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General motivations: self-validating methods

Verify assumptions of mathematical theorems on the computer

Making mathematical proofs with computers

Getting verified results :
→ an interval enclosure of the true result
→ an approximate result with a rigorous error bound

Possibly with proof of uniqueness

Being fast and accurate

Dealing with “ill-posed problems”
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General motivations (cont’d)

Proofs with computers: how to do that ?

with computer algebra systems: exact results but sometimes
not efficient

with floating-numbers: fast but often wrong results due to
rounding errors

Possible solution: computing with floating-point but taking into
account all the rounding errors !
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Floating-point numbers

Normalized floating-point numbers F⊆R:

x =±x0.x1 . . .xM−1︸ ︷︷ ︸
mantissa

×be, 0 ≤ xi ≤ b−1, x0 6= 0

b : basis, M : precision, e : exponent such that emin ≤ e ≤ emax

epsilon machine ε= b1−M

Approximation of R by F with rounding fl :R→ F.
Let x ∈R then

fl(x) = x(1+δ), |δ| ≤ u

Unit rounding u = ε/2 for rounding to the nearest
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Standard model of floating-point arithmetic

Let x,y ∈ F and ◦ ∈ {+,−, ·,/}.

The result x◦y is not in general a floating-point number

fl(x◦y) = (x◦y)(1+δ), |δ| ≤ u

IEEE 754 standard (1985 and 2008)
Correctly rounded : arithmetic ops (+,−,×,/,p ) performed as if first
calculated to infinite precision, then rounded.

Type Size Mantissa Exponent Unit rounding Interval
Single 32 bits 23+1 bits 8 bits u = 21−24 ≈ 1,92×10−7 ≈ 10±38

Double 64 bits 52+1 bits 11 bits u = 21−53 ≈ 2,22×10−16 ≈ 10±308
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Rounding

∇(x) ∆(x)

x

The norm proposes 4 rounding modes:

rounding toward +∞ denoted ∆(x) : return the smallest
floating-point number greater or equal the exact result x

rounding toward −∞ denoted ∇(x) : return the largest
floating-point number less or equal the exact result x

rounding toward 0, denoted Z (x) : return ∆(x) for negative
numbers and ∇(x) for positive numbers

rounding to the nearest, denoted ◦(x) : return the nearest
floating-point number of the exact result x (breaks ties by
rounding to the nearest even floating-point number)

The 3 first rounding modes are called directed rounding modes.
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Advantages of the standard

IEEE arithmetic is closed: every operation produces a result.
Default results:

Exception type Default result
Invalid operation NaN (Not a Number)
Overflow ±∞
Divide by zero ±∞
Underflow subnormal numbers
Inexact correctly rounded result

NaN is generated by operations such as 0/0, 0×∞, ∞/∞,
(+∞)+ (−∞) and

p−1.
Infinity symbol satisfies ∞+∞=∞, (−1)×∞=−∞ and
(finite)/∞= 0.
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Advantages of the standard

make possible to write portable programs

make program deterministic from one computer to another

correctly rounded operations

directed roundings useful for interval arithmetic

S. Graillat (Univ. Paris 6) Verified error bounds for multiple roots 10 / 56



Directed roundings

Let
x1 =∇(1/3), x2 =∆(1/3)

Then we mathematically have

x1 ≤ 1/3 ≤ x2 with x1,x2 ∈ F

More general a,b ∈ F, we have :

∇(a◦b) ≤ a◦b ≤∆(a◦b)

for ◦ ∈ {+,−,×,/}
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Directed roundings (cont’d)

With INTLAB

setround(-1) rounding downwards
setround(1) rounding upwards
setround(0) rounding to nearest

Example:

setround(-1)
x = 1/3
setround(1)
y = 1/3

Then we have the mathematical inequality

x ≤ 1/3 ≤ y
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Interval arithmetic

Interval arithmetic : replace numbers by intervals and compute.

Fundamental theorem of interval arithmetic: the exact result is
contained in the computed interval.

No result is lost, the computed interval is guaranteed to contain
every possible result.
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Definitions

Objects

interval of real numbers : closed connected sets of R
interval for π : [3.14159,3.14160]
data d known with absolute uncertainty of ε : [d−ε,d+ε]

interval vector

v =
(

[1,2]
[2,4]

)
interval matrix

A =
(

[1,3] [3,4]
[2,5] [1,2]

)
Representation inf-sup of intervals

x = [x;x] = {x ∈R : x ≤ x ≤ x}.

The set of interval of R is denoted IR.
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Operations on intervals

Given two intervals x, y and ¦ ∈ {+,−,×,/}, one defines

x ¦y = {x¦ y : x ∈ x,y ∈ y}.

On can implement these operations as :

x+y = [x+y;x+y],

x−y = [x−y;x−y],

x×y = [min{xy,xy,xy,xy};max{xy,xy,xy,xy}],

x2 = [min(x2,x2), max(x2,x2)] if 0 ∉ [x, x],

[0,max(x2,x2)] otherwise,

1/x = [1/x;1/x] if 0 ∉ [x, x],

x/y = x×1/y if 0 ∉ [y, y],
p

x = [
√

x,
√

x] if 0 ≤ x,

[0,
√

x] otherwise.
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Operations on intervals

In floating-point arithmetic, if one wants validated results, one need
to take into account rounding errors !

x+y = [∇(x+y),∆(x+y)] ⊇ {x+y|x ∈ x,y ∈ y}

x−y = [∇(x−y),∆(x−y)] ⊇ {x−y|x ∈ x,y ∈ y}

where ∇ (resp. ∆) representes rounding toward −∞ (resp. rounding
toward +∞).

S. Graillat (Univ. Paris 6) Verified error bounds for multiple roots 16 / 56



Operations on intervals (cont’d)

Algebraic properties : associativity and commutativity still hold

But lost :

the subtraction is not the inverse of addition : x−x 6= [0]

the division is not the inverse of multiplication

...
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Intervals and functions

Definition : an interval extension f of f must satisfy

∀x, f (x) ⊆ f (x) et ∀x, f ({x}) = f ({x})

Elementary functions :

expx = [expx,expx]

sin[π/6,2π/3] = [1/2,1]
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Proving that a matrix is nonsingular

Theorem 1
Let A be a matrix and R another matrix such that ‖I −RA‖ < 1. Then A
is nonsingular

Proof.
By contrapositive, if A is singular, there exists x 6= 0 such that Ax = 0.
Then (I −RA)x = x and so ‖I −RA‖ ≥ 1.

On a computer, choose for R ≈ A−1 and then compute ‖I −RA‖ with
interval arithmetic.
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Proving that a matrix is nonsingular with
INTLAB

Let A be a matrix of dimension n

R = inv(A)
C = eye(n) - R*intval(A)
nonsingular = ( norm(C,1) < 1 )

If nonsingular = 1, then A is nonsingular.
If nonsingular = 0, then we can say nothing
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A simple approach

Let f :Rn →Rn and x̂ ∈Rn unknown such that f (x̂) = 0

Let x̃ ≈ x̂ such that f (x̃) ≈ 0

Find a bound for x̃ : an interval X such that x̂ ∈ X

We have
f (x) = 0 ⇔ g(x) = x

with g(x) := x−Rf (x) with det(R) 6= 0.

Theorem 2 (Brouwer, 1912)
Every continuous function from a closed ball of a Euclidean space to
itself has a fixed point.
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A simple approach (cont’d)

By Brouwer fixed point theorem,

X ∈ IRn, g(X) ⊆ X ⇒ ∃x̂ ∈ X , g(x̂) = x̂ ⇒ f (x̂) = 0

We just have to check g(X) ⊆ X and prove det(R) 6= 0.

But naive approach fails:

g(X) ⊆ X −Rf (X)*X
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Bounds for the solution of nonlinear systems

Mean Value Theorem :

if f ∈C 1 then f (x) = f (x̃)+M(x− x̃) with M = (∂f
∂x (ξi))i

Let Y := X − x̃ and

x ∈ X ⇒ g(x)− x̃ = x− x̃−Rf (x)

= −Rf (x̃)+ (I −RM)(x− x̃)

∈ −Rf (x̃)+ (I −RM)Y

As a consequence

−Rf (x̃)+ (I −RM)Y ⊆ Y ⇒ g(X)− x̃ ⊆ Y ⇒ g(X) ⊆ X
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Bounds for the solution of nonlinear systems
(cont’d)

Theorem 3 (Rump, 1983)

Let f :Rn →Rn with f = (f1, . . . , fn) ∈C 1, x̃ ∈Rn, X ∈ IRn with 0 ∈ X and
R ∈Rn×n be given. Let M ∈ IRn×n be given such that

{∇fi(ζ) : ζ ∈ x̃+X} ⊆ Mi,: .

Denote by I the n×n identity matrix and assume

−Rf (x̃)+ (I −RM)X ⊆ int(X).

Then there is a unique x̂ ∈ x̃+X with f (x̂) = 0. Moreover, every matrix

M̃ ∈ M is nonsingular. In particular, the Jacobian Jf (x̂) = ∂f
∂x (x̂) is

nonsingular.
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Remark

Note that an inclusion of the range of the gradients ∇fi over the
set x̃+X needs to be computed.

A convenient way to do this in INTLAB is by interval arithmetic
and the gradient toolbox. For a given (Matlab) function f, for
xs = x̃ and an interval vector X, the call

M= f(gradientinit(xs+X))

computes an inclusion M.
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Verification of multiple roots

Verification method for computing guaranteed (real or
complex) error bounds for double roots of systems of nonlinear
equations.

To circumvent the principle problem of ill-posedness we prove
that a slightly perturbed system of nonlinear equations has a
double root.
For example, for a given univariate function f :R→R we
compute two intervals X ,E ⊆R with the property that there
exists x̂ ∈ X and ê ∈ E such that x̂ is a double root of
f̄ (x) := f (x)− ê.

If the function f has a double root, typically the interval E is a
very narrow interval around zero.
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Verification of multiple roots

The typical scenario in the univariate case is a function f :R→R

with a double root x̂, i.e. f (x̂) = f ′(x̂) = 0 and f ′′(x̂) 6= 0.
Consider, for example,

f (x) = 18x7 −183x6 +764x5 −1675x4 +2040x3 −1336x2 +416x−48
= (3x−1)2(2x−3)(x−2)4

Figure: Graph of f (x) = (3x−1)2(2x−3)(x−2)4.
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Verification of multiple roots

Verification methods for multiple roots of polynomials already
exist (Rump,2003). A set containing k roots of a polynomial is
computed, but no information on the true multiplicity can be
given.

A hybrid algorithm based on the methods of (Rump,2003) is
implemented in algorithm verifypoly in INTLAB. Computing
inclusions X1, X2 and X3 of the simple root x1 = 1.5, the double
root x2 = 1/3 and the quadruple root x3 = 2 of f by algorithm
verifypoly in INTLAB we obtain the following.

>> X1 = verifypoly(f,1.3), X2 = verifypoly(f,.3), X3 = verifypoly(f,2.1)
intval X1 =
[ 1.49999999999904, 1.50000000000078]
intval X2 =
[ 0.33333316656015, 0.33333343640539]
intval X3 =
[ 1.99741678159164, 2.00363593397305]
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Verification of multiple roots (cont’d)

The accuracy of the inclusion of the double root x2 = 1/3 is
much less than that of the simple root x1 = 1.5, and this is
typical.

If we perturb f into f̃ (x) := f (x)−ε for some small real constant ε
and look at a perturbed root f̃ (x̂+h) of f̃ , then

0 = f̃ (x̂+h) =−ε+ 1

2
f ′′(x̂)h2 +O (h3)

implies
h ∼

√
2ε/f ′′(x̂).

In general floating-point computations are afflicted with a
relative error of size ε≈ 10−16. This has the same effect as a
perturbation of the given function f into f̃ . But for double roots,
we cannot expect this inclusion to be of better relative accuracy
than

p
ε≈ 10−8.
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Dealing with double roots

We consider for a double root the nonlinear system G :R2 →R with

G(x,e) =
(

f (x)−e
f ′(x)

)
= 0

in the two unknowns x and e. The Jacobian of this system is

JG(x,e) =
(

f ′(x) −1
f ′′(x) 0

)
,

so that the nonlinear system is well-conditioned for the double root
x2 = 1/3 of f .
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Dealing with double roots (cont’d)

Now we can apply a verification algorithm for solving general
systems of nonlinear equation such as algorithm verifynlss
in INTLAB. Indeed, applying algorithm verifynlss we obtain

>> Y2 = verifynlss(G,[.3;0])
intval Y2 =
[ 3.333333333333328e-001, 3.333333333333337e-001]
[ -2.131628207280424e-014, 2.131628207280420e-014]

This proves that there is a constant ε with |ε| ≤ 2.14 ·10−14 such
that the nonlinear equation f (x)−ε= 0 has a double root x̂ with
0.3333333333333328 ≤ x̂ ≤ 0.3333333333333337.
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Dealing with double roots (cont’d)

We presented the previous approach in preparation for the
multivariate case;

however, for univariate nonlinear functions we may proceed
more directly.

Suppose X ∈ IR is an inclusion of a root x̂ of f ′, and use the
interval evaluation of f at X to compute E ∈ IR with f (X) ⊆ E. In
particular f (x̂) ∈ E, so that there exists ê ∈ E such that the
function g(x) := f (x)− ê satisfies g(x̂) = g ′(x̂) = 0.

If, moreover, the inclusion X is computed by a verification
method, then x̂ is a unique root of f ′ in X , and x̂ is proved to be a
double root of g.
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Dealing with double roots (cont’d)

By this approach we obtain the inclusions for the double root x̂ are
of the same quality, but the inclusion for the shift is a little weaker
than in Y2:

intval X =
[ 3.333333333333329e-001, 3.333333333333339e-001]
intval E =
[ -3.126388037344441e-013, 2.913225216616412e-013]
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Dealing with double roots (cont’d)

However, it is superior to expand f with respect to some point m ∈ X .
For all x ∈ X we have f (x) ∈ f (m)+ f ′(X)(X −m) =: E1, and in
particular f (x̂) ∈ E1.
Here m should be close to the midpoint of X , but need not to be
equal to the midpoint. In this case we obtain with

intval E1 =
[ -2.131628207280369e-014, 2.131628207280378e-014]

an inclusion of the same quality as Y2 by solving G.

Note that we use only a univariate verification method to include a
root of f ′, the shift E is obtained by a mere function evaluation.

S. Graillat (Univ. Paris 6) Verified error bounds for multiple roots 36 / 56



The multivariate case

Let a suitably smooth function f :Rn →Rn and x̂ ∈Rn be given
such that f (x̂) = 0 and the Jacobian of f at x̂ is singular.

A standard verification method such as verifynlss must fail
because with an inclusion of a root the nonsingularity of the
Jacobian at the root is proved as well.

Again it is an ill-posed problem and we need some
regularization technique.
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The multivariate case (cont’d)

Consider the model problem

f (x,y) =
(

f1(x,y)
f2(x,y)

)
=

(
x2 + (x+1)(y−1)2 −asinh((x+3)3 +y2)cos(x−xy)

(x+1.908718874061618)2 − sin(x)(y+1)2

)
= 0

Figure: Contour lines of f1(x) = 0 (solid) and f2(x) = 0 (dashed)
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The multivariate case (cont’d)

As a regularization we add, similar to the univariate case, a
smoothing parameter e and rewrite into

F(x,y,e) =
 f1(x,y)−e

f2(x,y)
detJf (x,y)

= 0 .

The third equation forces the tangents of the zero contour lines
to be parallel at the solution, whereas the first equation
introduces a perturbation to f1 so that the root becomes a
double root.

This approach may work for two or three unknowns, however, an
explicit formula for the determinant of the Jacobian is prohibitive for
larger dimensions. Consider the following way to ensure the
Jacobian to be singular.
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The multivariate case (cont’d)

Let a function f = (f1, . . . , fn) :Rn →Rn be given and let x̂ = (x̂1, . . . , x̂n)
be such that f (x̂) = 0 and the Jacobian Jf (x̂) of f at x̂ is singular.
Adding a smoothing parameter e we arrive with g :Rn+1 →Rn and

g(x,e) =


f1(x)−e

f2(x)
· · ·

fn(x)

= 0

at n equations in n+1 unknowns. We force the Jacobian to be
singular by

Jf (x)y = 0

for some vector y in the kernel of Jf . In order to make y unique we
normalize some component of y to 1.
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The multivariate case (cont’d)

Theorem 4
Let f = (f1, . . . , fn) :Rn →Rn with f ∈C 2 be given. Define F :R2n →R2n

by

F(x,e,y) =
(

g(x,e)
Jf (x)y

)
= 0 ,

where x = (x1, . . . ,xn), e ∈R and y = (1,y2, . . . ,yn). Suppose F suitable
assumptions and yields inclusions for x̂ ∈Rn, ê ∈R and ŷ ∈Rn−1 such
that F(x̂, ê, ŷ) = 0. Then g(x̂, ê) = f (x̂)− (ê,0, . . . ,0)T = 0, and the rank of
the Jacobian Jf (x̂) of f at x̂ is n−1.
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The multivariate case (cont’d)

The system

f (x1,x2) =
(

x2
1 −x2

2
x1 −x2

2

)
= 0

yields

JF (x,e,y) =


2x1 −2x2 −1 0

1 −2x2 0 0
0 −2 0 1

2y −2 0 2x1

 ,

as the Jacobian of the augmented system, which is nonsingular for
x1 = x2 = 0. Thus an inclusion is in principle possible.
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The multivariate case (cont’d)

>> f=inline(’[x(1)^2-x(2)^2;x(1)-x(2)^2]’),
verifynlss2(f,[0.002;0.001])

f =
Inline function:
f(x) = [x(1)^2-x(2)^2;x(1)-x(2)^2]

intval ans =
1.0e-323 *

[ -0.66666666666666, 0.66666666666666]
[ -1.00000000000000, 1.00000000000000]
[ -1.00000000000000, 1.00000000000000]
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Verified multiple eigenvalues

Computing eigenvalues can be viewed as solving the nonlinear
system:

f (x,λ) =
(

Ax−λx
eT

k x−1

)
= 0 ,

As before we regularize the system, but now not by shifting a whole
partial function but by changing an individual component aij of A:

g(x,λ,ε,y) =
 Ax−λx−εxjei

eT
k x−1

Jf (x,λ)y

= 0 .

Again an inclusion is calculated. In this case, the rank of the Jacobian

Jf (x,λ) =
(

A−λI −x
eT

k 0

)
is proved to be n and we can also prove that the eigenvalue is of
geometric multiplicity one.
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First example

Consider

f (x) = (sin(x)−1)(x−α) forα := π

2
(1+ε) .

The function f has a double root x̂ =π/2 with another simple root α
of relative distance ε to π/2. Hence we expect the inclusion E of the
offset e for regularization to be a narrow inclusion of zero.

ε X E
10−2 1.5707963267949±1.8 ·10−14 [−3.5,1.8] ·10−18

10−3 1.5707963267948±1.7 ·10−13 [−3.5,1.8] ·10−19

10−4 1.570796326795±1.6 ·10−12 [−3.5,1.8] ·10−20

10−5 1.57079632679±1.2 ·10−10 [−3.5,1.8] ·10−21

10−6 1.5707963268±1.5 ·10−9 [−3.5,1.8] ·10−22

10−7 1.570796327±1.6 ·10−8 [−3.5,1.8] ·10−23

10−8 failed

Table: Inclusions for the double root x̂ =π/2 and a nearby simple root α for f
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Second example

Consider now

f (x) = (sin(x)−1)(x−α)2 forα := π

2
(1+ε) ,

so that there is a double root α near the double root x̂. For a relative
distance ε of about 4

p
ε∼ 10−4 the four roots behave like a quadruple

root. This is confirmed by the results in the Table.

ε X E
10−2 1.57079632679488±1.2 ·10−14 [−2.8,5.5] ·10−20

10−3 1.5707963267948±2.4 ·10−13 [−2.8,5.5] ·10−22

10−4 1.570796326794±2.8 ·10−12 [−2.8,5.5] ·10−24

10−5 failed

Table: Inclusions for the double root x̂ =π/2 and a nearby double root α for f
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Some systems of nonlinear equations

The first test function is

f (x1,x2) =
(

ex1x2 − sin(x2
1 −2x1x2)

x1(x1 −cosh(x2))+x1atan(x2)−α
)
= 0 ,

where we choose the parameter α such that the system has a nearly
double root. For example, for α= 0.4 the zero contour lines look like
in Figure.
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Some systems of nonlinear equations (cont’d)

Figure: Zero contour lines of f (x1,x2) for two different parameter values α.

X1 X2 X E
1.32889962186

28 1.3288995157
48 1.328899568390716

5

−0.0272980567
59 −0.0272979298

88 −0.0272979927587941
34 [-5.2,-5.0]·10−14

Table: Inclusions X1,X2 for two single roots and X for a nearly double root for f
and α= 0.4003120447407.
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Some systems of nonlinear equations (cont’d)

X1 X2 X E
−0.2919733091

44 −0.291973361
57 −0.2919733331276441

29

1.195005123
00 1.195004869

53 1.195004985750992
87 [-1.17,-0.96]·10−14

Table: Inclusions X1,X2 for two single roots and X for a nearly double root for f
and α= 0.35653033083794.
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Example of higher dimensions

Consider Brown’s almost linear function f :Rn →Rn with

fk(x) = xk +
n∑

j=1
xj − (n+1) for 1 ≤ k ≤ n−1 ,

fn(x) = ( n∏
j=1

xj
)−1−e ,

where the last function is shifted by some e. One verifies that for

e =
(
1− 1

n2

)n−1 (
1+ 1

n

)
−1

and
x̄k = 1− 1

n2 for 1 ≤ k ≤ n−1 ,

x̄n = 1+ 1
n

the vector (1, . . . ,1,−n) is in the kernel of the Jacobian of f .
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Example of higher dimensions (cont’d)

Thus x̄ is not a simple root of f . More precisely it is verified that there
exists x̂ ∈ X and ε̂ ∈ E such that f (x̂)− (ε̂, . . . ,0) = 0 and the Jacobian
Jf (x̂) of f at x̂ is singular.

n X1···n−1 Xn E
10 0.990000±1.0 ·10−14 1.100000±1 ·10−14 [−3.5,5.8] ·10−15

20 0.997500±4.0 ·10−14 1.050000±1 ·10−14 [−1.4,2.2] ·10−14

50 0.996000±2.1 ·10−13 1.020000±2 ·10−14 [−0.1,1.9] ·10−13

100 0.999900±8.2 ·10−13 1.010000±2 ·10−14 [−5.4,2.9] ·10−13

200 0.999975±3.3 ·10−12 1.005000±5 ·10−14 [−1.3,2.0] ·10−12

500 0.999996±1.9 ·10−11 1.002000±1 ·10−13 [−0.6,1.3] ·10−11

1000 0.999999±7.5 ·10−11 1.001000±2 ·10−13 [−1.1,6.4] ·10−11

Table: Inclusions of a double root for different dimensions.
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Conclusion and future work

Conclusion:

Efficient algorithms for computing verified and narrow error
bounds with the property that a slightly perturbed system is
proved to have a double root within the computed bounds

Applied those to univariate polynomials, to multivariate
polynomials and also to eigenvalue problems

Numerical experiments have confirmed the performance of our
algorithms

Future work:

Detecting singular matrices

Applications to approximate coprimeness
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Thank you for your attention
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