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In this paper, we present an e�cient algorithm to compute the

faithful rounding of the l
2

-norm,
qPn
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j , of a floating-point vector

[x
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, x
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, . . . , xn]T . This means that the result is accurate to within one
bit of the underlying floating-point type. The algorithm is also faithful
in exception generations: an overflow or underflow exception is gen-
erated if and only if the input data calls for this event. This new
algorithm is also well suited for parallel and vectorized implementa-
tions. In contrast to other algorithms, the expensive floating-point
division operation is not used. We demonstrate our algorithm with
an implementation that runs about 4.5 times faster then the netlib
version [1].

There are three novel aspects to our algorithm for l
2

-norms:
First, for an arbitrary real value �, we establish an accuracy con-

dition for a floating-point approximation S to � that guarantees the
correct rounding of the square root �(

p
S) to be a faithful rounding ofp

�.
Second, we propose a way of computing an approximation S to the

sum � =
P

j x
2

j that satisfies the accuracy condition. This summation
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algorithm makes use of error-free transformations [4] at crucial steps.
Our error-free transformation is custom designed for l

2

-norm computa-
tion and thus requires fewer renormalization steps than a more general
error-free transformation needs. We show that the approximation S is
accurate up to a relative error bound of �`(3"2), where " is the ma-
chine epsilon and �`(�) = `�/(1 � `�) bounds the accumulated error
over ` summation steps [3] for an underlying addition operation with a
relative error bound of �. Our derivation of � = 3"2 is an enhancement;
the standard bounds on � in the literature are strictly greater than 3"2.

Third, in order to avoid spurious overflow and underflow in the in-
termediate computations, our algorithm extends the previous work by
Blue [2]: the input data xj are appropriately scaled into “bins” such
that computing and accumulating their squares x2j are guaranteed ex-
ception free. While Blue uses three bins and the division operation,
our algorithm uses only two and is division free. These properties econ-
omize registers usage and improve performance. The claim of faith-
ful rounding and exception generation is supported by mathematical
proofs. The proof of faithful overflow generation is relatively straight-
forward, but that for faithful underflow generation requires consider-
ably greater care.
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