Interval arithmetic on the Cell processor

Stef Graillat Jean-Luc Lamotte Siegfried M. Rump Svetoslav Markov

LIP6/PEQUAN, P. and M. Curie University, Paris

Institute for Reliable Computing, Hamburg University of Technology

Institute of Mathematics and Computer Science, Bulgarian. Academy of Sciences

13th GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic and Verified Numerical Computations SCAN'08 El Paso, Texas, USA, September 29 - October 3, 2008

The Cell processor

Interval Arithmetic on Cell processor

Conclusions

The Cell processor

SP > 200 GFlops, DP=15 Gflops, 25GB/s memory BW, 300 GB/s EIB

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Synergistic Processing Element SPE (1/2)

The SPE is a small processor with a vectorial unit.

- small memory (256 KB) for instructions and data, named "local store" (LS)
- ▶ 128 registers of 128 bits
- 1 SPU "Synergistic Processing Unit"
 - 4 units for single precision computation
 - ▶ 1 unit for double precision computation
- MFC "Memory Flow Controller" which manages memory access through DMA

ション ふゆ く 山 マ チャット しょうくしゃ

Synergistic Processing Element SPE (2/2)

128-bit registers :

- 16 integers of 8 bit,
- 8 integers of 16 bit,
- 4 integers of 32 bit,
- 4 single precision floating point numbers,
- > 2 double precision floating point numbers.

The SIMD processor is based on FMA and is fully pipelined in SP :

 $\label{eq:Peak} \begin{array}{l} \mbox{Peak performance SP}: 4\times2\times3.2 = 25.6 \mbox{\it GFLOPs} \\ \mbox{Not fully pipelined in double precision}: \end{array}$

Peak performance in DP : $2 \times 2 \times 3.2/7 = 1.8$ *GFLOPs*

ション ふゆ く 山 マ チャット しょうくしゃ

Parallelism on Cell

3 levels of parallelism :

- 1. processes run on Cell processors, exchange with a MPI library,
- 2. Data distribution and communication on the 8 SPE,
 - ALF, Dacs
 - POSX thread, CELL thread,
 - mailing box, exchange through DMA
 - data need to be aligned on quadword
 - double buffering technique
- 3. inside a thread
 - only 256 KB
 - Altivec programming
 - code and data dependencies : not to break the SIMD pipeline

ション ふゆ く 山 マ チャット しょうくしゃ

The performance price on SPE

No division 1/x and $1/\sqrt{x}$: only the 12 first bits are exact.

SPU float arithmetic is not IEEE compliant :

- only rounding mode to zero (truncation).
- The highest exponent (128) is used not for Infinity or NaN, but is used to extend the range of the floating point.
- Inf and NaN are not recognized by arithmetic operations.
- Overflow results saturate to the largest representable positive or negative values, rather than producing +/-IEEE Infinity.
- ▶ No denormalized results : +0 instead.

SPU double arithmetic is IEEE compliant except :

- ▶ FP trapping is not supported.
- Denormalized operands are treated as 0.
- NaN results are always the default QNaN (Quiet NaN)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Reliable computing on Cell processor

- difficult to implement interval arithmetic.
- ▶ possible to "emulate" a rounding mode toward $+\infty$ if $r \in \mathbb{R}$ non-negative, $fl_0(r) \le r \le succ(fl_0(r))$ and

$$\operatorname{succ}(f) = \max\{\operatorname{fl}_0((1+2\mathbf{u})f), \operatorname{fl}_0(f+\underline{u})\}.$$

where \boldsymbol{u} is the relative rounding error and \underline{u} the underflow unit

On the Cell processor, no underflow

succ(f) = fl₀((1 + 2u)f) if f > 0
 ¹/₂uu⁻¹ if f = 0

Interval with a rounding mode toward zero

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Three representations :

- endpoint
- center-radius
- leftpoint-diameter

Endpoint representation — addition

Let $A = [a_{inf}, a_{sup}]$, $B = [b_{inf}, b_{sup}]$ and $C = [c_{inf}, c_{sup}]$ be three intervals, C = A + B is defined by : Let \oplus and \otimes be the floating point addition and multiplication with rounding towoard zero.

$$c_{inf} = \begin{cases} -\operatorname{succ}(|a_{inf} \oplus b_{inf}|) & \text{if } (a_{inf} \oplus b_{inf}) < 0\\ a_{inf} \oplus b_{inf} & \text{if } (a_{inf} \oplus b_{inf}) > 0\\ -\frac{1}{2}\underline{u}u^{-1} & \text{if } (a_{inf} \oplus b_{inf}) = 0 \end{cases}$$

$$c_{sup} = \begin{cases} \operatorname{succ}(a_{sup} \oplus b_{sup}) & \text{if } (a_{sup} \oplus b_{sup}) > 0\\ a_{inf} \oplus b_{inf} & \text{if } (a_{sup} \oplus b_{sup}) < 0\\ \frac{1}{2}\underline{u}u^{-1} & \text{if } (a_{sup} \oplus b_{sup}) = 0 \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Endpoint representation — multiplication

$$\begin{aligned} x &= \min(a_{inf} \otimes b_{inf}, a_{inf} \otimes b_{sup}, a_{sup} \otimes b_{inf}, a_{sup} \otimes b_{sup}) \\ y &= \max(a_{inf} \otimes b_{inf}, a_{inf} \otimes b_{sup}, a_{sup} \otimes b_{inf}, a_{sup} \otimes b_{sup}) \end{aligned}$$

 $C = A \times B$ is defined by :

$$c_{inf} = \begin{cases} -\operatorname{succ}(|x|) & \text{if } x < 0\\ -\frac{1}{2}\underline{u}\mathbf{u}^{-1} & \text{if } x = 0\\ x & \text{else} \end{cases}$$
$$c_{sup} = \begin{cases} \operatorname{succ}(y) & \text{if } y > 0\\ \frac{1}{2}\underline{u}\mathbf{u}^{-1} & \text{if } y = 0\\ y & \text{if } y < 0 \end{cases}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Center-radius — addition

Let $A = [a, \alpha]$, $B = [b, \beta]$ and $C = [c, \gamma]$ be three intervals.

Rump's algorithm :

$$c = \Box(\mathbf{a} + \mathbf{b})$$

$$\gamma = \triangle(2\mathbf{u} \cdot |\mathbf{c}| + \alpha + \beta)$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

C = A + B is defined by :

 $\blacktriangleright \ \gamma = \operatorname{succ}(2u \otimes |c| \oplus \operatorname{succ}(\alpha \oplus \beta))$

Center-radius — multiplication

Rump's algorithm :

$$c = \Box(a \cdot b)$$

$$\gamma = \triangle(\underline{\mathbf{u}} + 2\mathbf{u} \cdot |c| + (|a| + \alpha)\beta + \alpha|b|))$$

 $C = A \times B$ is defined by :

$$\triangleright c = a \otimes b$$

 $> \gamma = \operatorname{succ}(\operatorname{succ}(2u \otimes |c| \oplus \operatorname{succ}(\operatorname{succ}(|a| \oplus \alpha) \otimes \beta)) \oplus \operatorname{succ}(\alpha \otimes |b|)$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Implementation of intervals vectors

<pre>typedef struct{ typede float center; int float radius; floa } T_INTERVAL; floa T_INTERVAL x[]</pre>	ef s int at * at * NTER	erva cerva radi tVAL;	ct{ alnu cer; ius;	mber;
[c1	c2	c3	c4
c1 r1 c2 r2 c3 r3 c4 r4	r1	r2	r3	r4

All the SIMD operations use vectors of four 32-bit floating point numbers.

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Performances on 1 SPE

Operations	MFLOPs
Idle (function call)	477.6
Add [crcr]	273.5
Add [ccrr]	345.9
Mul [crcr]	244.3
Mul [ccrr]	255.1
Add inf-sup	285.7

(ロ)、(型)、(E)、(E)、 E) のQで

Center-diameter representation

Seems to be useful with rounding toward zero !

$$A = (a, \alpha) = \begin{cases} \{x \in \mathbb{R} : a \le x \le a + \alpha\} & \text{if } a \ge 0\\ \{x \in \mathbb{R} : a - \alpha \le x \le a\} & \text{if } a < 0 \end{cases}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

But very difficult to implement !

Conclusions

- hard programming job
- necessity to develop complex algorithms to reach a high level of performance.
- ► to prepare the work for the new Cell :
 - fully pipelined double precision floating point number (100 DP GFIOPS)

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

up to now no information on the floating point quality

Rumours on the next generation

- IEEE compliant
- from 8 to 32 SPE

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

over 1TFLOPS

Acknowledgment

Thanks to the CINES Center for providing IBM Cell Blade access.

