
Accurate simple zeros of polynomials in
floating point arithmetic

Stef Graillat

LIP6/PEQUAN - Université Pierre et Marie Curie (Paris 6)

Groupe de Travail Arénaire
ENS Lyon, LIP, April 23rd, 2009

S. Graillat (Univ. Paris 6) Accurate simple zeros of polynomials 1 / 25

Floating point number

Floating point system F ⊂ R :

x = ± x0.x1 . . . xp−1︸ ︷︷ ︸
mantissa

×be , 0 ≤ xi ≤ b − 1, x0 6= 0

b : basis, p : precision, e : exponent range s.t. emin ≤ e ≤ emax

Machine epsilon ε = b1−p, |1+ − 1| = ε

Approximation of R by F, rounding fl : R → F
Let x ∈ R then

fl(x) = x(1 + δ), |δ| ≤ u.

Unit roundoff u = ε/2 for round-to-nearest

S. Graillat (Univ. Paris 6) Accurate simple zeros of polynomials 2 / 25

Standard model of floating point arithmetic

Let x , y ∈ F,

fl(x ◦ y) = (x ◦ y)(1 + δ), |δ| ≤ u, ◦ ∈ {+,−, ·, /}

IEEE 754 standard (1985)

Type Size Mantissa Exponent Unit roundoff Range
Double 64 bits 52+1 bits 11 bits u = 2−53 ≈ 1, 11× 10−16 ≈ 10±308

S. Graillat (Univ. Paris 6) Accurate simple zeros of polynomials 3 / 25

Aim of the talk

Use Newton’s method to accurately compute the simple roots of a
polynomial.
This needs to accurately calculate the residual (i.e. to accurately
evaluate a polynomial)

S. Graillat (Univ. Paris 6) Accurate simple zeros of polynomials 4 / 25

Outline of the talk

1 Accurate polynomial evaluation

2 Accurate Newton’s method

S. Graillat (Univ. Paris 6) Accurate simple zeros of polynomials 5 / 25

Outline of the talk

1 Accurate polynomial evaluation

2 Accurate Newton’s method

S. Graillat (Univ. Paris 6) Accurate simple zeros of polynomials 6 / 25

What are Error-Free Transformations (EFT) ?

Assume floating point arithmetic adhering IEEE 754 with rounding to
nearest with rounding unit u (no underflow nor overflow)

Error free transformations are properties and algorithms to compute the
generated elementary rounding errors,

a, b entries ∈ F, a ◦ b = fl(a ◦ b) + e, with e ∈ F

Key tools for accurate computation
fixed length expansions libraries : double-double (Briggs, Bailey, Hida,
Li), quad-double (Bailey, Hida, Li)
arbitrary length expansions libraries : Priest, Shewchuk
compensated algorithms (Kahan, Priest, Ogita-Rump-Oishi,
Graillat-Langlois-Louvet)

S. Graillat (Univ. Paris 6) Accurate simple zeros of polynomials 7 / 25

EFT for the summation

x = fl(a ± b) ⇒ a ± b = x + y with y ∈ F,

Algorithms of Dekker (1971) and Knuth (1974)

Algorithm 1 (EFT of the sum of 2 floating point numbers with
|a| ≥ |b|)
function [x , y] = FastTwoSum(a, b)

x = fl(a + b)
y = fl((a − x) + b)

Algorithm 2 (EFT of the sum of 2 floating point numbers)

function [x , y] = TwoSum(a, b)
x = fl(a + b)
z = fl(x − a)
y = fl((a − (x − z)) + (b − z))

S. Graillat (Univ. Paris 6) Accurate simple zeros of polynomials 8 / 25

EFT for the product (1/2)

x = fl(a · b) ⇒ a · b = x + y with y ∈ F,

Algorithm TwoProduct by Veltkamp and Dekker (1971)

a = x + y and x and y non overlapping with |y | ≤ |x |.

Algorithm 3 (Error-free split of a floating point number into two
parts)

function [x , y] = Split(a)
factor = fl(2s + 1) % u = 2−p , s = dp/2e
c = fl(factor · a)
x = fl(c − (c − a))
y = fl(a − x)

S. Graillat (Univ. Paris 6) Accurate simple zeros of polynomials 9 / 25

EFT for the product (2/2)

Algorithm 4 (EFT of the product of 2 floating point numbers)

function [x , y] = TwoProduct(a, b)
x = fl(a · b)
[a1, a2] = Split(a)
[b1, b2] = Split(b)
y = fl(a2 · b2 − (((x − a1 · b1)− a2 · b1)− a1 · b2))

S. Graillat (Univ. Paris 6) Accurate simple zeros of polynomials 10 / 25

EFT for the product (3/3)

Given a, b, c ∈ F,
FMA(a, b, c) is the nearest floating point number a · b + c ∈ F

Algorithm 5 (EFT of the product of 2 floating point numbers)

function [x , y] = TwoProductFMA(a, b)
x = fl(a · b)
y = FMA(a, b,−x)

The FMA is available for example on PowerPC, Itanium, Cell processors.

S. Graillat (Univ. Paris 6) Accurate simple zeros of polynomials 11 / 25

Summary

Theorem 1
Let a, b ∈ F and let x , y ∈ F such that [x , y] = TwoSum(a, b). Then,

a + b = x + y , x = fl(a + b), |y | ≤ u|x |, |y | ≤ u|a + b|.

The algorithm TwoSum requires 6 flops.

Let a, b ∈ F and let x , y ∈ F such that [x , y] = TwoProduct(a, b) . Then,

a · b = x + y , x = fl(a · b), |y | ≤ u|x |, |y | ≤ u|a · b|,

The algorithm TwoProduct requires 17 flops.

S. Graillat (Univ. Paris 6) Accurate simple zeros of polynomials 12 / 25

The Horner scheme

Algorithm 6 (Horner scheme)

function res = Horner(p, x)
sn = an
for i = n − 1 : −1 : 0

pi = fl(si+1 · x) % rounding error πi
si = fl(pi + ai) % rounding error σi

end
res = s0

γn = nu/(1− nu) ≈ nu

|p(x)− Horner(p, x)|
|p(x)|

≤ γ2n︸︷︷︸
≈2nu

cond(p, x)

S. Graillat (Univ. Paris 6) Accurate simple zeros of polynomials 13 / 25

Error-free transformation for the Horner scheme

p(x) = Horner(p, x) + (pπ + pσ)(x)

Algorithm 7 (Error-free transformation for the Horner scheme)

function [Horner(p, x), pπ, pσ] = EFTHorner(p, x)
sn = an
for i = n − 1 : −1 : 0

[pi , πi] = TwoProduct(si+1, x)
[si , σi] = TwoSum(pi , ai)
Let πi be the coefficient of degree i of pπ

Let σi be the coefficient of degree i of pσ

end
Horner(p, x) = s0

S. Graillat (Univ. Paris 6) Accurate simple zeros of polynomials 14 / 25

Compensated Horner scheme1 and its accuracy

Algorithm 8 (Compensated Horner scheme)

function res = CompHorner(p, x)
[h, pπ, pσ] = EFTHorner(p, x)
c = Horner(pπ + pσ, x)
res = fl(h + c)

Theorem 2
Let p be a polynomial of degree n with floating point coefficients, and x be
a floating point value. Then if no underflow occurs,

|CompHorner(p, x)− p(x)|
|p(x)|

≤ u + γ2
2n︸︷︷︸

≈4n2u2

cond(p, x).

1Compensated Horner Scheme, S.G., Philippe Langlois and Nicolas Louvet, Research
Report RR2005-04, University of Perpignan, France, july 2005

S. Graillat (Univ. Paris 6) Accurate simple zeros of polynomials 15 / 25

Numerical experiments : testing the accuracy

Evaluation of pn(x) = (x − 1)n for x = fl(1.333) and n = 3, . . . , 42

105 1010 1015 1020 1025 1030 1035

10−18

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

γ2n cond u+γ2n
2 cond

Condition number and relative forward error

Condition number

Re
la

tiv
e

fo
rw

ar
d

er
ro

r

Classic Horner scheme
Compensated Horner scheme

1/u 1/u2

S. Graillat (Univ. Paris 6) Accurate simple zeros of polynomials 16 / 25

Outline of the talk

1 Accurate polynomial evaluation

2 Accurate Newton’s method

S. Graillat (Univ. Paris 6) Accurate simple zeros of polynomials 17 / 25

Condition number for root finding

Definition 1
Let p(z) =

∑n
i=0 aiz i be a polynomial of degree n and x be a simple zero

of p. The condition number of x is defined by

cond(p, x) = lim
ε→0

sup
{
|∆x |
ε|x |

: |∆ai | ≤ ε|ai |
}

.

Theorem 3
Let p(z) =

∑n
i=0 aiz i be a polynomial of degree n and x be a simple zero

of p. The condition number of x is given by

cond(p, x) =
p̃(|x |)

|x ||p′(x)|
,

with p̃(x) =
∑n

i=0 |ai |z i .

S. Graillat (Univ. Paris 6) Accurate simple zeros of polynomials 18 / 25

Classic Newton’s method

Algorithm 9 (Classic Newton’s method)

x0 = ξ

xi+1 = xi − p(xi)
p′(xi)

|xi+1 − x |
|x |

≈ γ2n cond(p, x)

S. Graillat (Univ. Paris 6) Accurate simple zeros of polynomials 19 / 25

Accurate Newton’s method

Algorithm 10 (Accurate Newton’s method)

x0 = ξ

xi+1 = xi − CompHorner(p,xi)
p′(xi)

Using a theorem of F. Tisseur2, one can show

Theorem 4
Assume that there is an x such that p(x) = 0 and p′(x) 6= 0 is not too
small. Assume also that u · cond(p, x) ≤ 1/8 for all i .
Then, for all x0 such that β|p′(x)−1||x0 − x | ≤ 1/8, Newton’s method in
floating point arithmetic generates a sequence of {xi} whose relative error
decreases until the first i for which

|xi+1 − x |
|x |

≈ u + γ2
2n cond(p, x).

2Newton’s Method in Floating Point Arithmetic and Iterative Refinement of
Generalized Eigenvalue Problems, SIAM J. Matrix Anal. Appl., 22(4) : 1038-1057, 2001

S. Graillat (Univ. Paris 6) Accurate simple zeros of polynomials 20 / 25

Numerical experiments

Test with pn(x) = (x − 1)n − 10−8 and x = 1 + 10−8/n for n = 1 : 40
cond(pn, x) varies from 104 to 1022

105 1010 1015 1020

10−15

10−10

10−5

100

condition number

re
la

tiv
e

fo
rw

ar
d

er
ro

r
Condition number and relative forward error

γ2n cond
u+γ2n

2 cond

classic Newton iteration
accurate Newton iteration

Accuracy of the classic Newton iteration and of the accurate Newton iteration
S. Graillat (Univ. Paris 6) Accurate simple zeros of polynomials 21 / 25

What about multiple zeros ?

Definition 2
Let p(z) =

∑n
i=0 aiz i be a polynomial of degree n and x be a zero of

multiplicity m of p. The Hölder condition number of x is defined by

condm(p, x) = lim
ε→0

sup
{

|∆x |
ε1/m|x |

: |∆ai | ≤ ε|ai |
}

.

Theorem 5
Let p(z) =

∑n
i=0 aiz i be a polynomial of degree n and x be a zero of

multiplicity m of p. The Hölder condition number of x is given by

condm(p, x) =
1
|x |

(
m! p̃(|x |)
|p(m)(x)|

)1/m

.

S. Graillat (Univ. Paris 6) Accurate simple zeros of polynomials 22 / 25

What about multiple zeros ?

If the root has multiplicity m > 1, one can use the modified Newton’s
iteration as follows.

Algorithm 11 (Modified Newton’s method)

x0 = ξ

xi+1 = xi −m p(xi)
p′(xi)

Using deflation : trying to find zeros of p(x)/p′(x)

We hope to achieve (in the classic case) the bound

|xi+1 − x |
|x |

≈ u1/m condm(p, x)

and for accurate case

|xi+1 − x |
|x |

≈ u + u2/m condm(p, x)

S. Graillat (Univ. Paris 6) Accurate simple zeros of polynomials 23 / 25

Future work

The problem is to find the multiplicity : one can guess it using some kind of
approximate gcd3.

Work to be done :
Deal with zeros with multiplicities via an accurate modified Newton’s
method
Use of deflation to also deal with multiplicities

3Computing multiple roots of inexact polynomials, Z. Zeng, Mathematics of
Computation, 74(2005), pp 869 - 903

S. Graillat (Univ. Paris 6) Accurate simple zeros of polynomials 24 / 25

Thank you for your attention

S. Graillat (Univ. Paris 6) Accurate simple zeros of polynomials 25 / 25

	Accurate polynomial evaluation
	Accurate Newton's method

