Resolution of a large number of small random symmetric linear systems in single precision arithmetic on GPUs

Stef Graillat
LIP6/PEQUAN, Sorbonne Universités, UPMC Univ Paris 06, CNRS

Joint work with Lokmane Abbas-Turki (UPMC - LPMA)

International Conference on Monte Carlo techniques
July 5-8th 2016, Paris, France
Outline of the talk

1. Introduction - motivations
2. Solving small linear systems on GPU
3. Conclusion
Outline of the talk

1. Introduction - motivations
2. Solving small linear systems on GPU
3. Conclusion
Motivations for HPC

- HPC in banking institutions
 - Rather distribution than parallelization,
 - Organized around clusters with small nodes,
 - Use the .NET C, C++ and C#.

- Emergence of new solutions
 - The efficiency of GPUs becomes undeniable,
 - Nodes become bigger and bigger,
 - Virtualization and cloud computing.

- Challenges
 - Code management.

- A solution for the Credit Valuation Adjustment (CVA)
Motivations: Credit Valuation Adjustment (CVA)

Definition (Credit Valuation Adjustment)

In a financial transaction between a party C that has to pay another party B some amount V, the CVA value is the price of the insurance contract that covers the default of party C to pay the whole sum V.

\[CV_{A,t,T} = (1 - R) E_t (V_{\tau}^+ \mathbb{1}_{t < \tau < T}) \]

- R is the recovery to make if the counterparty defaults (Assume R = 0),
- \(\tau \) is the random default time of the counterparty,
- T is the protection time horizon.
Simulation for American options

![Simulation for American options](image)

- **Outer simulation**
- **Inner simulation from 0.6**
- **Inner simulation from 0.8**

Geometric Brownian Motion

- Time intervals: 0 to 1
Standard methods cannot be used directly (1/2)

The reason

- Large number of small random linear systems: The size does not exceed 64 and the communication is reduced.
- Some of these random systems could be ill-conditioned.

\[
\tilde{A}_{k,l} = \frac{1}{M_k} \sum_{j=1}^{M_k} \psi^l(S_{tk}^{(j)}) \psi^l(S_{tk}^{(j)})^t
\]
Standard methods cannot be used directly (2/2)

Typical condition numbers for linear regression $n = 30$ in the Black & Scholes model
Outline of the talk

1. Introduction - motivations

2. Solving small linear systems on GPU

3. Conclusion
Three main methods for large symmetric matrices

- **Cholesky factorization**

- **Tridiagonal form + cyclic reduction**

- **Tridiagonal form + eigenproblem**
Standard LDLt parallel strategy

Shared occupation $n(n + 1)/2 + n$ and complexity $O(n^3/6)$

$$A = LDL^t, \quad D_{j,j} = A_{j,j} - \sum_{k=1}^{j-1} L_{j,k}^2 D_{k,k},$$

$$L_{i,j} = \frac{1}{D_{j,j}} \left(A_{i,j} - \sum_{k=1}^{j-1} L_{i,k} L_{j,k} D_{k,k} \right) \quad \text{if } i > j.$$
Three different versions (1/2)

1. An SIMD version that requires only independent threads, one for each linear system.

2. A collaborative version that involves n collaborative threads for each linear system with n unknowns.

3. An optimal hybrid solution that involves n^* ($n^* < n$) collaborative threads for each linear system with n unknowns.
Three different versions (2/2)

The speedup of the collaborative and the hybrid versions when compared to the SIMD implementation.
Performance results

Optimal number of collaborative threads

Number of systems solved per s
Performance results

LDLt resolution: The speedup of CUDA/GPU implementation compared to OpenMP/CPU. This speedup is measured in term of the number of solved systems per second
Householder tridiagonalization + PCR

Householder tridiagonalization: Shared occupation $n^2 + 2n$ and complexity $O(4n^3/3)$

1. An SIMD version that requires only independent threads, one for each linear system.
2. A collaborative version that involves n collaborative threads for each linear system with n unknowns.

For symmetric A

$$ U = H_3^t...H_n^tAH_n...H_3 = \begin{pmatrix} d_1 & c_1 \\ c_1 & d_2 & c_2 & 0 \\ & c_2 & d_3 & \ddots \\ & & \ddots & \ddots & \ddots \\ & & & & c_{n-1} \\ & & & & & d_n \end{pmatrix}, $$

with each Householder matrix H given by $H = I - uu^t/b$, $b = u^tu/2$.

S. Graillat (Univ. Paris 6) Solving large number of small symmetric linear systems on GPU
Cyclic reduction

Shared occupation $3n$ and complexity $O(n \log_2(n))$

Step 1: Forward reduction to a 4-unknown system involving $z2$, $z4$, $z6$ and $z8$

Step 2: Forward reduction to a 2-unknown system involving $z4$ and $z8$

Step 3: Solve 2-unknown system

Step 4: Backward substitution to solve the rest 2 unknowns

Step 5: Backward substitution to solve the rest 4 unknowns
Parallel cyclic reduction

Shared occupation $4n$ and complexity $O(n \log_2(n))$

Step 1: Reduced to 2 systems of 4 unknowns

Step 2: Reduced to 4 systems of 2 unknowns

Step 3: Solve
Comparisons

LDLt vs. tridiagonal + PCR
Comparisons

Householder reduction + PCR: The speedup of CUDA/GPU implementation compared to OpenMP/CPU. This speedup is measured in term of the number of solved systems per second.
Divide and conquer for eigenproblem

- Tridiagonal Householder decomposition $A = QUQ^t$ where Q is orthogonal and U is symmetric tridiagonal.
- Divide & conquer algorithm for symmetric tridiagonal eigenproblems to establish $U = ODO^t$ where O is orthogonal and D is diagonal.
- Discard the smallest eigenvalues of D that provide a condition number larger than 10^5.

$$
U = \begin{pmatrix}
 d_1 & c_1 & & & & \\
 c_1 & \ddots & \ddots & & \\
 & \ddots & \ddots & \ddots & \\
 & & c_{m-1} & d_m - c_m & 0 \\
 & & 0 & \ddots & \ddots \\
 & & & \ddots & c_{n-1} \\
 & & & & d_n
\end{pmatrix} + c_m1_{m,m+1}1_{m,m}^t
$$

$$
= \begin{pmatrix}
 U_1 & 0 \\
 0 & U_2
\end{pmatrix} + c_m1_{m,m+1}1_{m,m}^t
$$
Divide and conquer for eigenproblem (1/2)

Shared occupation $2n(n + 2) + 2^{1 + \lfloor \log_2(n-1) \rfloor}$ and complexity $O(4n^3/3)$

1. $$U = \begin{pmatrix} O_1 & 0 \\ 0 & O_2 \end{pmatrix} \begin{pmatrix} D_1 & 0 \\ 0 & D_2 \end{pmatrix} + c_m uu^t \begin{pmatrix} O_1^t & 0 \\ 0 & O_2^t \end{pmatrix}$$
 where $u = \begin{pmatrix} O_1^t & 0 \\ 0 & O_2^t \end{pmatrix} 1_{m,m+1} = \begin{pmatrix} \text{last column of } O_1^t \\ \text{first column of } O_2^t \end{pmatrix}$.

2. Let $\Lambda = \{ \lambda_1, ..., \lambda_n \}$, ordered family of eigenvalues of $\begin{pmatrix} D_1 & 0 \\ 0 & D_2 \end{pmatrix}$.
 If $c_m \neq 0$ and the eigenvalue λ of U satisfies $\lambda \notin \Lambda$, then its value is obtained as a solution of the secular equation

$$\sum_{i=1}^{n} \frac{u_i^2}{\lambda_i - \lambda} + \frac{1}{c_m} = 0.$$
From \(u \) and the solutions of the secular equation, Löwner’s Theorem provides vector \(\tilde{u} \) that is used to compute the eigenvector \(V_\lambda \) of

\[
\begin{pmatrix}
 D_1 & 0 \\
 0 & D_2
\end{pmatrix} + c_m \tilde{u} \tilde{u}^t
\]

Let \(W = \left(V_\lambda \right)_\lambda \) eigenvalue of \(U \), we get the eigenvectors of \(U \) thanks to the multiplication

\[
\begin{pmatrix}
 O_1 & 0 \\
 0 & O_2
\end{pmatrix} W.
\]
Additional details on step 1

\[
\begin{array}{c}
\quad n \\
\quad m = \lfloor n/2 \rfloor \\
\quad m - \lfloor m/2 \rfloor \\
\quad \lfloor (n-m)/2 \rfloor \\
\quad n-m - \lfloor (n-m)/2 \rfloor \\
\end{array}
\]

Advantage: Pure divide and conquer algorithm, it prevents to have eigenvalues of multiplicity larger than two at each conquering step.
Additional details on step 2

Use of Graag’s scheme (based on Newton’s method):

Choose h_k such that $h_k(\lambda) = x_{k,0} + x_{k,1}/(\lambda_k - \lambda) + x_{k,2}/(\lambda_{k+1} - \lambda)$ matches $\sum_{i=1}^{n} \frac{u_i^2}{\lambda_i - \lambda} + \frac{1}{c_m}$ at its root $\in (\lambda_k, \lambda_{k+1})$ up to the second derivative.

Advantage: Cubic monotonic convergence.
Comparison with Householder tridiagonalization

- Small matrices.
- Iterative algorithm to solve the secular equation.
- Divergence produced by deflation.
Must we systematically use Householder tridiagonalization with divide & conquer when we suspect the random linear systems to be ill-conditioned?

Our answer

- Perform Householder tridiagonalization $O(4n^3/3)$ and solve the linear systems cheaply using parallel cyclic reduction $O(n \log_2(n))$.
- Take a decision according to the value of the residue error:
 * If the residue error is small then we already have good solutions.
 * Otherwise, we must perform divide & conquer $O(4n^3/3)$ diagonalizations and discard the smallest eigenvalues.

- The next time we solve this same kind of linear systems:
 * If they used to be well-conditioned then we just process LDLt $O(n^3/6)$.
 * Otherwise we execute directly the combination of Householder tridiagonalization and divide & conquer diagonalization.
Outline of the talk

1. Introduction - motivations
2. Solving small linear systems on GPU
3. Conclusion
Summary of contributions

- CUDA source code of: LDLt, Householder reduction, parallel cyclic reduction that is not necessary a power of two and divide and conquer for eigenproblem.
- Execution time comparison of the different methods mentioned above.
- Original method to further optimize the adaptation of LDLt to our context.
- Original parallel cyclic reduction that can be used for any vector size and not only a power of two.
- Precise answer to the following question: Must we systematically use Householder tridiagonalization with divide & conquer when we suspect the random linear systems to be ill-conditioned?
Future work

- Studying the rounding errors and error propagation.
- Use CADNA library to test each procedure:
 http://www-pequan.lip6.fr/cadna/

Source code

- http://www.proba.jussieu.fr/~abbasturki/soft.htm

References

- L.A. Abbas-Turki and Stef Graillat. Resolution of a large number of small random symmetric linear systems in single precision arithmetic on GPUs:
 https://hal.archives-ouvertes.fr/hal-01295549