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Motivations for HPC

HPC in banking institutions
Rather distribution than parallelization,
Organized around clusters with small nodes,
Use the .NET C, C++ and C#.

Emergence of new solutions
he eõciency of GPUs becomes undeniable,
Nodes become bigger and bigger,
Virtualization and cloud computing.

Challenges
Codemanagement.

A solution for the Credit Valuation Adjustment (CVA)
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Motivations: Credit Valuation Adjustment (CVA)

Deûnition (Credit Valuation Adjustment)
In a ûnancial transaction between a party C that has to pay another party
B some amount V , the CVA value is the price of the insurance contract
that covers the default of party C to pay the whole sum V .

CVAt,T = (1 − R)Et (V+
τ 1t<τ≤T)

R is the recovery to make if the counterparty defaults (Assume R = 0),
τ is the random default time of the counterparty,
T is the protection time horizon.
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Simulation for American options
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Standardmethods cannot be used directly (1/2)

he reason
Large number of small random linear systems: he size does not
exceed 64 and the communication is reduced.

Some of these random systems could be ill-conditioned.

Âk,l =
1
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Standardmethods cannot be used directly (2/2)

Typical condition numbers for linear regression n = 30 in
the Black & Scholes model
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hreemain methods for large symmetricmatrices
Cholesky factorization

V. Volkov and J. Demmel. LU, QR and Cholesky Factorizations using
Vector Capabilities of GPUs. Berkeley Technical Report. 2008.
G. Ballard, J. Demmel, O. Holtz and O. Schwartz,
Communication-Optimal Parallel and Sequential Cholesky
Decomposition. SIAM J. SCI. COMPUT. 32(6), 3495–3523. 2010.

Tridiagonal form + cyclic reduction
Y. Zhang , J. Cohen and J. D. Owens. 15th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming,
127–136. 2010.
D. Goddeke and R. Strzodka. Cyclic Reduction Tridiagonal Solvers
on GPUs Applied to Mixed Precision Multigrid. Parallel and
Distributed Systems, IEEE Trans. 22(1), 22–32. 2010.

Tridiagonal form + eigenproblem
C. Vomel, S. Tomov and J. Dongarra. Divide & Conquer on Hybrid
Gpu-AcceleratedMulticore Systems. SIAM J. SCI. COMPUT. 34(2),
70–82. 2012.
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Standard LDLt parallel strategy
Shared occupation n(n + 1)/2 + n and complexity O(n3/6)

A = LDLt , D j, j = A j, j −
j−1
∑
k=1

L2
j,kDk,k ,

Li , j =
1
D j, j
(Ai , j −

j−1
∑
k=1

Li ,kL j,kDk,k) if i > j.
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hree diòerent versions (1/2)

1 An SIMD version that requires only independent threads, one for
each linear system.

2 A collaborative version that involves n collaborative threads for
each linear system with n unknowns.

3 An optimal hybrid solution that involves n∗ (n∗ < n) collaborative
threads for each linear system with n unknowns.
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hree diòerent versions (2/2)
he speedup of the collaborative and the hybrid versions when
compared to the SIMD implementation.

S. Graillat (Univ. Paris 6) Solving large number of small symmetric linear systems on GPU 13 / 30



Performance results

Optimal number of collaborative threads Number of systems solved per s
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Performance results
LDLt resolution: he speedup of CUDA/GPU implementation
compared to OpenMP/CPU. his speedup is measured in term of the
number of solved systems per second

0 10 20 30 40 50 60 70
4

6

8

10

12

14

16

18

20

22

System size

S. Graillat (Univ. Paris 6) Solving large number of small symmetric linear systems on GPU 15 / 30



Householder tridiagonalization + PCR
Householder tridiagonalization: Shared occupation n2 + 2n and
complexity O(4n3/3)

1 An SIMD version that requires only independent threads, one for
each linear system.

2 A collaborative version that involves n collaborative threads for
each linear system with n unknowns.

For symmetric A

U = H t
3...H t

nAHn ...H3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

d1 c1

c1 d2 c2 0
c2 d3 ⋱
⋱ ⋱ ⋱

0 ⋱ ⋱ cn−1
cn−1 dn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

with each Householder matrix H given by H = I − uut/b, b = utu/2.
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Cyclic reduction

Shared occupation 3n and complexity O(n log2(n))
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z2 z8z4 z6

Stepg1:gForwardgreductiongtog
ag4-unknowngsystemginvolvingg
z2,gz4,gz6gandgz8
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ag2-unknowngsystemginvolvingg
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Stepg3:gSolveg2-unknowngsystem

Stepg4:gBackwardgsubstitutiongto
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Stepg5:gBackwardgsubstitutiongto
solvegthegrestg4gunknowns
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Parallel cyclic reduction

Shared occupation 4n and complexity O(n log2(n))

Step 1: Reduced to 2 systems 
of 4 unknowns

Step 2: Reduced to 4 systems 
of 2 unknowns

Step 3: Solve 
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Comparisons

LDLt vs. tridiagonal + PCR
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Comparisons
Householder reduction + PCR:he speedup of CUDA/GPU
implementation compared to OpenMP/CPU. his speedup is measured
in term of the number of solved systems per second.
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Divide and conquer for eigenproblem
Tridiagonal Householder decomposition A = QUQ t where Q is
orthogonal and U is symmetric tridiagonal.
Divide & conquer algorithm for symmetric tridiagonal
eigenproblems to establish U = ODO t where O is orthogonal and
D is diagonal.
Discard the smallest eigenvalues of D that provide a condition
number larger than 105.

U =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

d1 c1
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+ cm1m ,m+11tm ,m+1

= (
U1 0
0 U2

) + cm1m ,m+11tm ,m+1
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Divide and conquer for eigenproblem (1/2)

Shared occupation 2n(n + 2) + 21+⌊log2(n−1)⌋ and complexity O(4n3/3)
1

U = ( O1 0
0 O2

)(( D1 0
0 D2

) + cmuut)( O t
1 0
0 O t

2
)

where u = ( O t
1 0
0 O t

2
) 1m,m+1 = (

last column of O t
1

ûrst column of O t
2
) .

2 Let Λ = {λ1, ..., λn}, ordered family of eigenvalues of ( D1 0
0 D2

).

If cm ≠ 0 and the eigenvalue λ of U satisûes λ ∉ Λ, then its value is
obtained as a solution of the secular equation

n

∑
i=1

u2
i

λi − λ
+ 1
cm

= 0.
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Divide and conquer for eigenproblem (2/2)

3 From u and the solutions of the secular equation, Löwner’s
heorem provides vector ũ that is used to compute the eigenvector

Vλ of ( D1 0
0 D2

) + cmũũt

4 Let W = (Vλ)λ eigenvalue of U , we get the eigenvectors of U thanks to

themultiplication ( O1 0
0 O2

)W .

S. Graillat (Univ. Paris 6) Solving large number of small symmetric linear systems on GPU 23 / 30



Additional details on step 1

Advantage: Pure divide and conquer algorithm, it prevents to have
eigenvalues ofmultiplicity larger than two at each conquering step.
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Additional details on step 2

Use of Gragg’s scheme (based on Newton’s method):

Choose hk such that hk(λ) = xk,0 + xk,1/(λk − λ) + xk,2/(λk+1 − λ)
matches

n

∑
i=1

u2
i

λi − λ
+ 1
cm

at its root ∈ (λk , λk+1) up to the second

derivative.

Advantage: Cubicmonotonic convergence.
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Comparison with Householder tridiagonalization
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Small matrices.
Iterative algorithm to solve the secular equation.
Divergence produced by de�ation.
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Must we systematically useHouseholder tridiagonalization with divide &

conquerwhenwe suspect the random linear systems to be ill-conditioned?

Our answer
Perform Householder tridiagonalization O(4n3/3) and solve the
linear systems cheaply using parallel cyclic reduction O(n log2(n)).
Take a decision according to the value of the residue error:
* If the residue error is small then we already have good solutions.
* Otherwise, wemust perform divide & conquer O(4n3

/3)
diagonalizations and discard the smallest eigenvalues.

he next time we solve this same kind of linear systems:
* If they used to be well-conditioned then we just process LDLt
O(n3

/6).
* Otherwise we execute directly the combination ofHouseholder

tridiagonalization and divide & conquer diagonalization.
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Summary of contributions

CUDA source code of: LDLt,Householder reduction, parallel cyclic
reduction that is not necessary a power of two and divide and
conquer for eigenproblem.
Execution time comparison of the diòerent methods mentioned
above.
Original method to further optimize the adaptation of LDLt to our
context.
Original parallel cyclic reduction that can be used for any vector
size and not only a power of two.
Precise answer to the following question: Must we systematically
useHouseholder tridiagonalization with divide & conquer when we
suspect the random linear systems to be ill-conditioned?
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Future work

Studying the rounding errors and error propagation.
Use CADNA library to test each procedure:
http://www-pequan.lip6.fr/cadna/

Source code
http://www.proba.jussieu.fr/~abbasturki/soft.htm

References
L.A. Abbas-Turki and Stef Graillat. Resolution of a large number of
small random symmetric linear systems in single precision
arithmetic on GPUs:
https://hal.archives-ouvertes.fr/hal-01295549

S. Graillat (Univ. Paris 6) Solving large number of small symmetric linear systems on GPU 30 / 30

http://www-pequan.lip6.fr/cadna/
http://www.proba.jussieu.fr/~abbasturki/soft.htm
https://hal.archives-ouvertes.fr/hal-01295549

	Introduction - motivations
	Solving small linear systems on GPU
	Conclusion

