Accurate simple zeros of polynomials in floating point arithmetic

Stef Graillat

LIP6/PEQUAN - Université Pierre et Marie Curie (Paris 6)

Groupe de Travail Arénaire ENS Lyon, LIP, April 23rd, 2009

Floating point system $\mathbb{F} \subset \mathbb{R}$:

$$x = \pm \underbrace{x_0.x_1\dots x_{p-1}}_{mantissa} \times b^e, \quad 0 \le x_i \le b-1, \quad x_0 \ne 0$$

b : basis, *p* : precision, *e* : exponent range s.t. $e_{\min} \le e \le e_{\max}$

Machine epsilon $\epsilon = b^{1-p}$, $|1^+ - 1| = \epsilon$

Approximation of \mathbb{R} by \mathbb{F} , rounding fl : $\mathbb{R} \to \mathbb{F}$ Let $x \in \mathbb{R}$ then

 $fl(x) = x(1 + \delta), \quad |\delta| \le u.$

Unit roundoff $\mathbf{u} = \epsilon/2$ for round-to-nearest

Let $x, y \in \mathbb{F}$,

$$\mathsf{fl}(x \circ y) = (x \circ y)(1 + \delta), \quad |\delta| \le \mathsf{u}, \quad \circ \in \{+, -, \cdot, /\}$$

IEEE 754 standard (1985)

Туре	Size	Mantissa	Exponent	Unit roundoff	Range
Double	64 bits	52+1 bits	11 bits	$u = 2^{-53} pprox 1, 11 imes 10^{-16}$	$pprox 10^{\pm 308}$

- Use Newton's method to accurately compute the simple roots of a polynomial.
- This needs to accurately calculate the residual (*i.e.* to accurately evaluate a polynomial)

Assume floating point arithmetic adhering IEEE 754 with rounding to nearest with rounding unit \mathbf{u} (no underflow nor overflow)

Error free transformations are properties and algorithms to compute the generated elementary rounding errors,

 $a, b \text{ entries } \in \mathbb{F}, \quad a \circ b = \mathsf{fl}(a \circ b) + e, \text{ with } e \in \mathbb{F}$

Key tools for accurate computation

- fixed length expansions libraries : double-double (Briggs, Bailey, Hida, Li), quad-double (Bailey, Hida, Li)
- arbitrary length expansions libraries : Priest, Shewchuk
- compensated algorithms (Kahan, Priest, Ogita-Rump-Oishi, Graillat-Langlois-Louvet)

EFT for the summation

$$x = fl(a \pm b) \Rightarrow a \pm b = x + y \text{ with } y \in \mathbb{F},$$

Algorithms of Dekker (1971) and Knuth (1974)

function
$$[x, y] = \texttt{FastTwoSum}(a, b)$$

 $x = \texttt{fl}(a + b)$
 $y = \texttt{fl}((a - x) + b)$

Algorithm 2 (EFT of the sum of 2 floating point numbers)

function
$$[x, y] = \text{TwoSum}(a, b)$$

 $x = \text{fl}(a + b)$
 $z = \text{fl}(x - a)$
 $y = \text{fl}((a - (x - z)) + (b - z))$

$$x = \mathrm{fl}(a \cdot b) \Rightarrow a \cdot b = x + y \text{ with } y \in \mathbb{F},$$

Algorithm TwoProduct by Veltkamp and Dekker (1971)

$$a = x + y$$
 and x and y non overlapping with $|y| \le |x|$.

Algorithm 3 (Error-free split of a floating point number into two parts)

function
$$[x, y] = \text{Split}(a)$$

factor = fl(2^s + 1) % u = 2^{-p}, s = $\lceil p/2 \rceil$
c = fl(factor $\cdot a$)
x = fl(c - (c - a))
y = fl(a - x)

Algorithm 4 (EFT of the product of 2 floating point numbers)

$$\begin{array}{l} \text{function} [x, y] = \texttt{TwoProduct}(a, b) \\ x = \texttt{fl}(a \cdot b) \\ [a_1, a_2] = \texttt{Split}(a) \\ [b_1, b_2] = \texttt{Split}(b) \\ y = \texttt{fl}(a_2 \cdot b_2 - (((x - a_1 \cdot b_1) - a_2 \cdot b_1) - a_1 \cdot b_2)) \end{array}$$

Given $a, b, c \in \mathbb{F}$,

• FMA(a,b,c) is the nearest floating point number $a \cdot b + c \in \mathbb{F}$

Algorithm 5 (EFT of the product of 2 floating point numbers) function [x, y] = TwoProductFMA(a, b) $x = fl(a \cdot b)$ y = FMA(a, b, -x)

The FMA is available for example on PowerPC, Itanium, Cell processors.

Theorem 1

Let $a, b \in \mathbb{F}$ and let $x, y \in \mathbb{F}$ such that [x, y] = TwoSum(a, b). Then,

 $a+b=x+y, \quad x=\mathrm{fl}(a+b), \quad |y|\leq \mathbf{u}|x|, \quad |y|\leq \mathbf{u}|a+b|.$

The algorithm TwoSum requires 6 flops.

Let $a, b \in \mathbb{F}$ and let $x, y \in \mathbb{F}$ such that [x, y] = TwoProduct(a, b) . Then,

 $a \cdot b = x + y, \quad x = fl(a \cdot b), \quad |y| \le \mathbf{u}|x|, \quad |y| \le \mathbf{u}|a \cdot b|,$

The algorithm TwoProduct requires 17 flops.

The Horner scheme

Algorithm 6 (Horner scheme)

function res = Horner(p, x)

$$s_n = a_n$$

for $i = n - 1 : -1 : 0$
$$p_i = fl(s_{i+1} \cdot x)$$

$$s_i = fl(p_i + a_i)$$

end
res = s_0

 $\% \ {\rm rounding \ error} \ \pi_i \\ \% \ {\rm rounding \ error} \ \sigma_i \\ \end{cases}$

 $\gamma_n = n\mathbf{u}/(1-n\mathbf{u}) \approx n\mathbf{u}$

$$rac{|p(x) - ext{Horner}(p, x)|}{|p(x)|} \leq \underbrace{\gamma_{2n}}_{pprox 2n \mathbf{u}} \operatorname{cond}(p, x)$$

Error-free transformation for the Horner scheme

$$p(x) = ext{Horner}(p, x) + (p_{\pi} + p_{\sigma})(x)$$

Algorithm 7 (Error-free transformation for the Horner scheme)

```
function [Horner(p, x), p_{\pi}, p_{\sigma}] = EFTHorner(p, x)

s_n = a_n

for i = n - 1 : -1 : 0

[p_i, \pi_i] = \text{TwoProduct}(s_{i+1}, x)

[s_i, \sigma_i] = \text{TwoSum}(p_i, a_i)

Let \pi_i be the coefficient of degree i of p_{\pi}

Let \sigma_i be the coefficient of degree i of p_{\sigma}

end

Horner(p, x) = s_0
```

Algorithm 8 (Compensated Horner scheme)

function res = CompHorner(p, x) $[h, p_{\pi}, p_{\sigma}] = \text{EFTHorner}(p, x)$ $c = \text{Horner}(p_{\pi} + p_{\sigma}, x)$ res = fl(h + c)

Theorem 2

Let p be a polynomial of degree n with floating point coefficients, and x be a floating point value. Then if no underflow occurs,

$$rac{| ext{CompHorner}(p,x)-p(x)|}{|p(x)|} \leq \mathsf{u} + \underbrace{\gamma^2_{2n}}_{pprox 4n^2 \mathsf{u}^2} \operatorname{cond}(p,x).$$

¹Compensated Horner Scheme, S.G., Philippe Langlois and Nicolas Louvet, Research Report RR2005-04, University of Perpignan, France, july 2005

Numerical experiments : testing the accuracy

Definition 1

Let $p(z) = \sum_{i=0}^{n} a_i z^i$ be a polynomial of degree n and x be a simple zero of p. The condition number of x is defined by

$$\operatorname{\mathsf{cond}}(p,x) = \lim_{\varepsilon o 0} \sup \left\{ rac{|\Delta x|}{arepsilon |x|} : |\Delta a_i| \le arepsilon |a_i|
ight\}.$$

Theorem 3

Let $p(z) = \sum_{i=0}^{n} a_i z^i$ be a polynomial of degree n and x be a simple zero of p. The condition number of x is given by

$$\operatorname{cond}(p,x) = \frac{\widetilde{p}(|x|)}{|x||p'(x)|},$$

with $\widetilde{p}(x) = \sum_{i=0}^{n} |a_i| z^i$.

Algorithm 9 (Classic Newton's method)

$$x_0 = \xi$$

$$x_{i+1} = x_i - \frac{p(x_i)}{p'(x_i)}$$

$$\frac{|x_{i+1} - x|}{|x|} \approx \gamma_{2n} \operatorname{cond}(p, x)$$

Algorithm 10 (Accurate Newton's method)

$$x_0 = \xi$$

$$x_{i+1} = x_i - \frac{\text{CompHorner}(p, x_i)}{p'(x_i)}$$

Using a theorem of F. Tisseur², one can show

Theorem 4

Assume that there is an x such that p(x) = 0 and $p'(x) \neq 0$ is not too small. Assume also that $\mathbf{u} \cdot \operatorname{cond}(p, x) \leq 1/8$ for all i. Then, for all x_0 such that $\beta |p'(x)^{-1}| |x_0 - x| \leq 1/8$, Newton's method in floating point arithmetic generates a sequence of $\{x_i\}$ whose relative error decreases until the first i for which

$$\frac{|x_{i+1}-x|}{|x|} \approx \mathbf{u} + \gamma_{2n}^2 \operatorname{cond}(p,x).$$

²Newton's Method in Floating Point Arithmetic and Iterative Refinement of Generalized Eigenvalue Problems, *SIAM J. Matrix Anal. Appl.*, 22(4) : 1038-1057, 2001 S. Graillat (Univ. Paris 6) Accurate simple zeros of polynomials 20 / 25

Numerical experiments

Test with $p_n(x) = (x - 1)^n - 10^{-8}$ and $x = 1 + 10^{-8/n}$ for n = 1 : 40 cond (p_n, x) varies from 10^4 to 10^{22}

Accuracy of the classic Newton iteration and of the accurate Newton iteration

S. Graillat (Univ. Paris 6) Accurate simple zeros of polynomials

Definition 2

Let $p(z) = \sum_{i=0}^{n} a_i z^i$ be a polynomial of degree n and x be a zero of multiplicity m of p. The Hölder condition number of x is defined by

$$\operatorname{cond}_m(p,x) = \lim_{\varepsilon \to 0} \sup \left\{ \frac{|\Delta x|}{\varepsilon^{1/m}|x|} : |\Delta a_i| \le \varepsilon |a_i| \right\}.$$

Theorem 5

Let $p(z) = \sum_{i=0}^{n} a_i z^i$ be a polynomial of degree n and x be a zero of multiplicity m of p. The Hölder condition number of x is given by

$$\operatorname{cond}_m(p,x) = \frac{1}{|x|} \left(\frac{m! \, \widetilde{p}(|x|)}{|p^{(m)}(x)|} \right)^{1/m}$$

What about multiple zeros?

 If the root has multiplicity m > 1, one can use the modified Newton's iteration as follows.

Algorithm 11 (Modified Newton's method)

$$x_0 = \xi$$

$$x_{i+1} = x_i - m \frac{p(x_i)}{p'(x_i)}$$

• Using deflation : trying to find zeros of p(x)/p'(x)

We hope to achieve (in the classic case) the bound

$$\frac{|x_{i+1}-x|}{|x|} \approx \mathsf{u}^{1/m} \operatorname{cond}_m(p,x)$$

and for accurate case

$$\frac{|x_{i+1}-x|}{|x|} \approx \mathbf{u} + \mathbf{u}^{2/m} \operatorname{cond}_m(p,x)$$

The problem is to find the multiplicity : one can guess it using some kind of approximate \gcd^3 .

Work to be done :

- Deal with zeros with multiplicities *via* an accurate modified Newton's method
- Use of deflation to also deal with multiplicities

 $^{^{3}}$ Computing multiple roots of inexact polynomials, Z. Zeng, Mathematics of Computation, 74(2005), pp 869 - 903

Thank you for your attention