Accurate simple zeros of polynomials in floating point arithmetic

Stef Graillat

LIP6/PEQUAN - Université Pierre et Marie Curie (Paris 6)
Groupe de Travail Arénaire ENS Lyon, LIP, April 23rd, 2009

Floating point number

Floating point system $\mathbb{F} \subset \mathbb{R}$:

$$
x= \pm \underbrace{x_{0} \cdot x_{1} \ldots x_{p-1}}_{\text {mantissa }} \times b^{e}, \quad 0 \leq x_{i} \leq b-1, \quad x_{0} \neq 0
$$

b : basis, p : precision, e : exponent range s.t. $e_{\min } \leq e \leq e_{\max }$
Machine epsilon $\epsilon=b^{1-p},\left|1^{+}-1\right|=\epsilon$
Approximation of \mathbb{R} by \mathbb{F}, rounding $\mathrm{fl}: \mathbb{R} \rightarrow \mathbb{F}$
Let $x \in \mathbb{R}$ then

$$
f|(x)=x(1+\delta), \quad| \delta \mid \leq \mathbf{u}
$$

Unit roundoff $\mathbf{u}=\epsilon / 2$ for round-to-nearest

Standard model of floating point arithmetic

Let $x, y \in \mathbb{F}$,

$$
\mathfrak{f l}(x \circ y)=(x \circ y)(1+\delta), \quad|\delta| \leq \mathbf{u}, \quad \circ \in\{+,-, \cdot, /\}
$$

IEEE 754 standard (1985)

Type	Size	Mantissa	Exponent	Unit roundoff	Range
Double	64 bits	$52+1$ bits	11 bits	$\mathbf{u}=2^{-53} \approx 1,11 \times 10^{-16}$	$\approx 10^{ \pm 308}$

Aim of the talk

- Use Newton's method to accurately compute the simple roots of a polynomial.
- This needs to accurately calculate the residual (i.e. to accurately evaluate a polynomial)

Outline of the talk

(1) Accurate polynomial evaluation
(2) Accurate Newton's method

Outline of the talk

(1) Accurate polynomial evaluation

(2) Accurate Newton's method

What are Error-Free Transformations (EFT)?

Assume floating point arithmetic adhering IEEE 754 with rounding to nearest with rounding unit \mathbf{u} (no underflow nor overflow)

Error free transformations are properties and algorithms to compute the generated elementary rounding errors,

$$
a, b \text { entries } \in \mathbb{F}, \quad a \circ b=f(a \circ b)+e, \text { with } e \in \mathbb{F}
$$

Key tools for accurate computation

- fixed length expansions libraries : double-double (Briggs, Bailey, Hida, $\mathrm{Li})$, quad-double (Bailey, Hida, Li)
- arbitrary length expansions libraries: Priest, Shewchuk
- compensated algorithms (Kahan, Priest, Ogita-Rump-Oishi, Graillat-Langlois-Louvet)

EFT for the summation

$$
x=\mathrm{fl}(a \pm b) \Rightarrow a \pm b=x+y \quad \text { with } y \in \mathbb{F}
$$

Algorithms of Dekker (1971) and Knuth (1974)
Algorithm 1 (EFT of the sum of 2 floating point numbers with $|a| \geq|b|)$
function $[x, y]=$ FastTwoSum (a, b)

$$
\begin{aligned}
& x=f \mathrm{l}(a+b) \\
& y=\mathrm{fl}((a-x)+b)
\end{aligned}
$$

Algorithm 2 (EFT of the sum of 2 floating point numbers)

function $[x, y]=\operatorname{TwoSum}(a, b)$

$$
\begin{aligned}
& x=\mathrm{fl}(a+b) \\
& z=\mathrm{fl}(x-a) \\
& y=\mathrm{fl}((a-(x-z))+(b-z))
\end{aligned}
$$

EFT for the product (1/2)

$$
x=\mathrm{fl}(a \cdot b) \Rightarrow a \cdot b=x+y \quad \text { with } y \in \mathbb{F}
$$

Algorithm TwoProduct by Veltkamp and Dekker (1971)

$$
a=x+y \quad \text { and } \quad x \text { and } y \text { non overlapping with }|y| \leq|x| .
$$

Algorithm 3 (Error-free split of a floating point number into two parts)

$$
\begin{aligned}
& \text { function }[x, y]=\operatorname{Split}(a) \\
& \quad \text { factor }=\mathrm{fl}\left(2^{s}+1\right) \\
& c=\mathrm{fl}(\text { factor } \cdot a) \\
& x=\mathrm{fl}(c-(c-a)) \\
& y=\mathrm{fl}(a-x)
\end{aligned}
$$

EFT for the product (2/2)

```
Algorithm 4 (EFT of the product of 2 floating point numbers)
function \([x, y]=\operatorname{TwoProduct}(a, b)\)
    \(x=\mathrm{fl}(a \cdot b)\)
    \(\left[a_{1}, a_{2}\right]=\operatorname{Split}(a)\)
    \(\left[b_{1}, b_{2}\right]=\operatorname{Split}(b)\)
    \(y=\mathrm{fl}\left(a_{2} \cdot b_{2}-\left(\left(\left(x-a_{1} \cdot b_{1}\right)-a_{2} \cdot b_{1}\right)-a_{1} \cdot b_{2}\right)\right)\)
```


EFT for the product $(3 / 3)$

Given $a, b, c \in \mathbb{F}$,

- $\operatorname{FMA}(a, b, c)$ is the nearest floating point number $a \cdot b+c \in \mathbb{F}$

Algorithm 5 (EFT of the product of 2 floating point numbers)

function $[x, y]=$ TwoProductFMA (a, b)

$$
\begin{aligned}
& x=\mathrm{fl}(a \cdot b) \\
& y=\operatorname{FMA}(a, b,-x)
\end{aligned}
$$

The FMA is available for example on PowerPC, Itanium, Cell processors.

Summary

Theorem 1

Let $a, b \in \mathbb{F}$ and let $x, y \in \mathbb{F}$ such that $[x, y]=\operatorname{TwoSum}(a, b)$. Then,

$$
a+b=x+y, \quad x=f|(a+b), \quad| y|\leq \mathbf{u}| x|, \quad| y|\leq \mathbf{u}| a+b \mid
$$

The algorithm TwoSum requires 6 flops.
Let $a, b \in \mathbb{F}$ and let $x, y \in \mathbb{F}$ such that $[x, y]=\operatorname{TwoProduct}(a, b)$. Then,

$$
a \cdot b=x+y, \quad x=f|(a \cdot b), \quad| y|\leq \mathbf{u}| x|, \quad| y|\leq \mathbf{u}| a \cdot b \mid,
$$

The algorithm TwoProduct requires 17 flops.

The Horner scheme

Algorithm 6 (Horner scheme)

$$
\begin{aligned}
& \text { function res }=\operatorname{Horner}(p, x) \\
& \qquad \begin{array}{ll}
s_{n}=a_{n} \\
\text { for } i=n-1:-1: 0 & \\
\quad p_{i}=\mathrm{fl}\left(s_{i+1} \cdot x\right) & \% \text { rounding error } \pi_{i} \\
s_{i}=\mathrm{fl}\left(p_{i}+a_{i}\right) & \\
\text { end rounding error } \sigma_{i} \\
\text { res }=s_{0} &
\end{array}
\end{aligned}
$$

$\gamma_{n}=n \mathbf{u} /(1-n \mathbf{u}) \approx n \mathbf{u}$

$$
\frac{|p(x)-\operatorname{Horner}(p, x)|}{|p(x)|} \leq \underbrace{\gamma_{2 n}}_{\approx 2 n \mathbf{u}} \operatorname{cond}(p, x)
$$

Error-free transformation for the Horner scheme

$$
p(x)=\operatorname{Horner}(p, x)+\left(p_{\pi}+p_{\sigma}\right)(x)
$$

Algorithm 7 (Error-free transformation for the Horner scheme)

function $\left[\operatorname{Horner}(p, x), p_{\pi}, p_{\sigma}\right]=\operatorname{EFTHorner}(p, x)$
$s_{n}=a_{n}$
for $i=n-1:-1: 0$
$\left[p_{i}, \pi_{i}\right]=\operatorname{TwoProduct}\left(s_{i+1}, x\right)$
$\left[s_{i}, \sigma_{i}\right]=\operatorname{TwoSum}\left(p_{i}, a_{i}\right)$
Let π_{i} be the coefficient of degree i of p_{π}
Let σ_{i} be the coefficient of degree i of p_{σ} end
Horner $(p, x)=s_{0}$

Compensated Horner scheme ${ }^{1}$ and its accuracy

Algorithm 8 (Compensated Horner scheme)

function res $=$ CompHorner (p, x)
$\left[h, p_{\pi}, p_{\sigma}\right]=$ EFTHorner (p, x)
$c=\operatorname{Horner}\left(p_{\pi}+p_{\sigma}, x\right)$
res $=f 1(h+c)$

Theorem 2

Let p be a polynomial of degree n with floating point coefficients, and x be a floating point value. Then if no underflow occurs,

$$
\frac{\mid \text { CompHorner }(p, x)-p(x) \mid}{|p(x)|} \leq \mathbf{u}+\underbrace{\gamma_{2 n}^{2}}_{\approx 4 n^{2} \mathbf{u}^{2}} \operatorname{cond}(p, x) \text {. }
$$

[^0]
Numerical experiments : testing the accuracy

Evaluation of $p_{n}(x)=(x-1)^{n}$ for $x=\mathrm{fl}(1.333)$ and $n=3, \ldots, 42$

Outline of the talk

(1) Accurate polynomial evaluation

(2) Accurate Newton's method

Condition number for root finding

Definition 1

Let $p(z)=\sum_{i=0}^{n} a_{i} z^{i}$ be a polynomial of degree n and x be a simple zero of p. The condition number of x is defined by

$$
\operatorname{cond}(p, x)=\lim _{\varepsilon \rightarrow 0} \sup \left\{\frac{|\Delta x|}{\varepsilon|x|}:\left|\Delta a_{i}\right| \leq \varepsilon\left|a_{i}\right|\right\}
$$

Theorem 3

Let $p(z)=\sum_{i=0}^{n} a_{i} z^{i}$ be a polynomial of degree n and x be a simple zero of p. The condition number of x is given by

$$
\operatorname{cond}(p, x)=\frac{\widetilde{p}(|x|)}{|x|\left|p^{\prime}(x)\right|}
$$

with $\widetilde{p}(x)=\sum_{i=0}^{n}\left|a_{i}\right| z^{i}$.

Classic Newton's method

Algorithm 9 (Classic Newton's method)

$$
\begin{aligned}
& x_{0}=\xi \\
& x_{i+1}=x_{i}-\frac{p\left(x_{i}\right)}{p^{\prime}\left(x_{i}\right)}
\end{aligned}
$$

$$
\frac{\left|x_{i+1}-x\right|}{|x|} \approx \gamma_{2 n} \operatorname{cond}(p, x)
$$

Accurate Newton's method

Algorithm 10 (Accurate Newton's method)

$$
\begin{aligned}
& x_{0}=\xi \\
& x_{i+1}=x_{i}-\frac{\text { CompHorner }\left(p, x_{i}\right)}{p^{\prime}\left(x_{i}\right)}
\end{aligned}
$$

Using a theorem of F . Tisseur ${ }^{2}$, one can show

Theorem 4

Assume that there is an x such that $p(x)=0$ and $p^{\prime}(x) \neq 0$ is not too small. Assume also that $\mathbf{u} \cdot \operatorname{cond}(p, x) \leq 1 / 8$ for all i. Then, for all x_{0} such that $\beta\left|p^{\prime}(x)^{-1}\right|\left|x_{0}-x\right| \leq 1 / 8$, Newton's method in floating point arithmetic generates a sequence of $\left\{x_{i}\right\}$ whose relative error decreases until the first i for which

$$
\frac{\left|x_{i+1}-x\right|}{|x|} \approx \mathbf{u}+\gamma_{2 n}^{2} \operatorname{cond}(p, x)
$$

${ }^{2}$ Newton's Method in Floating Point Arithmetic and Iterative Refinement of Generalized Eigenvalue Problems, SIAM J. Matrix Anal. Appl., 22(4) : 1038-1057, 2001

Numerical experiments

Test with $p_{n}(x)=(x-1)^{n}-10^{-8}$ and $x=1+10^{-8 / n}$ for $n=1: 40$ cond $\left(p_{n}, x\right)$ varies from 10^{4} to 10^{22}

Accuracy of the classic Newton iteration and of the accurate Newton iteration

What about multiple zeros?

Definition 2

Let $p(z)=\sum_{i=0}^{n} a_{i} z^{i}$ be a polynomial of degree n and x be a zero of multiplicity m of p. The Hölder condition number of x is defined by

$$
\operatorname{cond}_{m}(p, x)=\lim _{\varepsilon \rightarrow 0} \sup \left\{\frac{|\Delta x|}{\varepsilon^{1 / m}|x|}:\left|\Delta a_{i}\right| \leq \varepsilon\left|a_{i}\right|\right\} .
$$

Theorem 5

Let $p(z)=\sum_{i=0}^{n} a_{i} z^{i}$ be a polynomial of degree n and x be a zero of multiplicity m of p. The Hölder condition number of x is given by

$$
\operatorname{cond}_{m}(p, x)=\frac{1}{|x|}\left(\frac{m!\tilde{p}(|x|)}{\left|p^{(m)}(x)\right|}\right)^{1 / m} .
$$

What about multiple zeros?

- If the root has multiplicity $m>1$, one can use the modified Newton's iteration as follows.

Algorithm 11 (Modified Newton's method)

$$
\begin{aligned}
& x_{0}=\xi \\
& x_{i+1}=x_{i}-m \frac{p\left(x_{i}\right)}{p^{\prime}\left(x_{i}\right)}
\end{aligned}
$$

- Using deflation : trying to find zeros of $p(x) / p^{\prime}(x)$

We hope to achieve (in the classic case) the bound

$$
\frac{\left|x_{i+1}-x\right|}{|x|} \approx \mathbf{u}^{1 / m} \operatorname{cond}_{m}(p, x)
$$

and for accurate case

$$
\frac{\left|x_{i+1}-x\right|}{|x|} \approx \mathbf{u}+\mathbf{u}^{2 / m} \operatorname{cond}_{m}(p, x)
$$

Future work

The problem is to find the multiplicity : one can guess it using some kind of approximate gcd^{3}.

Work to be done :

- Deal with zeros with multiplicities via an accurate modified Newton's method
- Use of deflation to also deal with multiplicities

[^1]
Thank you for your attention

[^0]: ${ }^{1}$ Compensated Horner Scheme, S.G., Philippe Langlois and Nicolas Louvet, Research Report RR2005-04, University of Perpignan, France, july 2005

[^1]: ${ }^{3}$ Computing multiple roots of inexact polynomials, Z. Zeng, Mathematics of Computation, 74(2005), pp 869-903
 S. Graillat (Univ. Paris 6)

