Computation of dot products in finite fields with floating-point arithmetic

Stef Graillat

Joint work with Jérémy Jean

LIP6/PEQUAN - Université Pierre et Marie Curie (Paris 6) - CNRS

Computer-assisted proofs - tools, methods and applications
Dagstuhl Seminar 09471
Germany, November 15-20, 2009

Outline of the talk

- Motivations
- Basic
 - Floating-point arithmetic
 - Finite fields
- Computation of dot products
 - First method
 - Second method
- Comparison
- Conclusion and future work

Motivations

- Dot products: key tool in numerical linear algebra
- Fast algorithms in scientific computing
- Cryptology
- Error-correcting codes
- Computer algebra

Floating-point numbers

Normalized floating-point numbers $\mathbb{F} \subset \mathbb{R}$:

$$x = \pm \underbrace{x_0.x_1...x_{M-1}}_{mantissa} \times b^e, \quad 0 \le x_i \le b-1, \quad x_0 \ne 0$$

b : basis, M : precision, e : exponent such that $e_{\mathsf{min}} \leq e \leq e_{\mathsf{max}}$

Approximation of \mathbb{R} by \mathbb{F} with rounding $\mathbf{fl}: \mathbb{R} \to \mathbb{F}$. Let $x \in \mathbb{R}$ then

$$\mathbf{fl}(x) = x(1+\delta), \quad |\delta| \le \mathbf{u}$$

Unit rounding $\mathbf{u} = b^{1-M}$ for rounding toward zero

Standard model of floating-point arithmetic

Let $x, y \in \mathbb{F}$ and $0 \in \{+, -, \cdot, /\}$.

The result $x \circ y$ is not in general a floating-point number

$$\mathbf{fl}(x \circ y) = (x \circ y)(1 + \delta), \quad |\delta| \le \mathbf{u}$$

IEEE 754 standard (1985)

Type	Size	Mantissa	Exponent	Unit rounding	Interval
		23+1 bits		$\mathbf{u} = 2^{1-24} \approx 1,92 \times 10^{-7}$	
Double	64 bits	52+1 bits	11 bits	$\mathbf{u} = 2^{1-53} \approx 2,22 \times 10^{-16}$	$pprox 10^{\pm 308}$

Finite field \mathbb{F}_p (p prime)

$$\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z} = GF(p) = \{0, 1, \dots, p-1\}$$
 is a finite field with characteristic p

Finite field \mathbb{F}_p (p prime)

$$\mathbb{F}_p=\mathbb{Z}/p\mathbb{Z}=GF(p)=\{0,1,\ldots,p-1\}$$
 is a finite field with characteristic p

Operations in the field, for $a, b \in \mathbb{Z}/p\mathbb{Z}$:

- Addition: $a + b \in \{0, \dots, 2(p-1)\} \rightarrow a + b \pmod{p} \in \mathbb{Z}/p\mathbb{Z}$
- Multiplication: $ab \in \{0, \dots, (p-1)^2\} \to ab \pmod{p} \in \mathbb{Z}/p\mathbb{Z}$

Finite field \mathbb{F}_p (p prime)

 $\mathbb{F}_p=\mathbb{Z}/p\mathbb{Z}=GF(p)=\{0,1,\ldots,p-1\}$ is a finite field with characteristic p

Operations in the field, for $a, b \in \mathbb{Z}/p\mathbb{Z}$:

- Addition: $a+b \in \{0,\ldots,2(p-1)\} \to a+b \pmod{p} \in \mathbb{Z}/p\mathbb{Z}$
- Multiplication: $ab \in \{0,\ldots,(p-1)^2\} \to ab \pmod p \in \mathbb{Z}/p\mathbb{Z}$

Reduction modulo p for $a \in \mathbb{Z}/p\mathbb{Z}$:

$$a \pmod{p} = a - \left\lfloor \frac{a}{p} \right\rfloor p = a - \lfloor a.invP \rfloor p$$

Aim

Let $p \geq 3$ a prime number and $(a_i)_i, (b_i)_i$ two vectors of N scalars in $\mathbb{Z}/p\mathbb{Z}$. We want to compute the dot product of a and b in $\mathbb{Z}/p\mathbb{Z}$:

$$a \cdot b = \sum_{i=1}^{N} a_i b_i \pmod{p}$$

Aim

Let $p \geq 3$ a prime number and $(a_i)_i, (b_i)_i$ two vectors of N scalars in $\mathbb{Z}/p\mathbb{Z}$. We want to compute the dot product of a and b in $\mathbb{Z}/p\mathbb{Z}$:

$$a \cdot b = \sum_{i=1}^{N} a_i b_i \pmod{p}$$

Assumptions:

- ullet The integers are stored as floating-point numbers $\longrightarrow \mathbb{F} \cap \mathbb{N}$
- The prime p satisfies $p-1 < 2^{M-1}$
- The numbers are assumed to be nonnegative
- The rounding mode is rounding toward zero

Rounding toward zero in \mathbb{R}^+

Let $x \in \mathbb{R}^+$ fl(x) be the rounding toward zero of x in \mathbb{F}

• Equivalent to a truncation

Rounding toward zero in \mathbb{R}^+

Let $x \in \mathbb{R}^+$ fl(x) be the rounding toward zero of x in \mathbb{F}

- Equivalent to a truncation
- The rounding is less or equal to the exact number:

$$\forall x \in \mathbb{R}^+, \ \mathbf{fl}(x) \leq x$$

Rounding toward zero in \mathbb{R}^+

Let $x \in \mathbb{R}^+$ fl(x) be the rounding toward zero of x in \mathbb{F}

- Equivalent to a truncation
- The rounding is less or equal to the exact number:

$$\forall x \in \mathbb{R}^+, \ \mathbf{fl}(x) \leq x$$

• The rounding error is nonnegative:

$$\forall x \in \mathbb{R}^+, \ x - \mathbf{fl}(x) \geq 0$$

Error-free Transformations (EFT)

Problem: the result of a floating-point operation is generally not representable by a floating-point numbers.

Solution: Error-free transformations

- non-evaluated sum of two floating-point numbers
 - the floating-point result of the operation
 - ullet the rounding error (which is representable in ${\mathbb F}$ in our cases)
- For $a, b \in \mathbb{F} \cap \mathbb{N}$ and $\circ \in \{+, \times\}$,

$$a \circ b = \mathbf{fl}(a \circ b) + e$$
, with $e \in \mathbb{F}$,

which is mathematically true.

Error-free Transformations for the product (1/2)

For $a, b, c \in \mathbb{F}$,

• FMA(a, b, c) is the rounding of $a \cdot b + c$

Algorithm 1 (EFT for the product of two floating-point numbers)

function
$$[x, y] = TwoProductFMA(a, b)$$

 $x = fl(a \cdot b)$
 $y = FMA(a, b, -x)$

The FMA is now included in the IEEE 754-2008 standard

Error-free Transformations for the product (2/2)

Theorem 1

Let $a, b \in \mathbb{F} \cap \mathbb{N}$ and $x, y \in \mathbb{F}$ such that

$$[x, y] \leftarrow \texttt{TwoProductFMA}(a, b)$$

Then

$$ab = x + y$$
, $x = \mathbf{fl}(ab)$, $0 \le y < \mathbf{u.ufp}(x)$, $0 \le x \le ab$

Algorithm TwoProductFMA requires 2 flops.

Binary euclidean division (1/2)

For $a, d \in \mathbb{F} \cap \mathbb{N}, d \neq 0$, the euclidean division of a by d is

$$a = qd + r$$
, $0 \le r < d$

For $a \in \mathbb{F} \cap \mathbb{N}$ and $\sigma = 2^k, \sigma \geq a$, one defines

Algorithm 2 (Split of a floating-point numbers)

function
$$[x, y] = \text{ExtractScalar}(\sigma, a)$$

 $q = \text{fl}(\sigma + a)$

$$x = f(q - \sigma)$$

$$x = \Pi(q - \theta)$$

$$y = \mathbf{fl}(x - a)$$

fl is rounding toward zero

Algorithm first proposed by Rump, Ogita and Oishi in rounding to the nearest

Binary euclidean division (2/2)

Theorem 2

Let $a \in \mathbb{F} \cap \mathbb{N}$, $\sigma = 2^k, \sigma \ge a$ and $x, y \in \mathbb{F}$ such that

$$[x,y] \leftarrow \texttt{ExtractScalar}(\sigma,a)$$

Then

$$a = x + y,$$
 $0 \le y < \mathbf{u} \, \sigma,$ $0 \le x \le a,$ $x \in \mathbf{u} \sigma \mathbb{N}$

Algorithm ExtractScalar requires 3 flops.

Remark:

$$a = x + y = x' \mathbf{u}\sigma + r, \qquad x' \in \mathbb{N}, \quad 0 \le r < \mathbf{u}\sigma$$

$$\begin{vmatrix} & & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

$$a \cdot b = \sum_{i=1}^{N} a_i b_i \pmod{p}$$

Two different approaches

$$a \cdot b = \sum_{i=1}^{N} a_i b_i \pmod{p}$$

Two different approaches

• First method:

$$\lambda(p-1) < 2^{M-1}$$
 with $\lambda \in \mathbb{N}^*$

$$a \cdot b = \sum_{i=1}^{N} a_i b_i \pmod{p}$$

Two different approaches

• First method:

$$\lambda(p-1) < 2^{M-1}$$
 with $\lambda \in \mathbb{N}^*$

Second method:

$$p-1 < 2^{M-1}$$
 but $N < 2^{M/2}$

In double, the maximal vector size are $2^{53/2} \approx 10^8$.

First method

Computation of dot products: first method

Assumption : $\lambda(p-1) < 2^{M-1}$

Consequences:

- ullet The sum of λ elements of the field can still be stored in the mantissa
- We can delay the reduction modulo p up to λ summations

Computation of dot products: first method

Assumption : $\lambda(p-1) < 2^{M-1}$

Consequences:

- ullet The sum of λ elements of the field can still be stored in the mantissa
- We can delay the reduction modulo p up to λ summations

Jean-Guillaume Dumas: $\lambda(p-1)^2 < 2^M$

Let
$$I = \lfloor \log_2(p) \rfloor$$

Let
$$I = \lfloor \log_2(p) \rfloor \implies \operatorname{ufp}(p) := 2^I \neq p \pmod{\operatorname{ufp}(p) = most significant \ bit \ of \ p}$$

Let
$$I = \lfloor \log_2(p) \rfloor \implies \mathbf{ufp}(p) := 2^I \neq p \pmod{p}$$
 (ufp $(p) = most significant bit of p)$

- $p \ge 3$ prime so: $\mathbf{ufp}(p) i.e. <math>2^{l}$
- Remarks:

$$\forall x \in [0, 2^{l+1} - 1] \cap \mathbb{F}, \quad \begin{cases} 0 \le x \le 2^{l} & \Longrightarrow x \in \mathbb{Z}/p\mathbb{Z} \\ 2^{l} < x < 2^{l+1} & \Longrightarrow x - 2^{l} \in \mathbb{Z}/p\mathbb{Z} \end{cases}$$

$$0 \quad x \in \mathbb{Z}/p\mathbb{Z} \quad 2^{l} \quad x - 2^{l} \in \mathbb{Z}/p\mathbb{Z}$$

$$0 < x < 2^{l} \quad 2^{l} < x < 2^{l+1}$$

$$0 < x < 2^{l} \quad 2^{l} < x < 2^{l+1}$$

TwoProductFMA
$$\implies$$
 $a_i b_i = h + r$

TwoProductFMA
$$\implies$$
 $a_i b_i = h + r$

After splitting with ExtractScalar:

$$\bullet \ \, {\color{red} h} = \alpha + \beta \qquad \text{ with } \qquad 0 \leq \alpha/2^{l+1}, \beta < 2^{l+1}$$

TwoProductFMA
$$\implies$$
 $a_i b_i = h + r$

After splitting with ExtractScalar:

- $h = \alpha + \beta$ with $0 \le \alpha/2^{l+1}, \beta < 2^{l+1}$
- We accumulate $\alpha/2^{l+1} \in \mathbb{Z}/p\mathbb{Z}$ or $\alpha/2^{l+1}-2^l \in \mathbb{Z}/p\mathbb{Z}$
- We remember the number n_{α} of added -2^{I}

TwoProductFMA
$$\implies$$
 $a_i b_i = h + r$

After splitting with ExtractScalar:

- $h = \alpha + \beta$ with $0 \le \alpha/2^{l+1}, \beta < 2^{l+1}$
- We accumulate $\alpha/2^{l+1} \in \mathbb{Z}/p\mathbb{Z}$ or $\alpha/2^{l+1}-2^l \in \mathbb{Z}/p\mathbb{Z}$
- We remember the number n_{α} of added -2^{I}
- Similar for β : $\beta \in \mathbb{Z}/p\mathbb{Z}$ or $\beta 2^l \in \mathbb{Z}/p\mathbb{Z}$
- $n_{\beta} := \text{number of correction of } -2^{I} \text{ for } \beta$

First method: final computation

$$a \cdot b = \sum_{i=1}^{N} a_{i} b_{i}$$

$$= \sum_{i=1}^{N} \alpha_{i} + \sum_{i=1}^{N} \beta_{i} + \sum_{i=1}^{N} r_{i}$$

$$= \sum_{n_{\alpha}} (\alpha_{i}/2^{l+1} - 2^{l}) + \sum_{N-n_{\alpha}} \alpha_{i}/2^{l+1} + \sum_{n_{\beta}} (\beta_{i} - 2^{l}) + \sum_{N-n_{\beta}} \beta_{i} + \sum_{N} r_{i}$$

$$+ (n_{\alpha} + n_{\beta}) 2^{l}$$

First method: final computation

$$a \cdot b = \sum_{i=1}^{N} a_{i} b_{i}$$

$$= \sum_{i=1}^{N} \alpha_{i} + \sum_{i=1}^{N} \beta_{i} + \sum_{i=1}^{N} r_{i}$$

$$= \sum_{n_{\alpha}} (\alpha_{i}/2^{l+1} - 2^{l}) + \sum_{N-n_{\alpha}} \alpha_{i}/2^{l+1} + \sum_{n_{\beta}} (\beta_{i} - 2^{l}) + \sum_{N-n_{\beta}} \beta_{i} + \sum_{N} r_{i}$$

$$+ (n_{\alpha} + n_{\beta}) 2^{l}$$

 $\lambda(p-1) < 2^{M-1} \Longrightarrow$ summation by bundle of λ numbers and then reduction mod p

Performances

- On Itanium2
- With FMA
- In double precision $(p-1 < 2^{53-1})$
- Comparison with GMP

First method: Performances on Itanium2 (1/4)

Figure: Comparison with GMP: time= $f(p \in [2^{23}, 2^{52}])$, for $N = 10^5$

First method: Performances on Itanium2 (2/4)

Figure: Comparison with GMP: time= $f(N, \log_2(p))$ — GMP on the top

First method: Performances on Itanium 2 (3/4)

Figure: Surface: $ratio=time(GMP)/time(algo) = f(N, log_2(p))$

First method: Performances on Itanium2 (4/4)

Computation of dot products

Second method

Computation of dot products: second method

Assumption : $p-1 < 2^{M-1}$ and $N < 2^{M/2}$

Computation of dot products: second method

Assumption :
$$p-1 < 2^{M-1}$$
 and $N < 2^{M/2}$

Idea:

- Split the number with a representation with only half the mantissa
- Sum them without error
- Reduction modulo p only at the end

Computation of dot products: second method

Assumption :
$$p-1 < 2^{M-1}$$
 and $N < 2^{M/2}$

Idea:

- Split the number with a representation with only half the mantissa
- Sum them without error
- Reduction modulo p only at the end

Use ExtractScalar to get:

$$s_1 = \left\lfloor \frac{M}{2} \right\rfloor$$

$$\forall i \in [1, N], \quad a_i b_i = \alpha_i + \beta_i + \gamma_i + \delta_i = A_i 2^{M+s_1} + B_i 2^M + C_i 2^{s_1} + D_i$$

$$a \cdot b = 2^{M+s_1} \sum_{i=1}^{N} A_i + 2^M \sum_{i=1}^{N} B_i + 2^{s_1} \sum_{i=1}^{N} C_i + \sum_{i=1}^{N} D_i \pmod{p}$$

Split \longrightarrow 4 vectors of $N < 2^{M/2}$ elements with at most M/2 bits

Split \longrightarrow 4 vectors of $N < 2^{M/2}$ elements with at most M/2 bits

Split \longrightarrow 4 vectors of $N < 2^{M/2}$ elements with at most M/2 bits

Second method: Results

Final results:

$$a \cdot b = \sum_{i=1}^{N} \alpha_i + \sum_{i=1}^{N} \beta_i + \sum_{i=1}^{N} \gamma_i + \sum_{i=1}^{N} \delta_i \pmod{p}$$

Total cost: 16N + O(1) flops

Second method: Performances on Itanium 2(1/3)

Figure: Comparison with GMP: time= $f(N, \log_2(p))$ — GMP on the top

Second method: Performances on Itanium2 (2/3)

Figure: Surface: $ratio=time(GMP)/time(algo) = f(N, log_2(p))$

Second method: Performances on Itanium2 (3/3)

Comparison of the two methods

Comparison of the two methods

Figure: $time(Method_2) - time(Method_1) = f(N, log_2(p))$

Conclusion and future work

Conclusion:

- Two efficient algorithms for computing dot product
- Efficient algorithms compared to GMP
- Use of error-free transformations in rounding toward zero

Future work:

- Second method with a splitting in 3 parts (with $N < 2^{M/3}$)
- Extension to Galois fields $GF(2^n)$
- Use of longlong library
- Use of RNS techniques
- Parallelisation of the algorithms for GPU

The end

Thank you for your attention