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Dot products: key tool in numerical linear algebra
Fast algorithms in scientific computing
Cryptology

Error-correcting codes

Computer algebra
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Floating-point numbers

Normalized floating-point numbers F C R:

XI:|:X0.X1...X[\/],1><be7 0§Xi§b—l, Xo#O
N—
mantissa
b : basis, M : precision, e : exponent such that enin < e < emax

Approximation of R by F with rounding fl : R — F.
Let x € R then

fi(x) =x(1+46), [§|<u

Unit rounding u = b*~M for rounding toward zero
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Standard model of floating-point arithmetic

Let x,y € Fand o € {+,—,-,/}.

The result x o y is not in general a floating-point number

fiixoy) =(xoy)(1+6), [6[<u

IEEE 754 standard (1985)

Type ‘ Size ‘ Mantissa ‘ Exponent ‘ Unit rounding ‘ Interval
Single | 32 bits | 23+1 bits | 8 bits u=21"2%~102x10""7 | ~10%38
Double | 64 bits | 52+1 bits | 11 bits u=21"532222x10"16 | ~ 10+308
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Finite field IF, (p prime)

Fp,=7Z/pZ = GF(p) = {0,1,...,p— 1} is a finite field with characteristic
p
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Finite field IF, (p prime)

Fp,=7Z/pZ = GF(p) = {0,1,...,p— 1} is a finite field with characteristic
p

Operations in the field, for a, b € Z/pZ:
e Addition: a+ b€ {0,....2(p—1)} — a+ b (mod p) € Z/pZ
e Multiplication: ab € {0,...,(p —1)?} — ab (mod p) € Z/pZ
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Finite field IF, (p prime)

Fp,=7Z/pZ = GF(p) = {0,1,...,p— 1} is a finite field with characteristic
p

Operations in the field, for a, b € Z/pZ:
e Addition: a+ b€ {0,....2(p—1)} — a+ b (mod p) € Z/pZ
e Multiplication: ab € {0,...,(p —1)?} — ab (mod p) € Z/pZ

Reduction modulo p for a € Z/pZ:

a (modp)=a— L‘jJ p=a— |ainP|p
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Aim

Let p > 3 a prime number and (a;);, (b;i)i two vectors of N scalars in
Z/pZ. We want to compute the dot product of a and b in Z/pZ:

N
a-b:Za;b; (mod p)
i=1
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Aim

Let p > 3 a prime number and (a;);, (b;i)i two vectors of N scalars in
Z/pZ. We want to compute the dot product of a and b in Z/pZ:

N
a-b:Za;b; (mod p)
i=1

Assumptions:
@ The integers are stored as floating-point numbers — F NN
@ The prime p satisfies B — 1l = 2=,

@ The numbers are assumed to be nonnegative

@ The rounding mode is rounding toward zero
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Rounding toward zero in R

Let x € RT fl(x) be the rounding toward zero of x in F

@ Equivalent to a truncation
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Rounding toward zero in R

Let x € RT fl(x) be the rounding toward zero of x in F

@ Equivalent to a truncation
@ The rounding is less or equal to the exact number:

Vx € R, fi(x) < x
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Rounding toward zero in R

Let x € RT fl(x) be the rounding toward zero of x in F

@ Equivalent to a truncation
@ The rounding is less or equal to the exact number:

Vx € R, fi(x) < x
@ The rounding error is nonnegative:

Vx € RT, x —fl(x) >0

S. Graillat (Univ. Paris 6) Dot products in finite fields



Error-free Transformations (EFT)

Problem : the result of a floating-point operation is generally not
representable by a floating-point numbers.

Solution: Error-free transformations

@ non-evaluated sum of two floating-point numbers
o the floating-point result of the operation
e the rounding error (which is representable in F in our cases)

@ Fora,be FNN and o€ {+, x},

aob=fl(aob)+e, withectT,

which is mathematically true.
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Error-free Transformations for the product (1/2)

For a,b,c € F,
@ FMA(a, b, c) is the rounding of a- b+ ¢

Algorithm 1 (EFT for the product of two floating-point numbers)

function [x, y] = TwoProductFMA(a, b)
x=1fl(a- b)
y = FMA(a, b, —x)

The FMA is now included in the IEEE 754-2008 standard
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Error-free Transformations for the product (2/2)

Let a,be FNN and x,y € F such that

[x,y] < TwoProductFMA(a, b)
Then

ab=x+y, x=fl(ab), 0<y<uufp(x), 0<x<ab
Algorithm TwoProductFMA requires 2 flops.

2M Mo
21 I = |log2(p)]
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Binary euclidean division (1/2)

For a,d € FN N, d # 0, the euclidean division of a by d is

a=qd+r, 0<r<d

Foraec FNNand o = 2k./o > 3, one defines

Algorithm 2 (Split of a floating-point numbers)

function [x, y] = ExtractScalar(o, a)

q="f(c +a)
x =1fl(q - o)
y =fl(x — a)

fl is rounding toward zero
Algorithm first proposed by Rump, Ogita and Oishi in rounding to the
nearest
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Binary euclidean division (2/2)

Theorem 2
Letac FNN, 0 =2% 6> aand x,y € F such that

[x,y] < ExtractScalar(o, a)
Then
a=x+y, 0<y<uog, 0<x<a x€uN

Algorithm ExtractScalar requires 3 flops.

Remark:
a=x+y=xuo+r, X eN, 0<r<uc

a
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Computation of dot products

N

a-b:Za;b; (mod p)

i=1

Two different approaches
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Computation of dot products

N

a-b:Za;b; (mod p)

i=1

Two different approaches

@ First method:

Mp—1)<2M=1 with  AeN*
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Computation of dot products

N

a-b:Za;b; (mod p)

i=1

Two different approaches
@ First method:
Mp—1)<2M=1 with  AeN*
@ Second method:

p—1<2M-1 but N < 2M/2

In double, the maximal vector size are 253/2 ~ 108.
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Computation of dot products

First method
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Computation of dot products: first method

Assumption :  A\(p — 1) < 2M-1

Consequences :
@ The sum of )\ elements of the field can still be stored in the mantissa

@ We can delay the reduction modulo p up to A summations
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Computation of dot products: first method

Assumption :  A\(p — 1) < 2M-1

Consequences :

@ The sum of )\ elements of the field can still be stored in the mantissa

@ We can delay the reduction modulo p up to A summations

Jean-Guillaume Dumas:  A(p — 1)% < 2M
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First method: principle

aj

aj b,

bj

2M :
2/

Let / = [logy(p)]

M
I' = |log2(p)]

ai < 2/+1

bi < 2/+1

S. Graillat (Univ. Paris 6)

Dot products in finite fields



First method: principle

aj ai < 2/+1

b—’ b < 2!*1

aj b,

2M Mo
21 I = |log2(p)]

Let | = Llogz(p)J - ufp(p) =2l #% p  (ufp(p) =most significant bit of p)
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First method: principle

aj ai < 2/+1

b—’ b < 2!*1

aj b,

oM : Mo
21 I = |log2(p)]
Let | = Llogz(p)J - ufp(p) =2l #% p  (ufp(p) =most significant bit of p)
@ p >3 prime so: ufp(p) < p < 2.ufp(p) e 2/ <p< 2!
@ Remarks:
0<x<?2 Z/pZ
wxeo, 24 —1nF, { SXST 0 TS /”
Qe x <2t —= x-2'eZ/pL

! 2/+1

¢ € 7/ p7Z 2 2' € 7,/p7Z
| X P | X = 2 |
| 1 | -

0<x<2 2l < x <2t
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First method: principle

TwoProductFMA — a;bj=h+r

.aibi

2M M

20+2 l+1=log2(p)| +1
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First method: principle

TwoProductFMA — a;bj=h+r

Q; bl

2M M

20+2 l+1=log2(p)| +1
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First method: principle

TwoProductFMA — a;bj=h+r

Q; bl

g

—

2M M i

20+2 l+1=log2(p)| +1
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First method: principle

TwoProductFMA — a;bj=h+r

Q; bl

g

|
T
'
'
'
'
.
[r—

2M M

20+2 l+1=log2(p)| +1

After splitting with ExtractScalar:
e h=a+4 with 0< a2t p<2tt
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First method: principle

TwoProductFMA — a;bj=h+r

Q; bl

«

I’)

|
T
'
'
'
'
.
[r—

2M M

20+2 l+1=log2(p)| +1

After splitting with ExtractScalar:
e h=a+4 with 0< a2t p<2tt
o We accumulate a/2*t € Z/pZ or «a/2tt -2l € 7/pZ

@ We remember the number n,, of added —2/

S. Graillat (Univ. Paris 6) Dot products in finite fields



First method: principle

TwoProductFMA — a;bj=h+r

Q; bl

«

I’)

|
T
'
'
'
'
.
[r—

2M M

20+2 l+1=log2(p)| +1

After splitting with ExtractScalar:
e h=a+4 with 0< a2t p<2tt
We accumulate o/2"*t € Z/pZ  or /2t — 2 € 7/p7Z
We remember the number n,, of added —2
Similar for 3: € Z/pZ or (32 c7/pZ

ng := number of correction of —2/ for /3
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First method: final computation

N
a-b:Za;b;

—Zal+2ﬁl+zr/
—Z ,/2’“ +Z ,/2’“+Z Z@+Zm

Ne N—nq N— ng
+ (na + n,B) 2
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First method: final computation

N
a-b:Za;b;

_Zal+2ﬁl+zr/
—Z ,/2’“ +Z ,/2’“+Z Z@+Zm

Ne N—nq N— ng
+ (na + n,B) 2

AMp — 1) < 2M~1 — summation by bundle of A\ numbers and then
reduction mod p
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Performances

@ On Iltanium2

o With FMA

@ In double precision (p — 1 < 2%371)
@ Comparison with GMP
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First method: Performances on Itanium2 (1/4)

Figure: Comparison with GMP: time=f (p € [22*,25?]), for N = 10°

.................................... o GMP
- my algo

0.03 - =

0.035

0.025 - =

0.02 - =

time

0015  eeveees B

0.005 1 1 1 1 1 1 1 1 1
0
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First method: Performances on Itanium2 (2/4)

Figure: Comparison with GMP: time=f(N, log,(p)) — GMP on the top

log2iy)
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First method: Performances on Itanium2 (4/4)

Figure: ratio=time(GMP)/time(algo) = (N, log,(p))

15 20 25 30 35 40 45 50

log2(p)
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Computation of dot products

Second method
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Computation of dot products: second method

Assumption :  p—1<2M-1 and N <2M/2
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Computation of dot products: second method

Assumption :  p—1<2M-1 and N <2M/2

Idea :
@ Split the number with a representation with only half the mantissa

@ Sum them without error
@ Reduction modulo p only at the end

Dot products in finite fields
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Computation of dot products: second method

Assumption :  p—1<2M-1 and N <2M/2

Idea :
@ Split the number with a representation with only half the mantissa
@ Sum them without error

@ Reduction modulo p only at the end

M
Use ExtractScalar to get: s1= |5

Vie[l,N], aibi=aj+ i+~ +06=A2Ms 4B 2oM4 G2 4D

a- b—2M+Sle +2MZB +2SIZC +ZD (mod p)
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Second method: principle of the splitting of a; b; (1/2)

oM 3M/2 M M/2 0
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Second method: principle of the splitting of a; b; (1/2)

a; b;

oM 3M/2 M M/2 0
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Second method: principle of the splitting of a; b; (1/2)

a; b;

oM 3M/2 M M/2 0
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Second method: principle of the splitting of a; b; (1/2)

a; b;

oM 3M/2 M M/2 0

S. Graillat (Univ. Paris 6) Dot products in finite fields



Second method: principle of the splitting of a; b; (1/2)

a; b;

oM 3M/2 M M/2 0
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Second method: principle of the splitting of a; b; (1/2)

a; b;

oM 3M/2 M M/2 0
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Second method: principle of the splitting of a; b; (1/2)

a; b;

oM 3M/2 M M/2 0
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Second method: principle of the splitting of a; b; (1/2)

a; b;

2M 3M/2 M M/2 0

a;bj=a+B8+~v+9d
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Second method: principle of the splitting of a; b; (2/2)

Split — 4 vectors of N < 2M/2 elements with at most M/2 bits

2M 3M/2 M M/2 0
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Second method: principle of the splitting of a; b; (2/2)

Split — 4 vectors of N < 2M/2 elements with at most M/2 bits

I6; 0 g

(S

2M 3M/2 M M/2 0
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Second method: principle of the splitting of a; b; (2/2)

Split — 4 vectors of N < 2M/2 elements with at most M/2 bits

@ 3 0% §
—— ! ]
— —— Il
—_— —_— —_— —_—
| |
. > I
. X
| T
oM 3M/2 M M/2 0
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Second method: Results

Final results:

N N N N
a-b= Za;—i—Zﬁ;+Z%+Z5i (mod p)
i=1 i=1 i=1 i=1

Total cost: 16N + O(1) flops
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Second method: Performances on Itanium2 (2/3)

Figure: Surface: ratio=time(GMP)/time(algo) = (N, log,(p))
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Second method: Performances on Itanium2 (3/3)

Figure: ratio=time(GMP)/time(algo) = (N, log,(p))

30
log2(p)
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Comparison of the two methods
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Comparison of the two methods

Figure: time(Method,) — time(Method;) = f(N, log,(p))
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Conclusion and future work

Conclusion:
@ Two efficient algorithms for computing dot product
o Efficient algorithms compared to GMP

@ Use of error-free transformations in rounding toward zero

Future work:
Second method with a splitting in 3 parts (with N < 2M/3)
Extension to Galois fields GF(2")

°
@ Use of longlong library
°
°

Use of RNS techniques
Parallelisation of the algorithms for GPU
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Thank you for your attention
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