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Floating point number

Floating point system F C R :
Xx=%£x0.X1...Xp—1 xb%, 0<x;<b—-1, x#0
mantissa
b : basis, p : precision, e : exponent range s.t. €min < € < €max
Machine epsilon ¢ = b'=P, [1T — 1| = ¢

Approximation of R by I, rounding fl: R — F
Let x € R then
fi(x) =x(1+9), [0 <u.

Unit roundoff u = ¢/2 for round-to-nearest
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Standard model of floating point arithmetic

Let x,y € F,
f|(XOy):(XOy)(1+5), |6’§U’ O€{+7*7'>/}

IEEE 754 standard (1985)

Type ‘ Size ‘ Mantissa ‘ Exponent ‘ Unit roundoff ‘ Range
Double | 64 bits | 52+1 bits | 11 bits | u=2""2~1,11x 10~ | ~ 10308
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Aim of the talk

@ Use Newton's method to accurately compute the simple roots of a

polynomial.
@ This needs to accurately calculate the residual (i.e. to accurately

evaluate a polynomial)
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QOutline of the talk

@ Accurate polynomial evaluation

© Accurate Newton's method
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QOutline of the talk

@ Accurate polynomial evaluation
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What are Error-Free Transformations (EFT)?

Assume floating point arithmetic adhering IEEE 754 with rounding to
nearest with rounding unit u (no underflow nor overflow)

Error free transformations are properties and algorithms to compute the
generated elementary rounding errors,

a,bentries € F, aob="fl(aob)+e, witheecF

Key tools for accurate computation

e fixed length expansions libraries : double-double (Briggs, Bailey, Hida,
Li), quad-double (Bailey, Hida, Li)

@ arbitrary length expansions libraries : Priest, Shewchuk

e compensated algorithms (Kahan, Priest, Ogita-Rump-Oishi,
Graillat-Langlois-Louvet)
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EFT for the summation

x=fllaxb) = atb=x+y withyel,
Algorithms of Dekker (1971) and Knuth (1974)

Algorithm 1 (EFT of the sum of 2 floating point numbers with
|a| > |b])

function [x, y] = FastTwoSum(a, b)

x = fl(a+ b)

y =fl((a—x)+ b)

v

Algorithm 2 (EFT of the sum of 2 floating point numbers)

function [x, y] = TwoSum(a, b)
x = fl(a+ b)
z=fl(x — a)
y=1H((a=(x=2))+(b-2))

S. Graillat (Univ. Paris 6) Accurate simple zeros of polynomials 8/ 25



EFT for the product (1/2)

x=fl(a-b) = a-b=x+y withyePF,
Algorithm TwoProduct by Veltkamp and Dekker (1971)

a=x+y and xandy non overlapping with |y| < |x|.

Algorithm 3 (Error-free split of a floating point number into two
parts)

function [x,y] = Split(a)
factor = fl(2° 4+ 1) %u=2"P s=1[p/2]
c = fl(factor - a)
x =fl(c — (c — a))
y =fl(a—x)
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EFT for the product (2/2)

Algorithm 4 (EFT of the product of 2 floating point numbers)

function [x, y] = TwoProduct(a, b)
x =fl(a- b)
[a1, a2] = Split(a)
[bl, b2] = Split(b)
y:ﬂ(ag-bg—(((x—al-b1)—ag-b1)—al-b2))
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EFT for the product (3/3)

Given a, b,c € T,
@ FMA(a, b, ¢) is the nearest floating point number a- b+ c € F

Algorithm 5 (EFT of the product of 2 floating point numbers)

function [x, y] = TwoProductFMA(a, b)
x =fl(a- b)
y = FMA(a, b, —x)

The FMA is available for example on PowerPC, Itanium, Cell processors.
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Summary

Theorem 1

Let a,b € F and let x,y € F such that [x, y] = TwoSum(a, b). Then,
a+b=x+y, x=fl(a+b), |y|<ulx|, |y|<ula+ b

The algorithm TwoSum requires 6 flops.

Let a,b € F and let x,y € F such that [x, y] = TwoProduct(a, b) . Then,

a-b=x+y, x=f(a-b), ly|<ulxl, lyl<ula-bl,

The algorithm TwoProduct requires 17 flops.
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The Horner scheme

Algorithm 6 (Horner scheme)

function res = Horner(p, x)

Sp = an
fori=n—1:-1:0
pi = fl(sit1 - x) % rounding error T;
si = fl(pi + ai) % rounding error o;
end
res = sg

Yo = nu/(1 — nu) = nu

\p(X) _ Horner(P7X)| < Yo cond(P,X)
p(x)| S

~2nu
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Error-free transformation for the Horner scheme

|p(x) = Hornex(p. x) + (px + ps)(x) |

Algorithm 7 (Error-free transformation for the Horner scheme)

function [Horner(p, x), pr, ps] = EFTHorner(p, x)
Sp = an
fori=n—1:-1:0
[pi, mi] = TwoProduct(sjy1, X)
[5,', O’,'] = TwoSum(p,-, a,-)
Let 7; be the coefficient of degree i of p,
Let o be the coefficient of degree i of p,
end
Horner(p, x) = so
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Compensated Horner scheme® and its accuracy

Algorithm 8 (Compensated Horner scheme)

function res = CompHorner(p, x)
[h, px, Ps] = EFTHorner(p, x)

¢ = Horner(p; + ps, X)

res = fl(h+ ¢)

Theorem 2

Let p be a polynomial of degree n with floating point coefficients, and x be
a floating point value. Then if no underflow occurs,

| A\

C H —
|CompHorner(p, x) — p(x)| <ut 22 cond(p,x).
|p(x)| Ny

~4n2u?

LCompensated Horner Scheme, S.G., Philippe Langlois and Nicolas Louvet, Research
Report RR2005-04, University of Perpignan, France, july 2005
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Numerical experiments : testing the accuracy

Evaluation of p,(x) = (x — 1)" for x = f[(1.333) and n = 3,...,42

Condition number and relative forward error
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QOutline of the talk

© Accurate Newton's method
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Condition number for root finding

Let p(z) = >.7_, aiz' be a polynomial of degree n and x be a simple zero
of p. The condition number of x is defined by

A
cond(p, x) = Iin%sup {|X’ s |Aaj| < e\a,-|}.
E—

e|x|

Theorem 3

Let p(z) = Y7, aiz' be a polynomial of degree n and x be a simple zero
of p. The condition number of x is given by

)
ondlPX) = Lol

| \

with p(x) = Y1, |ai|z".
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Classic Newton's method

Algorithm 9 (Classic Newton's method)

|Xi+1 - X|

~ d
X ~2n cond(p, x)
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Accurate Newton's method

Algorithm 10 (Accurate Newton's method)

xo=¢§

CompHorner(p,x;)
Xiyl = Xj — =y

p’(xi)

2

Using a theorem of F. Tisseur®, one can show

Theorem 4

Assume that there is an x such that p(x) = 0 and p’(x) # 0 is not too
small. Assume also that u - cond(p, x) < 1/8 for all i.

Then, for all xo such that 3|p'(x)~t||xo — x| < 1/8, Newton's method in
floating point arithmetic generates a sequence of {x;} whose relative error
decreases until the first i for which

|Xi+1 - X|

] ~ u+ 3 cond(p, x).

2Newton’s Method in Floating Point Arithmetic and lterative Refinement of
Generalized Eigenvalue Problems, SIAM J. Matrix Anal. Appl., 22(4) : 1038-1057, 2001
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Numerical experiments

Test with p,(x) = (x —=1)" =108 and x =1+ 1078/ for n =1 : 40
cond(pp, x) varies from 10* to 10?2

Condition number and relative forward error
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What about multiple zeros?

Definition 2

Let p(z) =Y 1, a;jz' be a polynomial of degree n and x be a zero of
multiplicity m of p. The Hélder condition number of x is defined by

: Ax
condp,(p, x) = ah—% sup {51’/m|L’ Aaj| < 5|a,-|} .

Theorem 5

Let p(z) =Y 1, a;jz' be a polynomial of degree n and x be a zero of
multiplicity m of p. The Hélder condition number of x is given by

won = L (mp(x]) v
dmlp x) =1 (rp<m>(x)|> |
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What about multiple zeros?

@ If the root has multiplicity m > 1, one can use the modified Newton's
iteration as follows.

Algorithm 11 (Modified Newton's method)

xo=¢§
0
Xitl = X; — mp( I)

P’ (xi)

e Using deflation : trying to find zeros of p(x)/p’(x)
We hope to achieve (in the classic case) the bound

Ixiv1 —x| ul/™ condpm(p, x)
x|
and for accurate case

|Xiy1 — X| 2/m

~ u+ u”" condn(p, x)
[x]
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The problem is to find the multiplicity : one can guess it using some kind of
approximate gcd3.
Work to be done :

@ Deal with zeros with multiplicities via an accurate modified Newton's
method

@ Use of deflation to also deal with multiplicities

3Computing multiple roots of inexact polynomials, Z. Zeng, Mathematics of
Computation, 74(2005), pp 869 - 903
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Thank you for your attention
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