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Motivations (1/2)

Polynomials play a central role in computational and applied
mathematics

The determination of the zeros of polynomials is a classical
problem of computational mathematics

Inverse problem : given the zeros, determine the coefficients of
the polynomial
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Motivations (2/2)

Characteristic polynomial of a n×n matrix A

det(λI −A) =λn + c1λ
n−1 +·· ·+cn−1λ+ cn

c1 = trace(A) cn = det(A)

Eigenvalues: (λi) for i = 1, . . . ,n

c1 =
n∑

i=1
λi cn =

n∏
i=1

λi

→ the ci are elementary symmetric functions of the λi

S. Graillat (Univ. Paris 6) Accurate and Fast Evaluation of ESF 3 / 28



Outline of the talk

Motivations

Classical Summation Algorithm

Error-free transformations

Compensated Summation Algorithm

Conclusion and future work

S. Graillat (Univ. Paris 6) Accurate and Fast Evaluation of ESF 4 / 28



Elementary Symmetric Functions (ESF)

Definition 1
The k-th Elementary Symmetric Function (ESF) associated with a
vector of n numbers X = (x1, . . . ,xn) is defined by

S(n)
k (X) = ∑

1≤π1<...<πk≤n
xπ1 xπ2 . . .xπk with 1 ≤ k ≤ n

For k = 0, S(n)
0 = 1

The k-th function S(n)
k (X) consists of

(n
k

)
summands

→ straightforward computation is very expensive
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Applications of computing ESF

The ESFs appear when expanding a linear factorization of a
polynomial

n∏
i=1

(x−xi) =
n∑

i=0
cix

i =
n∑

i=0
(−1)n−iS(n)

n−i(x1, . . . ,xn)xi

One can evaluate polynomial’s coefficients {ci}n
i=0 from its zeros

{xi}n
i=1, specially compute characteristic polynomials from

eigenvalues

Part of conditional maximum likelihood estimation (CMLE) of
item parameters under the Rasch model in psychological
measurement. Accurate evaluation allows much more items to
be calibrated

Thermodynamic properties of systems of fermions
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Condition number of ESF

Condition numbers measure the sensitivity of the solution of a
problem to perturbation in the data

Definition 2 (Condition number of the k-th ESF)

cond(S(n)
k (X)) = lim

ε→0
sup

{ |S(n)
k (X +4X)−S(n)

k (X)|
ε|S(n)

k (X)|
: |4X | < ε|X |

}
A direct calculation yields

cond(S(n)
k (X)) = kS(n)

k (|X |)
|S(n)

k (X)|

In particular, cond(S(n)
n (X)) = cond(

∏n
i=1 xi) = n and

cond(S(n)
1 (X)) = cond(

∑n
i=1 xi) =

∑n
i=1 |xi|

|∑n
i=1 xi| .
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Classic Summation Algorithm
Algorithm 1

Input: X = (x1, . . . ,xn) and k
Output: k-th ESF S(n)

k (X) = S(n)
k

function S(n)
k =SumESF(X ,k)

S(i)
0 = 1, 1 ≤ i ≤ n−1; S(i)

j = 0, j > i; S(1)
1 = x1;

for i = 2 : n
for j = max{1, i+k−n} : min{i,k}

S(i)
j = S(i−1)

j +xiS
(i−1)
j−1 ;

end
end

S(i)
j = S(i)

j (x1, . . . ,xi) =∑
1≤π1<...<πj≤i xπ1 xπ2 . . .xπj

Substitution of j = 1 : i for j = max{1, i+k−n} : min{i,k} makes it
possible to compute all ESF simultaneously
→ Algorithm used in MATLAB poly function
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Standard model of floating-point arithmetic

Assume floating point arithmetic adhering IEEE 754 with rounding
to nearest with rounding unit u (no underflow nor overflow)

Let x,y ∈ F and ◦ ∈ {+,−, ·,/}.

The result x◦y is not in general a floating-point number

fl(x◦y) = (x◦y)(1+δ), |δ| ≤ u

IEEE 754 standard (2008)
Type Size Mantissa Exponent Unit rounding Interval
binary32 32 bits 23+1 bits 8 bits u = 21−24 ≈ 1,92×10−7 ≈ 10±38

binary64 64 bits 52+1 bits 11 bits u = 21−53 ≈ 2,22×10−16 ≈ 10±308

We denote
γn := nu

1−nu
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Rounding error analysis

Theorem 1 (Rehman, Ipsen (2011))
If X = (x1, . . . ,xn) is a vector of floating-point numbers, the computed
k-th elementary symmetric function Ŝ(n)

k = Ŝ(n)
k (X) by Algorithm 1 in

floating-point arithmetic verifies

∣∣∣ Ŝ(n)
k −S(n)

k

S(n)
k

∣∣∣≤ 1

k
γ2(n−1)cond(S(n)

k ), 2 ≤ k ≤ n−1,

∣∣∣ Ŝ(n)
1 −S(n)

1

S(n)
1

∣∣∣≤ γn−1cond(S(n)
1 ) = γn−1

∑n
i=1 |xi|

|∑n
i=1 xi|

, k = 1,

∣∣∣ Ŝ(n)
n −S(n)

n

S(n)
n

∣∣∣≤ 1

n
γn−1cond(S(n)

n ) = γn−1, k = n.
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Getting more accuracy with compensated
algorithms

Error-free transformations are properties and algorithms to
compute the generated elementary rounding errors,

a,b entries ∈ F, a◦b = fl(a◦b)+e, with e ∈ F

Key tools for accurate computation

fixed length expansions libraries: double-double (Briggs, Bailey,
Hida, Li), quad-double (Bailey, Hida, Li)

arbitrary length expansions libraries: Priest, Shewchuk

compensated algorithms (Kahan, Priest, Ogita-Rump-Oishi,
Graillat-Langlois-Louvet, etc.)
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EFT for the summation

x = fl(a±b) ⇒ a±b = x+y with y ∈ F,

Algorithms of Dekker (1971) and Knuth (1974)

Algorithm 2 (EFT of the sum of 2 floating point numbers
with |a| ≥ |b|)
function [x,y] = FastTwoSum(a,b)

x = a⊕b
y = (aªx)⊕b

Algorithm 3 (EFT of the sum of 2 floating point numbers)

function [x,y] = TwoSum(a,b)
x = a⊕b
z = xªa
y = (aª (xªz))⊕ (bªz)
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EFT for the product (1/3)

x = fl(a ·b) ⇒ a ·b = x+y with y ∈ F,

Algorithm TwoProduct by Veltkamp and Dekker (1971)

a = x+y and x and y non overlapping with |y| ≤ |x|.

Algorithm 4 (Error-free split of a floating point number
into two parts)

function [x,y] = Split(a)
factor = 2s +1 % u = 2−p , s = dp/2e
c = factor⊗a
x = cª (cªa)
y = aªx
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EFT for the product (2/3)

Algorithm 5 (EFT of the product of 2 floating point
numbers)
function [x,y] = TwoProduct(a,b)

x = a⊗b
[a1,a2] = Split(a)
[b1,b2] = Split(b)
y = a2 ⊗b2 ª (((xªa1 ⊗b1)ªa2 ⊗b1)ªa1 ⊗b2)

Theorem 2
Let a,b ∈ F and let x,y ∈ F such that [x,y] = TwoProduct(a,b) . Then,

a ·b = x+y, x = fl(a ·b), |y| ≤ u|x|, |y| ≤ u|a ·b|,

The algorithm TwoProduct requires 17 flops.
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EFT for the product (3/3)

Given a,b,c ∈ F,

FMA(a,b,c) is the nearest floating point number a ·b+ c ∈ F

Algorithm 6 (EFT of the product of 2 floating point
numbers)
function [x,y] = TwoProductFMA(a,b)

x = a⊗b
y = FMA(a,b,−x)

The FMA is available for example on PowerPC, Itanium, Cell, Xeon
Phi processors.
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Compensated Summation Algorithm

Algorithm 7

Input: X = (x1, . . . ,xn) and k

Output: k-th ESF S
(n)
k (X) = S

(n)
k

function S
(n)
k =CompSumESF(X ,k)

Ŝ(i)
0 = 1, 1 ≤ i ≤ n−1; Ŝ(i)

j = 0, j > i; Ŝ(1)
1 = x1; ε̂S

(i)
j = 0,∀ i, j

for i = 2 : n
for j = max{1, i+k−n} : min{i,k}

[p,β(i)
j ] = TwoProd(xi, Ŝ(i−1)

j−1 ); % S(i)
j = S(i−1)

j +xiS
(i−1)
j−1

[Ŝ(i)
j ,σ(i)

j ] = TwoSum(Ŝ(i−1)
j ,p);

ε̂S
(i)
j = ε̂S

(i−1)
j ⊕ (β(i)

j ⊕σ(i)
j )⊕xi ⊗ ε̂S

(i−1)
j−1

end
end

S
(n)
k = Ŝ(n)

k ⊕ ε̂S
(n)
k
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Error bound on the Compensated Summation
Algorithm

Theorem 3
For a vector of n floating-point numbers X = (x1, . . . ,xn), the relative
forward error bound in Algorithm satisfies

∣∣∣S
(n)
k −S(n)

k

S(n)
k

∣∣∣≤ u+ 1

k
γ2

2(n−1)cond(S(n)
k (X)),

∣∣∣ Ŝ(n)
1 −S(n)

1

S(n)
1

∣∣∣≤ u+γ2
n−1cond(S(n)

1 ),

∣∣∣ Ŝ(n)
n −S(n)

n

S(n)
n

∣∣∣≤ u+ 1

n
γnγ2ncond(S(n)

n ),

with 2 ≤ k ≤ n−1, k = 1, k = n, respectively.
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Validated Running Error bound on the
Compensated Summation Algorithm (1/2)
Algorithm 8
Input: X = (x1, . . . ,xn) and k

Output: k-th ESF S
(n)
k (X) = S

(n)
k and Running Error Bound µ

function [S
(n)
k ,µ]=CompSumESFwErr(X ,k)

Ŝ(i)
0 = 1, 1 ≤ i ≤ n−1; Ŝ(i)

j = 0, j > i; Ŝ(1)
1 = x1; ε̂S

(i)
j = 0, ÊS

(i)
j = 0,∀ i, j

for i = 2 : n
for j = max{1, i+k−n} : min{i,k}

[p,β(i)
j ] = TwoProd(xi, Ŝ(i−1)

j−1 ); [Ŝ(i)
j ,σ(i)

j ] = TwoSum(Ŝ(i−1)
j ,p);

ε̂S
(i)
j = ε̂S

(i−1)
j ⊕ (β(i)

j ⊕σ(i)
j )⊕xi ⊗ ε̂S

(i−1)
j−1

ÊS
(i)
j = ÊS

(i−1)
j ⊕|β(i)

j ⊕σ(i)
j |⊕ |xi|⊗ ÊS

(i−1)
j−1

end
end
[S

(n)
k ,c] = FastTwoSum(Ŝ(n)

k , ε̂S
(n)
k )

α̂= (γ̂2(n−1) ⊗ ÊS
(n)
k )® (1−3nu); µ= (|c|⊕ α̂)® (1−2u)
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Validated Running Error bound on the
Compensated Summation Algorithm (2/2)

Theorem 4
Assume 3nu < 1, then a running error bound of Algorithm 8 is given
by

|S(n)
k −S(n)

k | ≤ fl

( |c|⊕ α̂
1−2u

)
:=µ,

where α̂ is the “error bound” on the rounding errors and c is obtained

by [S
(n)
k ,c] = FastTwoSum(Ŝ(n)

k , ε̂S
(n)
k ).
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Library double-double

A double-double number a is the pair (ah,al) of IEEE-754
floating-point numbers with a = ah +al and |al| ≤ u|ah|.
Algorithm 9 (Product of a d-d (ah,al) by a d b)

function [ch,cl] = prod_dd_d(ah,al,b)
[sh,sl] = TwoProduct(ah,b)
[th, tl] = FastTwoSum(sh, (al ⊗b))
[ch,cl] = FastTwoSum(th, (tl ⊕ sl))

Algorithm 10 (Addition of a d b and a d-d (ah,al))

function [ch,cl] = add_dd_d(ah,al,b)
[th, tl] = TwoSum(ah,b)
[ch,cl] = FastTwoSum(th, (tl ⊕al))
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Accurate Summation Algorithm with
double-double

Algorithm 11

Input: X = (x1, . . . ,xn) and k
Output: k-th ESF S(n)

k (X) = S(n)
k = Sh(n)

k
function [Sh(n)

k ,Sl(n)
k ]=DDSumESF(X ,k)

Sh(i)
0 = 1, 1 ≤ i ≤ n−1; Sh(i)

j = 0, j > i; Sh(1)
1 = x1;

Sl(i)
j = 0,∀ i, j

for i = 2 : n
for j = max{1, i+k−n} : min{i,k}

[rh,rl] = prod_dd_d(Sh(i−1)
j−1 ,Sl(i−1)

j−1 ,xi);

[Sh(i)
j ,Sl(i)

j ] = add_dd_dd(rh,rl,Sh(i−1)
j ,Sl(i−1)

j )

end
end
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Accuracy with double-double (1/2)

For a standard model of floating-point arithmetic for the
double-double algorithms

fl(a¯b) = (a¯b)(1+δ),

where a,b are in double-double format, ¯∈{+,−,×,/}, and δ is
bounded as follows

|δ| ≤ udd for¯∈{+,−}; |δ| ≤ 2udd for¯∈{×,/}

where udd = 2u2 = 2−105 is the roundoff unit in double-double
format.
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Accuracy with double-double (2/2)

Theorem 5

The values Ŝh
(n)
k and Ŝl

(n)
k returned by Algorithm 11 in floating-point

arithmetic satisfy

|Ŝh
(n)
k −S(n)

k |
|S(n)

k |
≤ u+ 1

k
(1+u)γ3(n−1)cond(S(n)

k (X)),

where

γ3(n−1) =
3(n−1)udd

1−3(n−1)udd
= 6(n−1)u2

1−6(n−1)u2
.
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Numerical experiments (1/2)
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Numerical experiments (2/2)

Time ratios of computing for k-th ESF (case 1) and for all ESF (case 2)

CompSumESF
SumESF

DDSumESF
SumESF

CompSumESF
DDSumESF

CompSumESF
CompSumESFwErr

Case 1 3.05 5.42 57.42% 69.91%
Case 2 3.91 7.48 52.97% 68.02%
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Conclusion and future work

Conclusion

A fast algorithm to computed the Symmetric Elementary
Functions as accurate as if computed with twice the working
precision

Future work

An algorithm making it possible to deal with complex numbers

An algorithm to compute a faithfully rounded result and then a
correctly rounded result
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Thank you for your attention
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