Minimal-Precision Computing
for High-Performance, Energy-Efficient, and Reliable Computations

Research Poster Session at SC19 (Denver, USA)
November 17-22, 2019

RIKEN Center for Computational Science (R-CCS) (Japan) h
QIII Daichi Mukunoki, Toshiyuki Imamura, Yiyu Tan,

RIK= N R-CCS Atsushi Koshiba, Jens Huthmann, Kentaro Sano

S

O
SORBONNE II
UNIVERSITE

Fabienne Jezéquel,

Sorbonne University, CNRS, LIP6 (France)

tef Gralllat Roman lakymchuk

Center for Computational Sciences,
University of Tsukuba (Japan)
Norihisa FUjita, TaiSUke BOkU equa”y to this research.

* All authors contributed

Introduction e

In numerical computations, the precision of floating-point
computations is a key factor to determine the
performance (speed and energy-efficiency) as well as the

accuracy of the result as well as is energy-efficient.

Minimal-precision computing
Minimal-precision computing is both reliable (aka robust) and sustainable as it ensures the requested

~

reliability (accuracy and reproducibility). However, the /High-performance A /Energy-Efficient A /Re[iab[e A
precision generally plays a contrary role for both. Performance can be improved through the Through the minimal-precision as To ensure the requested accuracy, the precision-
Therefore, the ultimate concept for maximizing both at minimal-precision as well as fast numerical | | well as energy efficient hardware tuning is processed based on numerical

the same time is the minimal-precision computation \Iibraries and accelerators (FPGA and GPU) y \acceleratlon with FPGA and GPU validation, guaranteeing also reproducibility
through precision-tuning, which adjusts the optimal

precision for each operation and data. Several studies /General N /Comprehensive N /Realistic N

have been _a"’?ac_'y (_:onducted for 't_ S_O far, th the scope of Our scheme is applicable for any floating- We propose a total system from the Our system can be

those studies is limited to the precision-tuning alone. In point computations. It contributes to low precision-tuning to the execution of the realized by combining

this study, we propose a more broad concept of the development cost and sustainability (easy tuned code, combining heterogeneous available in-house
minima-precision computing with precision-tuning, kmaintenance and system portability). ) hardware and hierarchal software stack. ) Cechnologies Y

involving both hardware and software stack. \ )
4 Red: Components developed by us N

Available Components

(1) Precision-tuning with numerical validation
based on stochastic arithmetic

(for details, see ”"A. Stochastic Arithmetic Tools” at the bottom left)
* General scheme applicable for any floating-point computations

* Rounding-errors can be estimated stochastically with a reasonable cost * Reduced-/mixed-precision with FP16/FP32/FP64 enables us to

(2) Arbitrary-precision libraries and fast
accurate numerical libraries

improve performance & energy-efficiency
* High-precision libraries and fast accurate computation methods

Ve

Tools:
« PROMISE [17] (based on a stochastic arithmetic library,
CADNA [18]), Verrou [19], etc.

.

N

Tools:

p
Issues on existing studies:

* Some existing methods (e.g., Precimonious [20], GPUMixer
[22]) are not based on any verification / validation

* No adaptation for heterogeneous systems with FPGA

* The other validation / verification methods:

but not general (analysis is needed for each numerical
method) and not easy if the code is huge and complex

estimated bounds, or a special algorithm is needed for each
. humerical method, not well suited for large codes

» Theoretical error analyses: classic approach based on theory, e ™\

> Interval computations provides guaranteed, but may be over- » Correct-rounding may be over-accurate and slow

» Accurate sum/dot: AccSum/Dot [5], Ozaki-scheme [6], etc.

* Numerical libraries: MPLAPACK [7], QPEigen [8], QPBLAS
[9], XBLAS [10], ReproBLAS [11], ExBLAS [12], OzBLAS
[13], etc.

have been developed for reliable & reproducible computation

.

.

Issues on existing studies:
 Lack of precision-tuning method

* Numerical verification or validation may be more important
) 9 than bit-level reproducibility

J

 High-precision arithmetic: binary128 (intel, gcc), QD [1],
MPFR [2], ARPREC [3], CAMPARY [4], etc. +

with

(3) Field-Programmable Gate Array (FPGA)

* FPGA enables us to implement any operations on
hardware, including arbitrary-precision operations

* HLS enables us to use FPGAs through existing
programming languages such as C/C++ and OpenCL

* FPGA can be used to perform arbitrary-precision

computations on hardware efficiently (high-performance

and energy-efficient) (

High-Level Synthesis (HLS)

Our System Minimal-precision computing system S — \

Tools:

.

» Compilers: SPGen [14], Nymble [15], etc.
» Custom floating-point operation generator: FloPoCo
[16], etc. N

MPFR 2] a

A C library for multiple

(arbitrary) precision m
floating-point

computations on CPUs

Heterogeneous System\

______________________

n
v
G)
92)
=

uoljea|adoe

o e

______________________

Nymble |

T

J

J

-

-

Issues on existing studies:

 Lack of precision-tuning method

« Adaptation for HPC as a heterogeneous platform is
still at new stage

.

/

A FloPoCo

¥

FloPoCo [16]

An open-source floating-point

)

core generator for FPGA

Tools for FPGA

Compiler &

!

supporting arbitrary-precision.

)

K ,

Precision-Optimizer
: FrpesEeosssssoosasee . / * The Precision-Optimizer
System Stack __ available J:\__lp__q_e_\_/_e_l_qp_r_r]_e_r]’f_’;w System Workflow determines the minimal floating-
p N ~ p - : point precisions, which need to
FP32, FP64, Arbitrary- MPLAPACK [7] C cod '”p}#\- VIPER achieve the desired accuracy
(FP16, FP128) | | Precision An open-source multi- code wi \ y
cisi Sé)fACse 3 LAPACK (and MPLAPACK)
precision an
Precision | - ~ —————— ey 4 )
Tuning | /(PROMISE) (“browisE pased on several high- b Performance
_with SAM | p p Precision-Optimizer Optimization
----------------- \MPFR’ QD’ and FP128. ) (Wlth PROMISE e At this Stage, if pOSS|b|e to
s : and CADNA/SAM) speedup some parts of the code
\nglm:ugﬂ N CADNA U, N SAM y ¢ with some other accurate
Stochastic Arithmetic /Fast Accurate A computation methods than MPFR,
N . Methods / Libraries C code with MPER those paﬁs are replaced with them
(optimized)  The required-accuracy must be
‘Numerical | [(others.. (| others... | ) taken into account -
Libraries LAPACK [ QPEigen OZBLAS] l * If possible, it considers to utilize
BLAS ][ MPLAPACK (MPBLAS) ExBLAS | FPGA (as heterogeneous
\ Y Performance \_ computing) Y
Optimization
Arithmetic
Libra —® MPFR / DDIQD w A part of the C code
ry : A
acceleration with MPFR, which is
/HW V N\ Yes executecion FPGA
CPU @

Code Translation
No for FPGA
(SPGen, Nymble, FloPoCo)

+

C code with MPFR + Low-level code
other fast accurate for FPGA
methods (VHDL etc.)
Compilation and Compilation and
Execution Execution
on CPU/GPU on FPGA

AN /

Our Contributions

QStochastic Arithmetic Tools

random-rounding. DSA is a general (3) The common pa

scheme applicable for any floating-

development cost compared to the

is assumed to be a reliable result

@ FPGA as an Arbitrary-Precision Computing Platform\

\ FPGA enables us to implement arbitrary-precision on hardware. High-Level Synthesis (HLS) enables us to program it
in OpenCL. However, compiling arbitrary-precision code and obtaining high performance are still challenging.
Heterogeneous computing with FPGA & CPU/GPU is also a challenge

Discrete Stochastic Arithmetic (DSA) (1) The same code is run several times with

[21] enables us to estimate rounding the random rounding mode (results are

errors (i.e., the number of correct rounded up / down with the same SPGen (RIKEN)

digits in the result) with 95% accuracy probability) . SPGen (Stream Processor Generator)
by executing the code 3 times with (2) Different results are obtained [14] is a compiler to generate HW

rt in the different results _ _
module codes in Verilog-HDL for FPGA

from input codes in Stream Processing

point operations: no special algorithms 3.14160... Description (SPD) Format. The SPD
and no code modification are needed. ﬂoating'pomyé 3.14161... uses a data-flow graph representation,
Itis a light-weight approach in terms of 0% 7 several 3.14159.. which is suitable for FPGA.

ili Executions with .
performance, usability, and random.reunding  Reliable result * It supports FP32 only, but we are going

to extend SPGen to support arbitrary-

other numerical verification /
validation methods.

precision floating-point. Currently,
there is no FPGA compiler supporting

CADNA & SAM (Sorbonne University)

 CADNA (Control of Accuracy and Debugging for Numerical
Applications) [18] is a DSA library for FP16/32/64/128

 CADNA can be used on CPUs in Fortran/C/C++ codes with
OpenMP & MPI and on GPUs with CUDA.

arbitrary-precision.

START —[i" development]. —[in development]—
C/C++ Frontend Optimization tool
romen + Clustering DFG
C/C++ codes + LLVM based SPD codes _
+ Polyhedral trans. - ’['\(A)al—ﬁ)\?\;ng Clusters
~~ J\/L START
CPU <€=| Hostcodes J Optimized
Available now ~ SPD codes
FPGA @

t

FINISH

Nymble (TU Darmstadt, RIKEN)

 Nymble [15] is another compiler project for FPGA. It
directly accepts C codes and has already started to

FPGA compiler SPGen
+ Synthesis Hardware + Wrap nodes with
_ FPGA A (logic generation) modules data-flow control logic
bitstreams + Place & route in HDL + Connect nodes w/ wires

(HW mapping)

+ Equalize length of paths
Module definition with data-flow graph l

by describing formulae of computation

Name PE; ### Define pipeline “PE”

Main In {in:: x_in, y _in};
Main Out {out::x_out, y out}; 0
EQU eql, tl1 = x in * y in; '

EQU eq2, t2 =x in / y in; _____________.—-———--'____->

EQU eqg3, x out = tl + t2;
EQU eqg3, y out = tl - t2;

x out y out
Module definition with hardware structure

. . by describing connections of modules
e SAM (Stochastic Arithmetic in Multiprecision) [23] is a DSA Cad N a . su-pport arbljcrary—preus[o.n. Name : Coze; : F#¥ Define IP core “Core” 400300 %0103
library for arbitrary-precision with MPER. It is more suited for non-linear memory access edn In (in:: %00, X01, 500, ¥0_1); i -
pattern, like with graph based data structures. SRR SRS A YR YR pe10 pell
### Description of parallel pipelines for t=0 I 3 I 3
PROMISE (Sorbonne University) HDL peit, 123 Geit, W1y = pmeea, w0t N2 i
» PROMISE (PRecision Higher precision Cygnus (University of Tsukuba) i pes0, 125, (x20, y2.0) = PE(ei0, yi01 | g
OptiMISE) [17] is a tool based l v e Cygnus is the world first HDL pe2l, 123, (x2 1, y2_1) = PE(x11, yl 1); x2 0y2 0 x21y21
on DeIta-Debugging [24] to Lower precision supercomputer system EQUiDDEd Intel Intel
automatically tune the X with both GPU (4x Tesla V100) and Xeon Gold | P! Xeon Gold :
precision of floating-point FPGA (2x Stratix 10), installed in CCS, PCI6x16  PClox16 2
variables in C/C++ codes / X/ X \ University of Tsukuba ", ", %’
* The validity of the results is T — il * Each Stratix 10 FPGA has four | Bl
checked with CADNA v 5 | external links at 100Gbps. 64 FPGAs =] P 19
* We are going to extend oo 4,_|/ v Not tested ! make 8x8 2D-Torus network for e R T -
PROMISE for arbitrary- e / communication = R0 P
precision with MPER Already tested # e This project targets such a IB HDR100 — — 1B HDR100 hotth | Lo
“as heterogeneous system with FPGA. SIETRIE SLEIE
K Precision tuning based on Delta-Debugging / k

Cygnus system / K Error-free transformation of dot-product ( x'y )

G Fast and Accurate Numerical Libraries

Arbitrary-precision arithmetic is performed using MPFR on CPUs, but the performance is very low. To
accelerate it, we are developing several numerical libraries supporting accurate computation based
on high-precision arithmetic or algorithmic approach. Some software also support GPU acceleration.

~ Conclusion
& Future Work

We proposed a new systematic approach for minimal-precision
computations. This approach is reliable, general, comprehensive, high-

Double-double format

OzBLAS (Twcu, RIKEN)

e OzBLAS [13] is an accurate & reproducible BLAS
using Ozaki scheme [18], which is an accurate
matrix multiplication method based on the
error-free transformation of dot-product

* The accuracy is tunable and depends on the

range of the inputs and the vector length
 CPU and GPU (CUDA) versions

(x’, x*) = split(x) {

p = [(logy(u™") + logy(n + 1))/2]
T= [10g2(maxl <i<n |)C |)]

o=20"
x'=1l((x + o) - 0)
x' =10 -x7)

QPEigen & QPBLAS (JAEA, RIKEN) | EXBLAS (Sorbonne University)

performant, and realistic. Although the proposed system is still in
development, it can be constructed by combining already available

. 2

t

v

(1) x and y are split by split()
(x(), x@) = split(x), 'V, y@) = split(y)

(2) then, xTy is computed as
Ty = GO 4+ )Y@+ + (x()Ty@
= (x(z))Ty(l) -+ (x(z))Ty(z) + ...

+ (x(p))Ty(l) + (x(p))Ty(z) +...+ (x(p))Ty(Q)
(xNTy0) is error-free: (xM)T)0) = f1((x®)Ty0)
thus it can be computed using standard BLAS

+... — = = == — e — e — e —

ExXBLAS scheme

- Quadruple-precision Eigen solvers (QPEigen) [8, « ExBLAS [12] is an accurate & reproducible BLAS (devgloped) ip-house technologies as well as extending th(-am.-Our
25] is based on double-double (DD) arithmetic. It based on floating-point expansions with error-free ongoing step is to demonstrate the system on a small application.
is built on a quadruple-precision BLAS (QPBLAS) transformations (EFT: twosum and twoprod) and
[9]. They support distributed environments with super-accumulator A_cknowledgement. - |
MPI: equivalent to ScalAPACK’s Figen solver and e Assures reproducibility through assuring correct- ThIS resgarch was partially supported t_)y the European Urnon s Horizon 2020 r_esearch,
) ) i i i ) innovation programme under the Marie Sktodowska-Curie grant agreement via the
PBLAS rounding: it preserves every bit of information until Robust project No. 842528, the Japan Society for the Promotion of Science (JSPS)
the final rounding to the desired format KAKENI—I_I Grqnt No. 19K20286, and Multidisciplinary Cooperative Research Program in
L] 22 = : - | * CPU (Intel TBB) and GPU (OpenCL) versions CCS, University of Tsukuba.
"' Input numbers REferenCES:
|| 11 | 52 | 52 | [1] D. H. Bailey, “QD (C++/Fortran-90 double-double and quad-double package),”

http://crd.lbl.gov/~dhbailey/mpdist

[2] G. Hanrot et al, “MPFR : GNU MPFR Library,” http://www.mpfr.org

[3] D. H. Bailey et al., “ARPREC: An Arbitrary Precision Computation Package,” Lawrence Berkeley National
Laboratory Technical Report, No. LBNL-53651, 2002.

[4] CAMPARY, http://homepages.laas.fr/mmjoldes/campary

[5] T. Ogita et al., “"Accurate Sum and Dot Product,” SIAM J. Sci. Comput., Vol. 26, pp. 1955-1988, 2005.

[6] K. Ozaki et al., “Error-free transformations of matrix multiplication by using fast routines of matrix
multiplication and its applications,” Numer. Algorithms, Vol. 59, No. 1, pp. 95-118, 2012.

[7] M. Nakata, “The MPACK (MBLAS/MLAPACK); a multiple precision arithmetic version of BLAS and LAPACK,”
Ver. 0.6.7, http://mplapack.sourceforge.net, 2010.

[8] Japan Atomic Energy Agency, “Quadruple Precision Eigenvalue Calculation Library QPEigen Ver.1.0 User’s
Manual,” https://ccse.jaea.go.jp/ja/download/qpeigen_k/gpeigen_manual_en-1.0.pdf, 2015.

[9] Japan Atomic Energy Agency, “Quadruple Precision BLAS Routines QPBLAS Ver.1.0 User’s Manual,”
https://ccse.jaea.go.jp/ja/download/qgpblas/1.0/gpblas_manual_en-1.0.pdf, 2013.

+ E_ ST T T [10] X. Li et al., “XBLAS — Extra Precise Basic Linear Algebra Subroutines,” http://www.netlib.org/xblas
Level 1 (F|Iter|ng) . "

- — -| underflow ? |+ — - — - — - —

[11] P. Ahrens et al., “ReproBLAS — Reproducible Basic Linear Algebra Sub-programs,”
https://bebop.cs.berkeley.edu/reproblas

[12] R.lakymchuk et al., “ExBLAS: Reproducible and Accurate BLAS Library,” Proc. Numerical Reproducibility at
Exascale (NRE2015) workshop at SC15, HAL ID: hal-01202396, 2015.

[13] D. Mukunoki et al., “Accurate and Reproducible BLAS Routines with Ozaki Scheme for Many-core
Architectures,” Proc. PPAM2019, 2019 (accepted).

[14] K. Sano et al., “Stream Processor Generator for HPC to Embedded Applications on FPGA-based System
Platform,” Proc. First International Workshop on FPGAs for Software Programmers (FSP 2014), pp. 43-48, 2014.
[15] J. Huthmann et al., “Hardware/software co-compilation with the Nymble system,” 2013 8th International
Workshop on Reconfigurable and Communication-Centric Systems-on-Chip (ReCoSoC), pp. 1-8, 2013.

[16] F. Dinechin and B. Pasca, “Designing custom arithmetic data paths with FloPoCo,” IEEE Design & Test of
Computers, Vol. 28, No. 4, pp. 18-27, 2011.

[17] S. Graillat et al., “Auto-tuning for floating-point precision with Discrete Stochastic Arithmetic,” Journal of
Computational Science (accepted).

) () — — - — [18] F. Jézéquel and J.-M. Chesneaux, “CADNA: a library for estimating round-off error propagation,” Computer
it is app1|IEd rzecurswely until x(pl )= Xz(q =0 Levq.-l 2 (Private SuperAccumulation) E' Physics Communications, Vol. 178, No. 12, pp. 933-955, 2008.
x=x0+x@ +. . +xF) V= y( ) +y‘ ) +. +y(q) Rt R "_T ey, S [19] F. Févotte and B. Lathuiliere, “Debugging and optimization of HPC programs in mixed precision with the

Verrou tool,” hal-02044101, 2019.
[20] C. Rubio-Gonzalez et al., “Precimonious: Tuning Assistant for Floating-Point Precision,” Proc. SC’13, 2013.
[21] J. Vignes, “Discrete Stochastic Arithmetic for Validating Results of Numerical Software,” Numer.
Algorithms, Vol. 37, No. 1-4, pp. 377-390, 2004.
[22] I. Laguna, P. C. Wood, R. Singh, S. Bagchi, “GPUMixer: Performance-Driven Floating-Point Tuning for GPU
Scientific Applications,” Proc. ISC2019, pp. 227-246, 2019.
[23] S. Graillat, et al., ”Stochastic Arithmetic in Multiprecision,” Mathematics in Computer Science, Vol. 5, No.
4, pp. 359-375, 2011.
[24] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing input,” IEEE Trans. Softw. Eng., Vol.
28, No. 2, pp. 183-200, 2002.
[25] Y. Hirota et al., “Performance of quadruple precision eigenvalue solver libraries QPEigenK and QPEigenG
on the K computer”, HPC in Asia Poster, International Supercomputing Conference (1SC'16), 2016.




