Accurate and Fast Evaluation of Elementary Symmetric Functions

Stef Graillat

LIP6/PEQUAN - Université Pierre et Marie Curie (Paris 6) - CNRS

Joint work with Hao Jiang and Roberto Barrio
21st IEEE International Symposium on Computer Arithmetic
Austin, Texas, USA, April 7-10, 2013

On

Motivations (1/2)

- Polynomials play a central role in computational and applied mathematics
- The determination of the zeros of polynomials is a classical problem of computational mathematics
- Inverse problem : given the zeros, determine the coefficients of the polynomial

Motivations (2/2)

Characteristic polynomial of a $n \times n$ matrix A

$$
\begin{gathered}
\operatorname{det}(\lambda I-A)=\lambda^{n}+c_{1} \lambda^{n-1}+\cdots+c_{n-1} \lambda+c_{n} \\
c_{1}=\operatorname{trace}(A) \quad c_{n}=\operatorname{det}(A)
\end{gathered}
$$

Eigenvalues: $\left(\lambda_{i}\right)$ for $i=1, \ldots, n$

$$
c_{1}=\sum_{i=1}^{n} \lambda_{i} \quad c_{n}=\prod_{i=1}^{n} \lambda_{i}
$$

\rightarrow the c_{i} are elementary symmetric functions of the λ_{i}

Outline of the talk

- Motivations
- Classical Summation Algorithm
- Error-free transformations
- Compensated Summation Algorithm
- Conclusion and future work

Elementary Symmetric Functions (ESF)

Definition 1

The k-th Elementary Symmetric Function (ESF) associated with a vector of n numbers $X=\left(x_{1}, \ldots, x_{n}\right)$ is defined by

$$
S_{k}^{(n)}(X)=\sum_{1 \leq \pi_{1}<\ldots<\pi_{k} \leq n} x_{\pi_{1}} x_{\pi_{2}} \ldots x_{\pi_{k}} \quad \text { with } \quad 1 \leq k \leq n
$$

For $k=0, S_{0}^{(n)}=1$
The k-th function $S_{k}^{(n)}(X)$ consists of $\binom{n}{k}$ summands
\rightarrow straightforward computation is very expensive

Applications of computing ESF

- The ESFs appear when expanding a linear factorization of a polynomial

$$
\prod_{i=1}^{n}\left(x-x_{i}\right)=\sum_{i=0}^{n} c_{i} x^{i}=\sum_{i=0}^{n}(-1)^{n-i} S_{n-i}^{(n)}\left(x_{1}, \ldots, x_{n}\right) x^{i}
$$

One can evaluate polynomial's coefficients $\left\{c_{i}\right\}_{i=0}^{n}$ from its zeros $\left\{x_{i}\right\}_{i=1}^{n}$, specially compute characteristic polynomials from eigenvalues

- Part of conditional maximum likelihood estimation (CMLE) of item parameters under the Rasch model in psychological measurement. Accurate evaluation allows much more items to be calibrated
- Thermodynamic properties of systems of fermions

Condition number of ESF

Condition numbers measure the sensitivity of the solution of a problem to perturbation in the data

Definition 2 (Condition number of the k-th ESF)

$$
\operatorname{cond}\left(S_{k}^{(n)}(X)\right)=\lim _{\varepsilon \rightarrow 0} \sup \left\{\frac{\left|S_{k}^{(n)}(X+\Delta X)-S_{k}^{(n)}(X)\right|}{\varepsilon\left|S_{k}^{(n)}(X)\right|}:|\triangle X|<\varepsilon|X|\right\}
$$

A direct calculation yields

$$
\operatorname{cond}\left(S_{k}^{(n)}(X)\right)=\frac{k S_{k}^{(n)}(|X|)}{\left|S_{k}^{(n)}(X)\right|}
$$

In particular, $\operatorname{cond}\left(S_{n}^{(n)}(X)\right)=\operatorname{cond}\left(\prod_{i=1}^{n} x_{i}\right)=n$ and
$\operatorname{cond}\left(S_{1}^{(n)}(X)\right)=\operatorname{cond}\left(\sum_{i=1}^{n} x_{i}\right)=\frac{\sum_{i=1}^{n}\left|x_{i}\right|}{\left|\sum_{i=1}^{n} x_{i}\right|}$.

Classic Summation Algorithm

Algorithm 1

Input: $X=\left(x_{1}, \ldots, x_{n}\right)$ and k
Output: k-th ESF $S_{k}^{(n)}(X)=S_{k}^{(n)}$
function $S_{k}^{(n)}=\operatorname{SumESF}(X, k)$

$$
\begin{aligned}
& S_{0}^{(i)}=1,1 \leq i \leq n-1 ; \quad S_{j}^{(i)}=0, j>i ; \quad S_{1}^{(1)}=x_{1} ; \\
& \text { for } i=2: n \\
& \quad \text { for } j=\max \{1, i+k-n\}: \min \{i, k\} \\
& \quad S_{j}^{(i)}=S_{j}^{(i-1)}+x_{i} S_{j-1}^{(i-1)} ; \\
& \text { end } \\
& \text { end }
\end{aligned}
$$

$$
S_{j}^{(i)}=S_{j}^{(i)}\left(x_{1}, \ldots, x_{i}\right)=\sum_{1 \leq \pi_{1}<\ldots<\pi_{j} \leq i} x_{\pi_{1}} x_{\pi_{2}} \ldots x_{\pi_{j}}
$$

Substitution of $j=1: i$ for $j=\max \{1, i+k-n\}: \min \{i, k\}$ makes it possible to compute all ESF simultaneously
\rightarrow Algorithm used in MATLAB poly function

Standard model of floating-point arithmetic

Assume floating point arithmetic adhering IEEE 754 with rounding to nearest with rounding unit \mathbf{u} (no underflow nor overflow)

Let $x, y \in \mathbb{F}$ and $\circ \in\{+,-, \cdot, /\}$.
The result $x \circ y$ is not in general a floating-point number

$$
\mathrm{fl}(x \circ y)=(x \circ y)(1+\delta), \quad|\delta| \leq \mathbf{u}
$$

IEEE 754 standard (2008)

Type	Size	Mantissa	Exponent	Unit rounding	Interval
binary32	32 bits	$23+1$ bits	8 bits	$\mathbf{u}=2^{1-24} \approx 1,92 \times 10^{-7}$	$\approx 10^{ \pm 38}$
binary64	64 bits	$52+1$ bits	11 bits	$\mathbf{u}=2^{1-53} \approx 2,22 \times 10^{-16}$	$\approx 10^{ \pm 308}$

We denote

$$
\gamma_{n}:=\frac{n \mathbf{u}}{1-n \mathbf{u}}
$$

Rounding error analysis

Theorem 1 (Rehman, Ipsen (2011))

If $X=\left(x_{1}, \ldots, x_{n}\right)$ is a vector of floating-point numbers, the computed k-th elementary symmetric function $\widehat{S}_{k}^{(n)}=\widehat{S}_{k}^{(n)}(X)$ by Algorithm 1 in floating-point arithmetic verifies

$$
\begin{aligned}
& \left|\frac{\widehat{S}_{k}^{(n)}-S_{k}^{(n)}}{S_{k}^{(n)}}\right| \leq \frac{1}{k} \gamma_{2(n-1)} \operatorname{cond}\left(S_{k}^{(n)}\right), 2 \leq k \leq n-1, \\
& \left|\frac{\widehat{S}_{1}^{(n)}-S_{1}^{(n)}}{S_{1}^{(n)}}\right| \leq \gamma_{n-1} \operatorname{cond}\left(S_{1}^{(n)}\right)=\gamma_{n-1} \frac{\sum_{i=1}^{n}\left|x_{i}\right|}{\left|\sum_{i=1}^{n} x_{i}\right|}, k=1, \\
& \left|\frac{\widehat{S}_{n}^{(n)}-S_{n}^{(n)}}{S_{n}^{(n)}}\right| \leq \frac{1}{n} \gamma_{n-1} \operatorname{cond}\left(S_{n}^{(n)}\right)=\gamma_{n-1}, k=n .
\end{aligned}
$$

Getting more accuracy with compensated algorithms

Error-free transformations are properties and algorithms to compute the generated elementary rounding errors,

$$
a, b \text { entries } \in \mathbb{F}, \quad a \circ b=\mathrm{fl}(a \circ b)+e \text {, with } e \in \mathbb{F}
$$

Key tools for accurate computation

- fixed length expansions libraries: double-double (Briggs, Bailey, Hida, Li), quad-double (Bailey, Hida, Li)
- arbitrary length expansions libraries: Priest, Shewchuk
- compensated algorithms (Kahan, Priest, Ogita-Rump-Oishi, Graillat-Langlois-Louvet, etc.)

EFT for the summation

$$
x=\mathrm{fl}(a \pm b) \quad \Rightarrow \quad a \pm b=x+y \quad \text { with } y \in \mathbb{F}
$$

Algorithms of Dekker (1971) and Knuth (1974)
Algorithm 2 (EFT of the sum of 2 floating point numbers with $|a| \geq|b|)$
function $[x, y]=\operatorname{FastTwoSum}(a, b)$

$$
\begin{aligned}
& x=a \oplus b \\
& y=(a \ominus x) \oplus b
\end{aligned}
$$

Algorithm 3 (EFT of the sum of 2 floating point numbers)

function $[x, y]=\operatorname{TwoSum}(a, b)$

$$
\begin{aligned}
& x=a \oplus b \\
& z=x \ominus a \\
& y=(a \ominus(x \ominus z)) \oplus(b \ominus z)
\end{aligned}
$$

EFT for the product $(1 / 3)$

$$
x=\mathrm{fl}(a \cdot b) \Rightarrow a \cdot b=x+y \quad \text { with } y \in \mathbb{F}
$$

Algorithm TwoProduct by Veltkamp and Dekker (1971)

$$
a=x+y \quad \text { and } \quad x \text { and } y \text { non overlapping with }|y| \leq|x| .
$$

Algorithm 4 (Error-free split of a floating point number into two parts)

function $[x, y]=\operatorname{Split}(a)$

$$
\text { factor }=2^{s}+1 \quad \% \mathbf{u}=2^{-p}, s=\lceil p / 2\rceil
$$

$c=$ factor $\otimes a$
$x=c \ominus(c \ominus a)$
$y=a \ominus x$

EFT for the product $(2 / 3)$

Algorithm 5 (EFT of the product of 2 floating point numbers)

function $[x, y]=$ TwoProduct (a, b)

```
\(x=a \otimes b\)
\(\left[a_{1}, a_{2}\right]=\operatorname{Split}(a)\)
\(\left[b_{1}, b_{2}\right]=\operatorname{Split}(b)\)
\(y=a_{2} \otimes b_{2} \ominus\left(\left(\left(x \ominus a_{1} \otimes b_{1}\right) \ominus a_{2} \otimes b_{1}\right) \ominus a_{1} \otimes b_{2}\right)\)
```


Theorem 2

Let $a, b \in \mathbb{F}$ and let $x, y \in \mathbb{F}$ such that $[x, y]=\operatorname{TwoProduct}(a, b)$. Then,

$$
a \cdot b=x+y, \quad x=\mathrm{fl}(a \cdot b), \quad|y| \leq \mathbf{u}|x|, \quad|y| \leq \mathbf{u}|a \cdot b|
$$

The algorithm TwoProduct requires 17 flops.

EFT for the product (3/3)

Given $a, b, c \in \mathbb{F}$,

- $\operatorname{FMA}(a, b, c)$ is the nearest floating point number $a \cdot b+c \in \mathbb{F}$

Algorithm 6 (EFT of the product of 2 floating point numbers)

function $[x, y]=$ TwoProductFMA (a, b)

$$
\begin{aligned}
& x=a \otimes b \\
& y=\operatorname{FMA}(a, b,-x)
\end{aligned}
$$

The FMA is available for example on PowerPC, Itanium, Cell, Xeon Phi processors.

Compensated Summation Algorithm

Algorithm 7

Input: $X=\left(x_{1}, \ldots, x_{n}\right)$ and k
Output: k-th $\operatorname{ESF} \bar{S}_{k}^{(n)}(X)=\bar{S}_{k}^{(n)}$
function $\bar{S}_{k}^{(n)}=\operatorname{CompSumESF}(X, k)$

$$
\widehat{S}_{0}^{(i)}=1,1 \leq i \leq n-1 ; \widehat{S}_{j}^{(i)}=0, j>i ; \widehat{S}_{1}^{(1)}=x_{1} ; \widehat{\epsilon S}_{j}^{(i)}=0, \forall i, j
$$

for $i=2$: n

$$
\text { for } j=\max \{1, i+k-n\}: \min \{i, k\}
$$

$$
\left[p, \beta_{j}^{(i)}\right]=\operatorname{TwoProd}\left(x_{i}, \widehat{S}_{j-1}^{(i-1)}\right) ; \quad \quad \% S_{j}^{(i)}=S_{j}^{(i-1)}+x_{i} S_{j-1}^{(i-1)}
$$

$$
\left[\widehat{S}_{j}^{(i)}, \sigma_{j}^{(i)}\right]=\operatorname{TwoSum}\left(\widehat{S}_{j}^{(i-1)}, p\right) ;
$$

$$
\widehat{\epsilon S}_{j}^{(i)}=\widehat{\epsilon S}_{j}^{(i-1)} \oplus\left(\beta_{j}^{(i)} \oplus \sigma_{j}^{(i)}\right) \oplus x_{i} \otimes \widehat{\epsilon S}_{j-1}^{(i-1)}
$$

end
end
$\bar{S}_{k}^{(n)}=\widehat{S}_{k}^{(n)} \oplus \widehat{\epsilon S}_{k}^{(n)}$

Error bound on the Compensated Summation Algorithm

Theorem 3

For a vector of n floating-point numbers $X=\left(x_{1}, \ldots, x_{n}\right)$, the relative forward error bound in Algorithm satisfies

$$
\begin{aligned}
& \left|\frac{\bar{S}_{k}^{(n)}-S_{k}^{(n)}}{S_{k}^{(n)}}\right| \leq \mathbf{u}+\frac{1}{k} \gamma_{2(n-1)}^{2} \operatorname{cond}\left(S_{k}^{(n)}(X)\right), \\
& \left|\frac{\widehat{S}_{1}^{(n)}-S_{1}^{(n)}}{S_{1}^{(n)}}\right| \leq \mathbf{u}+\gamma_{n-1}^{2} \operatorname{cond}\left(S_{1}^{(n)}\right), \\
& \left|\frac{\widehat{S}_{n}^{(n)}-S_{n}^{(n)}}{S_{n}^{(n)}}\right| \leq \mathbf{u}+\frac{1}{n} \gamma_{n} \gamma_{2 n} \operatorname{cond}\left(S_{n}^{(n)}\right),
\end{aligned}
$$

with $2 \leq k \leq n-1, k=1, k=n$, respectively.

Validated Running Error bound on the Compensated Summation Algorithm (1/2)

Algorithm 8

Input: $X=\left(x_{1}, \ldots, x_{n}\right)$ and k
Output: k-th $\operatorname{ESF} \bar{S}_{k}^{(n)}(X)=\bar{S}_{k}^{(n)}$ and Running Error Bound μ function $\left[\bar{S}_{k}^{(n)}, \mu\right]=\operatorname{CompSumESFwErr}(X, k)$

$$
\begin{aligned}
& \widehat{S}_{0}^{(i)}=1,1 \leq i \leq n-1 ; \quad \widehat{S}_{j}^{(i)}=0, j>i ; \quad \widehat{S}_{1}^{(1)}=x_{1} ; \quad \widehat{\epsilon S}_{j}^{(i)}=0, \widehat{E S}_{j}^{(i)}=0, \forall i, j \\
& \text { for } i=2: n \\
& \text { for } j=\max \{1, i+k-n\}: \min \{i, k\} \\
& {\left[p, \beta_{j}^{(i)}\right]=\operatorname{TwoProd}\left(x_{i}, \widehat{S}_{j-1}^{(i-1)}\right) ; \quad\left[\widehat{S}_{j}^{(i)}, \sigma_{j}^{(i)}\right]=\operatorname{TwoSum}\left(\widehat{S}_{j}^{(i-1)}, p\right) \text {; }} \\
& \widehat{\epsilon S}_{j}^{(i)}=\widehat{\epsilon S}_{j}^{(i-1)} \oplus\left(\beta_{j}^{(i)} \oplus \sigma_{j}^{(i)}\right) \oplus x_{i} \otimes \widehat{\epsilon S}_{j-1}^{(i-1)} \\
& \widehat{E S}_{j}^{(i)}=\widehat{E S}_{j}^{(i-1)} \oplus\left|\beta_{j}^{(i)} \oplus \sigma_{j}^{(i)}\right| \oplus\left|x_{i}\right| \otimes \widehat{E S}_{j-1}^{(i-1)} \\
& \text { end }
\end{aligned}
$$

end
$\left[\bar{S}_{k}^{(n)}, c\right]=\operatorname{FastTwoSum}\left(\widehat{S}_{k}^{(n)}, \widehat{\epsilon S}_{k}^{(n)}\right)$
$\hat{\alpha}=\left(\widehat{\gamma}_{2(n-1)} \otimes \widehat{E S}_{k}^{(n)}\right) \oslash(1-3 n u)$;

$$
\mu=(|c| \oplus \hat{\alpha}) \oslash(1-2 u)
$$

Validated Running Error bound on the Compensated Summation Algorithm (2/2)

Theorem 4

Assume $3 n \mathbf{u}<1$, then a running error bound of Algorithm 8 is given by

$$
\left|\bar{S}_{k}^{(n)}-S_{k}^{(n)}\right| \leq \mathrm{fl}\left(\frac{|c| \oplus \widehat{\alpha}}{1-2 \mathbf{u}}\right):=\mu
$$

where $\widehat{\alpha}$ is the "error bound" on the rounding errors and c is obtained by $\left[\bar{S}_{k}^{(n)}, c\right]=\operatorname{FastTwoSum}\left(\widehat{S}_{k}^{(n)}, \widehat{\epsilon S}_{k}^{(n)}\right)$.

Library double-double

A double-double number a is the pair (a_{h}, a_{l}) of IEEE-754 floating-point numbers with $a=a_{h}+a_{l}$ and $\left|a_{l}\right| \leq \mathbf{u}\left|a_{h}\right|$.

Algorithm 9 (Product of a d-d $\left(a_{h}, a_{l}\right)$ by a d b)

function $\left[c_{h}, c_{l}\right]=$ prod_dd_d $\left(a_{h}, a_{l}, b\right)$
$\left[s_{h}, s_{l}\right]=\operatorname{TwoProduct}\left(a_{h}, b\right)$
$\left[t_{h}, t_{l}\right]=\operatorname{FastTwoSum}\left(s_{h},\left(a_{l} \otimes b\right)\right)$
$\left[c_{h}, c_{l}\right]=\operatorname{FastTwoSum}\left(t_{h},\left(t_{l} \oplus s_{l}\right)\right)$

Algorithm 10 (Addition of a d b and a d-d $\left(a_{h}, a_{l}\right)$)

function $\left[c_{h}, c_{l}\right]=$ add_dd_d $\left(a_{h}, a_{l}, b\right)$
$\left[t_{h}, t_{l}\right]=\operatorname{TwoSum}\left(a_{h}, b\right)$
$\left[c_{h}, c_{l}\right]=\operatorname{FastTwoSum}\left(t_{h},\left(t_{l} \oplus a_{l}\right)\right)$

Accurate Summation Algorithm with double-double

Algorithm 11

Input: $X=\left(x_{1}, \ldots, x_{n}\right)$ and k
Output: k-th ESF $S_{k}^{(n)}(X)=S_{k}^{(n)}=S h_{k}^{(n)}$ function $\left[S h_{k}^{(n)}, S l_{k}^{(n)}\right]=\operatorname{DDSumESF}(X, k)$

$$
\begin{aligned}
& S h_{0}^{(i)}=1,1 \leq i \leq n-1 ; \quad S h_{j}^{(i)}=0, j>i ; \quad S h_{1}^{(1)}=x_{1} ; \\
& S l_{j}^{(i)}=0, \forall i, j \\
& \text { for } i=2: n \\
& \quad \text { for } j=\max \{1, i+k-n\}: \min \{i, k\} \\
& \quad[r h, r l]=\text { prod_dd_d }\left(S h_{j-1}^{(i-1)}, S l_{j-1}^{(i-1)}, x_{i}\right) ; \\
& \quad\left[S h_{j}^{(i)}, S l_{j}^{(i)}\right]=\text { add_dd_dd }\left(r h, r l, S h_{j}^{(i-1)}, S l_{j}^{(i-1)}\right)
\end{aligned}
$$

end
end

Accuracy with double-double (1/2)

For a standard model of floating-point arithmetic for the double-double algorithms

$$
\mathrm{fl}(a \odot b)=(a \odot b)(1+\delta)
$$

where a, b are in double-double format, $\odot \in\{+,-, \times, /\}$, and δ is bounded as follows

$$
|\delta| \leq \mathbf{u}_{d d} \quad \text { for } \odot \in\{+,-\} ; \quad|\delta| \leq 2 \mathbf{u}_{d d} \quad \text { for } \odot \in\{\times, /\}
$$

where $\mathbf{u}_{d d}=2 \mathbf{u}^{2}=2^{-105}$ is the roundoff unit in double-double format.

Accuracy with double-double (2/2)

Theorem 5

The values $\widehat{S h}_{k}^{(n)}$ and $\widehat{S}_{k}^{(n)}$ returned by Algorithm 11 in floating-point arithmetic satisfy

$$
\frac{\left|\widehat{S h}_{k}^{(n)}-S_{k}^{(n)}\right|}{\left|S_{k}^{(n)}\right|} \leq \mathbf{u}+\frac{1}{k}(1+\mathbf{u}) \bar{\gamma}_{3(n-1)} \operatorname{cond}\left(S_{k}^{(n)}(X)\right)
$$

where

$$
\bar{\gamma}_{3(n-1)}=\frac{3(n-1) \mathbf{u}_{d d}}{1-3(n-1) \mathbf{u}_{d d}}=\frac{6(n-1) \mathbf{u}^{2}}{1-6(n-1) \mathbf{u}^{2}}
$$

Numerical experiments (1/2)

Numerical experiments (2/2)

Time ratios of computing for k-th ESF (case 1) and for all ESF (case 2)

	$\frac{\text { CompSumESF }}{\text { SumESF }}$	$\frac{\text { DDSumESF }}{\text { SumESF }}$	$\frac{\text { CompSumESF }}{\text { DDSumESF }}$	$\frac{\text { CompSumESF }}{\text { CompSumESFwErr }}$
Case 1	3.05	5.42	57.42\%	69.91\%
Case 2	3.91	7.48	52.97\%	68.02\%

Conclusion and future work

Conclusion

- A fast algorithm to computed the Symmetric Elementary Functions as accurate as if computed with twice the working precision

Future work

- An algorithm making it possible to deal with complex numbers
- An algorithm to compute a faithfully rounded result and then a correctly rounded result

References

雷 Daniela Calvetti and Lothar Reichel.
On the evaluation of polynomial coefficients.
Numer. Algorithms, 33(1-4):153-161, 2003.
(Takeshi Ogita, Siegfried M. Rump, and Shin'ichi Oishi. Accurate sum and dot product.
SIAM J. Sci. Comput., 26(6):1955-1988, 2005.
围 Rizwana Rehman and Ilse C. F. Ipsen.
Computing characteristic polynomials from eigenvalues.
SIAM J. Matrix Anal. Appl., 32(1):90-114, 2011.

Thank you for your attention

