\mid \text { res }-s \mid}{|s|} \leq \gamma_{n-1} \approx(n-1) \mathbf{u}
$$

Good accuracy if n is small but possibly no accuracy at all if $n \approx 1 / \mathbf{u}$

Getting more accuracy with compensated algorithms

Assume floating point arithmetic adhering IEEE 754 with rounding to nearest with rounding unit \mathbf{u} (no underflow nor overflow)

Error free transformations are properties and algorithms to compute the generated elementary rounding errors,

$$
a, b \text { entries } \in \mathbb{F}, \quad a \circ b=\mathrm{fl}(a \circ b)+e, \text { with } e \in \mathbb{F}
$$

Key tools for accurate computation

- fixed length expansions libraries: double-double (Briggs, Bailey, Hida, Li), quad-double (Bailey, Hida, Li)
- arbitrary length expansions libraries: Priest, Shewchuk
- compensated algorithms (Kahan, Priest, Ogita-Rump-Oishi, Graillat-Langlois-Louvet)

EFT for the summation

$$
x=\mathrm{fl}(a \pm b) \quad \Rightarrow \quad a \pm b=x+y \quad \text { with } y \in \mathbb{F}
$$

Algorithms of Dekker (1971) and Knuth (1974)
Algorithm 4 (EFT of the sum of 2 floating point numbers with $|a| \geq|b|)$
function $[x, y]=\operatorname{FastTwoSum}(a, b)$

$$
\begin{aligned}
& x=\mathrm{fl}(a+b) \\
& y=\mathrm{fl}((a-x)+b)
\end{aligned}
$$

Algorithm 5 (EFT of the sum of 2 floating point numbers)

function $[x, y]=\operatorname{TwoSum}(a, b)$

$$
\begin{aligned}
& x=\mathrm{fl}(a+b) \\
& z=\mathrm{fl}(x-a) \\
& y=\mathrm{fl}((a-(x-z))+(b-z))
\end{aligned}
$$

Error bound for EFT of the sum

Theorem 1

Let $a, b \in \mathbb{F}$ and let $x, y \in \mathbb{F}$ such that $[x, y]=\operatorname{TwoSum}(a, b)$. Then,

$$
a+b=x+y, \quad x=\mathrm{fl}(a+b), \quad|y| \leq \mathbf{u}|x|, \quad|y| \leq \mathbf{u}|a+b|
$$

The algorithm TwoSum requires 6 flops.

Compensated summation algorithm

Algorithm 6 (Ogita, Rump, Oishi (2005))

function res $=\operatorname{CompSum}(p)$

$$
\begin{aligned}
& \pi_{1}=p_{1} ; \sigma_{1}=0 \\
& \text { for } i=2: n \\
& \quad\left[\pi_{i}, q_{i}\right]=\operatorname{TwoSum}\left(\pi_{i-1}, p_{i}\right) \\
& \quad \sigma_{i}=\operatorname{fl}\left(\sigma_{i-1}+q_{i}\right) \\
& \text { res }=\operatorname{fl}\left(\pi_{n}+\sigma_{n}\right)
\end{aligned}
$$

Compensated summation algorithm

Algorithm 7 (Ogita, Rump, Oishi (2005))

function res $=\operatorname{CompSum}(p)$

$$
\begin{aligned}
& \pi_{1}=p_{1} ; \sigma_{1}=0 \\
& \text { for } i=2: n \\
& \quad\left[\pi_{i}, q_{i}\right]=\operatorname{TwoSum}\left(\pi_{i-1}, p_{i}\right) \\
& \quad \sigma_{i}=\mathrm{fl}\left(\sigma_{i-1}+q_{i}\right) \\
& \text { res }=\operatorname{fl}\left(\pi_{n}+\sigma_{n}\right)
\end{aligned}
$$

Let $s=\sum_{i=1}^{n} p_{i}$. Then one has (Ogita, Rump, Oishi 2005)

$$
\mid \text { res }-s|\leq \mathbf{u}| \sum_{i=1}^{n} p_{i}\left|+\gamma_{n-1}^{2} \sum_{i=1}^{n}\right| p_{i} \mid
$$

where $\gamma_{n}=\frac{n \mathbf{u}}{1-n \mathbf{u}}$

Faithful rounding (1/3)

Floating point predecessor and successor of a real number r satisfying $\min \{f: f \in \mathbb{R}\}<r<\max \{f: f \in \mathbb{F}\}$:

$$
\operatorname{pred}(r):=\max \{f \in \mathbb{F}: f<r\} \quad \text { and } \quad \operatorname{succ}(r):=\min \{f \in \mathbb{F}: r<f\} .
$$

Definition 1

A floating point number $f \in \mathbb{F}$ is called a faithful rounding of a real number $r \in \mathbb{R}$ if

$$
\operatorname{pred}(f)<r<\operatorname{succ}(f)
$$

We denote this by $f \in \square(r)$. For $r \in \mathbb{F}$, this implies that $f=r$.
Faithful rounding means that the computed result is equal to the exact result if the latter is a floating point number and otherwise is one of the two adjacent floating point numbers of the exact result.

Faithful rounding (2/3)

Lemma 2 (Rump, Ogita and Oishi, 2005)

Let $r, \delta \in \mathbb{R}$ and $\tilde{r}:=\mathrm{fl}(r)$. Suppose that $2|\delta|<\mathbf{u}|\tilde{r}|$. Then $\tilde{r} \in \square(r+\delta)$, that means \tilde{r} is a faithful rounding of $r+\delta$.

Faithful rounding (3/3)

Let res $=\operatorname{CompSum}(p)$

Theorem 2 (Graillat 2011)

Suppose CompSum algorithm is applied to nonnegative floating-point number $p_{i} \in \mathbb{F}, 1 \leq i \leq n$ and that

$$
n<1+\frac{\sqrt{1-\mathbf{u}}}{\sqrt{2} \sqrt{1+\mathbf{u}}+\sqrt{1-\mathbf{u}}} \mathbf{u}^{-1 / 2}
$$

Then the resultres is a faithful rounding of $s:=\sum p_{i} \geq 0$.

If $n<\alpha \mathbf{u}^{-1 / 2}$ where $\alpha \approx 0.4$ then the result is faithfully rounded In double precision where $\mathbf{u}=2^{-53}$, if $n \lesssim 3 \cdot 10^{7}$, we get a faithfully rounded result

Classic method for computing product

The classic method for evaluating a product of n numbers
$a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$

$$
p=\prod_{i=1}^{n} a_{i}
$$

is the following algorithm.

Algorithm 8 (Product evaluation)

function res $=\operatorname{Prod}(a)$

```
\(p_{1}=a_{1}\)
for \(i=2: n\)
        \(p_{i}=\mathrm{fl}\left(p_{i-1} \cdot a_{i}\right) \%\) rounding error \(\pi_{i}\)
    end
res \(=p_{n}\)
```

This algorithm requires $n-1$ flops

Error analysis

$$
\gamma_{n}:=\frac{n \mathbf{u}}{1-n \mathbf{u}} \quad \text { for } n \in \mathbb{N}
$$

A forward error bound is

$$
\mid a_{1} a_{2} \cdots a_{n}-\text { res }\left|\leq \gamma_{n-1}\right| a_{1} a_{2} \cdots a_{n} \mid
$$

A validated error bound is

$$
\mid a_{1} a_{2} \cdots a_{n}-\text { res } \left\lvert\, \leq \mathrm{fl}\left(\frac{\gamma_{n-1}|\mathrm{res}|}{1-2 \mathbf{u}}\right)\right.
$$

EFT for the product $(1 / 3)$

$$
x=\mathrm{fl}(a \cdot b) \Rightarrow a \cdot b=x+y \quad \text { with } y \in \mathbb{F}
$$

Algorithm TwoProduct by Veltkamp and Dekker (1971)

$$
a=x+y \quad \text { and } \quad x \text { and } y \text { non overlapping with }|y| \leq|x| .
$$

Algorithm 9 (Error-free split of a floating point number into two parts)

function $[x, y]=\operatorname{Split}(a, b)$

$$
\begin{aligned}
& \text { factor }=\mathrm{fl}\left(2^{s}+1\right) \quad \% \mathbf{u}=2^{-p}, s=\lceil p / 2\rceil \\
& c=\mathrm{fl}(\mathrm{factor} \cdot a) \\
& x=\mathrm{fl}(c-(c-a)) \\
& y=\mathrm{fl}(a-x)
\end{aligned}
$$

EFT for the product (2/3)

Algorithm 10 (EFT of the product of 2 floating point numbers)

function $[x, y]=$ TwoProduct (a, b)

$$
\begin{aligned}
& x=\mathrm{fl}(a \cdot b) \\
& {\left[a_{1}, a_{2}\right]=\operatorname{Split}(a)} \\
& {\left[b_{1}, b_{2}\right]=\operatorname{Split}(b)} \\
& y=\mathrm{fl}\left(a_{2} \cdot b_{2}-\left(\left(\left(x-a_{1} \cdot b_{1}\right)-a_{2} \cdot b_{1}\right)-a_{1} \cdot b_{2}\right)\right)
\end{aligned}
$$

Theorem 3

Let $a, b \in \mathbb{F}$ and let $x, y \in \mathbb{F}$ such that $[x, y]=\operatorname{TwoProduct}(a, b)$. Then,

$$
a \cdot b=x+y, \quad x=\mathrm{fl}(a \cdot b), \quad|y| \leq \mathbf{u}|x|, \quad|y| \leq \mathbf{u}|a \cdot b|,
$$

The algorithm TwoProduct requires 17 flops.

EFT for the product (3/3)

Given $a, b, c \in \mathbb{F}$,

- $\operatorname{FMA}(a, b, c)$ is the nearest floating point number $a \cdot b+c \in \mathbb{F}$

Algorithm 11 (EFT of the product of 2 floating point numbers)

function $[x, y]=\operatorname{TwoProductFMA}(a, b)$

$$
\begin{aligned}
& x=\mathrm{fl}(a \cdot b) \\
& y=\operatorname{FMA}(a, b,-x)
\end{aligned}
$$

The FMA is available for example on PowerPC, Itanium, Cell processors.

Compensated method for computing product

Algorithm 12 (Product evaluation with a compensated scheme (Graillat 2008))

function res $=\operatorname{CompProd}(a)$

```
\(p_{1}=a_{1}\)
\(e_{1}=0\)
for \(i=2: n\)
\[
\begin{aligned}
& {\left[p_{i}, \pi_{i}\right]=\operatorname{TwoProduct}\left(p_{i-1}, a_{i}\right)} \\
& e_{i}=\mathrm{fl}\left(e_{i-1} a_{i}+\pi_{i}\right)
\end{aligned}
\]
end
res \(=\mathrm{fl}\left(p_{n}+e_{n}\right)\)
```

This algorithm requires $19 n-18$ flops

Error analysis

Theorem 4 (Graillat 2008)

Suppose Algorithm CompProd is applied to floating point number $a_{i} \in \mathbb{F}, 1 \leq i \leq n$, and set $p=\prod_{i=1}^{n} a_{i}$. Then,

$$
|r e s-p| \leq \mathbf{u}|p|+\gamma_{n} \gamma_{2 n}|p|
$$

Condition number of the product evaluation:

$$
\operatorname{cond}(a)=\limsup _{\varepsilon \rightarrow 0}\left\{\frac{\left|\left(a_{1}+\Delta a_{1}\right) \cdots\left(a_{n}+\Delta a_{n}\right)-a_{1} \cdots a_{n}\right|}{\varepsilon\left|a_{1} a_{2} \cdots a_{n}\right|}:\left|\Delta a_{i}\right| \leq \varepsilon\left|a_{i}\right|\right\}
$$

A standard computation yields

$$
\operatorname{cond}(a)=n
$$

Validated error bound

Lemma 3 (Graillat 2008)

Suppose Algorithm CompProd is applied to floating point numbers $a_{i} \in \mathbb{F}, 1 \leq i \leq n$ and set $p=\prod_{i=1}^{n} a_{i}$. Then, the absolute forward error affecting the product is bounded according to

$$
\mid \text { res }-p \left\lvert\, \leq \mathrm{ff}\left(\left(\mathbf{u} \mid \text { res } \left\lvert\,+\frac{\gamma_{n} \gamma_{2 n}\left|a_{1} a_{2} \cdots a_{n}\right|}{1-(n+3) \mathbf{u}}\right.\right) /(1-2 \mathbf{u})\right) .\right.
$$

Faithful rounding

Let res $=\operatorname{CompProd}(p)$

Lemma 4
If $n<\frac{\sqrt{1-\mathbf{u}}}{\sqrt{2} \sqrt{2+\mathbf{u}}+2 \sqrt{(1-\mathbf{u}) \mathbf{u}}} \mathbf{u}^{-1 / 2}$ then res is a faithful rounding of p.

If $n<\alpha \mathbf{u}^{-1 / 2}$ where $\alpha \approx 1 / 2$ then the result is faithfully rounded
In double precision where $\mathbf{u}=2^{-53}$, if $n<2^{25} \approx 5 \cdot 10^{7}$, we get a faithfully rounded result

Validated error bound and faithful rounding

If

$$
\mathrm{fl}\left(2 \frac{\gamma_{n} \gamma_{2 n}\left|a_{1} a_{2} \cdots a_{n}\right|}{1-(n+3) \mathbf{u}}\right)<\mathrm{fl}(\mathbf{u} \mid \text { res } \mid)
$$

then we got a faitfully rounded result. This makes it possible to check a posteriori if the result is faithfully rounded.

Various results

- Similar results apply for other compensated algorithm for dot product or Horner scheme with nonnegative entries
- Compensated dot product : computing $x^{T} y$

Algorithm 13 (Ogita, Rump and Oishi 2005)

function res $=\operatorname{Dot} 2(x, y)$
$[p, s]=\operatorname{TwoProduct}\left(x_{1}, y_{1}\right)$
for $i=2: n$
$[h, r]=\operatorname{TwoProduct}\left(x_{i}, y_{i}\right)$
$[p, q]=\operatorname{TwoSum}(p, h)$
$s=\mathrm{fl}(s+(q+r))$
end
res $=\mathrm{fl}(p+s)$

Compensated dot product

Algorithm 14 (Ogita, Rump and Oishi 2005)

function res $=\operatorname{Dot} 2(x, y)$

$$
\begin{aligned}
& {[p, s]=\operatorname{TwoProduct}\left(x_{1}, y_{1}\right)} \\
& \text { for } i=2: n \\
& \quad[h, r]=\operatorname{TwoProduct}\left(x_{i}, y_{i}\right) \\
& \quad[p, q]=\operatorname{TwoSum}(p, h) \\
& s=\mathrm{fl}(s+(q+r)) \\
& \text { end } \\
& \text { res }=\operatorname{fl}(p+s)
\end{aligned}
$$

Then one has (Ogita, Rump, Oishi 2005)

$$
\mid \text { res }-\left.x^{T} y|\leq \mathbf{u}| x^{T} y\left|+\gamma_{2 n}^{2}\right| x\right|^{T}|y|
$$

where $\gamma_{n}=\frac{n \mathbf{u}}{1-n \mathbf{u}}$

The Horner scheme

Evaluation of $p(x)=\sum_{i=0}^{n} a_{i} x^{i}$

Algorithm 15 (Horner scheme)

function res $=\operatorname{Horner}(p, x)$

$$
\begin{array}{ll}
s_{n}=a_{n} & \\
\text { for } i=n-1:-1: 0 & \\
\qquad p_{i}=\mathrm{fl}\left(s_{i+1} \cdot x\right) & \text { \% rounding error } \pi_{i} \\
s_{i}=\mathrm{fl}\left(p_{i}+a_{i}\right) & \text { \% rounding error } \sigma_{i} \\
\text { end } & \\
\text { res }=s_{0} &
\end{array}
$$

$$
\frac{|p(x)-\operatorname{Horner}(p, x)|}{|p(x)|} \leq \underbrace{\gamma_{2 n}}_{\approx 2 n \mathbf{u}} \operatorname{cond}(p, x) \text { with } \operatorname{cond}(p, x):=\frac{\sum_{i=0}^{n}\left|a_{i}\right||x|^{i}}{\left|\sum_{i=0}^{n} a_{i} x^{i}\right|}
$$

Error-free transformation for the Horner scheme

$$
p(x)=\operatorname{Horner}(p, x)+\left(p_{\pi}+p_{\sigma}\right)(x)
$$

Algorithm 16 (Error-free transformation for the Horner scheme (Graillat,Louvet,Langlois 2005))

function $\left[\operatorname{Horner}(p, x), p_{\pi}, p_{\sigma}\right]=\operatorname{EFTHorner}(p, x)$
$s_{n}=a_{n}$
for $i=n-1:-1: 0$
[p_{i}, π_{i}] $=$ TwoProduct $\left(s_{i+1}, x\right)$
$\left[s_{i}, \sigma_{i}\right]=\operatorname{TwoSum}\left(p_{i}, a_{i}\right)$
Let π_{i} be the coefficient of degree i of p_{π}
Let σ_{i} be the coefficient of degree i of p_{σ}
end
$\operatorname{Horner}(p, x)=s_{0}$

Compensated Horner scheme and its accuracy

Algorithm 17 (Compensated Horner scheme)

function res $=\operatorname{CompHorner}(p, x)$
$\left[h, p_{\pi}, p_{\sigma}\right]=\operatorname{EFTHorner}(p, x)$
$c=\operatorname{Horner}\left(p_{\pi}+p_{\sigma}, x\right)$
res $=\mathrm{fl}(h+c)$

Theorem 5 (Graillat,Louvet,Langlois 2005)

Let p be a polynomial of degree n with floating point coefficients, and x be a floating point value. Then if no underflow occurs,

$$
\frac{\mid \text { CompHorner }(p, x)-p(x) \mid}{|p(x)|} \leq \mathbf{u}+\underbrace{\gamma_{2 n}^{2}}_{\approx 4 n^{2} \mathbf{u}^{2}} \operatorname{cond}(p, x)
$$

Numerical experiments: testing the accuracy

Evaluation of $p_{n}(x)=(x-1)^{n}$ for $x=\mathrm{fl}(1.333)$ and $n=3, \ldots, 42$

Conclusion and future work

Conclusion

- Compensated algorithms make it possible to accurately compute with nonnegative entries
- It makes it possible to compute some accurate error bounds

Future work

- Computing accurately the 2-norm of a vector

Thank you for your attention

