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Abstract

Several different techniques and softwares intend to improve the accu-
racy of results computed in a fixed finite precision. Here we focus on a
method to improve the accuracy of the polynomial evaluation. It is well
known that the use of the Fused Multiply and Add operation available on
some microprocessors like Intel Itanium improves slightly the accuracy
of the Horner scheme. In this paper, we compare two accurate compen-
sated Horner schemes specially designed to take advantage of the Fused
Multiply and Add. These improvements are similar to the approach ap-
plied to the summation and the dot product by Ogita, Rump and Oishi.
We also use a recent algorithm by Boldo and Muller that computes the
exact result of a Fused Multiply and Add operation as the unevaluated
sum of three floating point numbers. Such an Error-Free Transformation
is an interesting tool to introduce more accuracy efficiently. We prove
that the computed results are as accurate as if computed in twice the
working precision. The algorithms we present are fast since they only re-
quire well optimizable floating point operations, performed in the same
working precision as the given data.

Keywords: IEEE-754 floating point arithmetic, error-free transformations, extended
precision, polynomial evaluation, Horner Scheme, Fused Multiply and Add

Résumé

Différentes techniques logicielles ont pour but d’améliorer la précision
d’un résultat calculé en précision finie. Nous nous intéressons icià une
méthode pour améliorer la précision de l’évaluation polynomiale par la
méthode de Horner. L’utilisation de l’instruction “Fused Multiply and
Add” (FMA), disponible sur certains microprocesseurs comme l’Ita-
nium d’Intel, améliore légérement la précision du résultat calculé par
le schéma de Horner. Dans ce papier, nous comparons deux schémas
de Horner précis, spécialement étudiés pour tirer parti du FMA. Ces
améliorations sont très similaires aux approches proposées par Ogita,
Oishi et Rump pour la sommation et le produit scalaire. Nous utilisons
égalament un algorithme récent de Boldo et Muller qui calcule le résultat
exacte d’un opération FMA sous la forme d’une somme non-évaluée de
trois flottants. Une telle “Error-Free Transformation” (EFT) est un outil
de choix pour introduire plus de précision efficacement. Nous montrons
que les résultats caclculés ont une précision égale à celle qu’ils auraient
s’ils avaient été calculés en utilisant une précision double de la précision
courante. Nos algorithmes sont simples et n’utilisent que les opérations
classiques, avec la même précision que celle des données.

Mots-clés: arithmétique flottante IEEE-754, précision étendue, évaluation polynomiale,
schéma de Horner
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1 Introduction

One of the three main processes associated with polynomials is evaluation, the two other ones being
interpolation and root finding. The classic Horner scheme is the optimal algorithm with respect to
algebraic complexity for evaluating a polynomial with given coefficients in the monomial basis. Higham [7,
chap. 5] devotes an entire chapter to polynomials and more especially to polynomial evaluation.
The small backward error of the Horner scheme when evaluated in finite precision justifies its practical
interest in floating point arithmetic for instance. It is well known that the computed evaluation of p(x)
is the exact value at x of a polynomial obtained by making relative perturbations of at most size 2nu to
the coefficients of p, where n denotes the polynomial degree and u the finite precision of the computation
[7]. Nevertheless, the computed result can be arbitrary less accurate than the working precision u when
evaluating p(x) is ill-conditioned. This is the case for example in the neighborhood of multiple roots
where all the digits or even the order of the computed value of p(x) could be false. The classic condition
number that describes the evaluation of p(x) =

∑n

i=0
aix

i, with complex coefficients,

cond(p, x) =

∑n

i=0
|ai||x|

i

|
∑n

i=0
aixi|

=
p(x)

|p(x)|
. (1)

When the computing precision is u, evaluating p(x) is ill-conditioned when 1 � cond(p, x) ≤ u−1. If
the coefficients of p are exact numbers in precision u, we can also consider extremely ill-conditioned
evaluations, i.e., such that cond(p, x) > u−1.
A possible way to improve the accuracy of the computed evaluation is to increase the working precision.
For this purpose, numerous multiprecision libraries are available when the computing precision u is not
sufficient to guarantee a prescribed accuracy [3, 1, 12]. Fixed-length expansions such as “double-double”
or “quad-double” libraries [6] are actual and effective solutions to simulate twice or four times the IEEE-
754 double precision [8]. For example a double-double number is an unevaluated sum of two IEEE-754
double precision numbers and its associated arithmetic provides at least 106 bits of significand. These
fixed-length expansions are currently embedded in major developments such as for example within the
new extended and mixed precision BLAS [10].
In [5] we have presented a fast and accurate algorithm for the polynomial evaluation. This compensated
Horner scheme only requires an IEEE-754 like floating point arithmetic, and uses a single working
precision with rounding to the nearest. We have proven that the computed result r is of the same
accuracy as if computed in doubled working precision. This means that the accuracy of the computed
result r satisfies

|r − p(x)|

|p(x)|
≤ u + (α u)2 cond(p, x), (2)

with α a moderate constant. The second term in the right hand side of Relation (2) reflects computations
in doubled working precision, and the first one the final rounding back to the working precision. This
improvement of the Horner scheme is similar to the approach applied to the summation and the dot
product algorithms in [15, 14]. The key tool to introduce more accuracy is what Ogita, Rump and Oishi
call error-free transformations (EFT) in [14]: “it is for long known that the approximation error of a
floating point operation is itself a floating point number”. It means that for two floating point numbers
a and b, and ◦ an arithmetic operator in {+,−,×}, it exists a floating point number e, computable with
floating point operations, such that

a ◦ b = fl (a ◦ b) + e,

where fl (·) denotes floating point computation. The EFT of the sum of two floating point numbers is
computable using the well know algorithm 2Sum by Knuth [9]. 2Prod by Veltkamp and Dekker [4] is
also available for the EFT of the product.
The Fused Multiply and Add instruction (FMA) is available on some current processors, such as the
IBM Power PC or the Intel Itanium. Given a, b and c three floating point point values, this instruction
computes the expression a× b + c with only one final rounding error [11]. This is particulary interesting
in the context of polynomial evaluation, since it allows us to perform the Horner scheme faster and more
accurately.
The FMA can be used to improve algorithms based on error-free transformations in two ways. First, it
allows us to compute the EFT for the product of two foating point values in a very efficient way: algorithm
2ProdFMA presented hereafter computes this EFT in only two flops when a FMA is available [13, 11].
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On the other hand, an algorithm that computes an EFT for the FMA has been recently proposed by
Boldo and Muller [2]. In particular, they have proven that the EFT for the FMA is the sum of three
floating point numbers. Assuming an IEEE-754 like floating point arithmetic with round to the nearest
rounding mode, algorithm 3FMA computes three floating point numbers x, y and z such that

a × b + c = x + y + z with x = FMA (a, b, c) .

Both 2ProdFMA and 3FMA can be used to improve the compensated Horner scheme presented in [5].
Each of these alternatives have to be considered to find the most efficient algorithm.
In this paper, we describe the two corresponding alternatives: CompHornerFMA (based on 2ProdFMA)
and CompHorner3FMA (based on 3FMA). We prove that the proposed algorithms are as accurate as
the classic Horner scheme performed in twice the working precision, i.e., the accuracy of the computed
results satisfies Relation (2). Experimental results show that time penalty due to these improvements of
the precision are quite reasonable: our algorithms are not only fast in terms of floating point operations
(flops) count, but also in terms of execution time.
The sequel of the paper is organized as follows. We present the classic assumptions about floating
point arithmetic and our notations for error analysis in Section 2. In Section 3, we briefly review the
algorithms for the EFT of the summation and the product of two floating point numbers, and we present
the algorithm for the EFT of the FMA. We also introduce the two EFT we use for the Horner scheme.
In Section 4, we describe our compensated algorithms for the polynomial evaluation, and we prove that
the computed results are of the same accuracy as if computed in doubled working precision. Numerical
experiments for extremely ill-conditioned evaluations are presented in Section 5 to exhibit the practical
efficiency of our implementations, with respect to both accuracy and computing time.

2 Floating point arithmetic and Horner scheme

2.1 Standard model

The notations used throughout the paper are presented hereafter. Most of them come from [7, chap. 2].
As in the previous section, fl (·) denotes the result of a floating point computation, where all the operations
inside the parenthesis are performed in the working precision. We also introduce the symbols ⊕, 	, ⊗
and �, representing respectively the floating point addition, subtraction, multiplication and division
(e.g., a ⊕ b = fl (a + b)). We adopt MATLAB like notations for our algorithms.
Throughout the paper, we assume a floating point arithmetic adhering to the IEEE-754 floating point
standard [8]. As already said, we also assume that a FMA is available. We constraint all the computations
to be performed in one working precision, with the round to the nearest rounding mode. We assume that
no overflow nor underflow occur during the computations. u denotes the relative error unit, that is half
the spacing between 1 and the next representable floating point value. For IEEE-754 double precision
with round to the nearest, we have u = 2−53 ≈ 1.11 · 10−16.
When no underflow nor overflow occur, the following standard model describes the accuracy of every
considered floating point computation. For two floating point numbers a and b and for ◦ in {+,−,×, /},
the floating point evaluation fl (a ◦ b) of a ◦ b is such that

fl (a ◦ b) = (a ◦ b)(1 + ε1) = (a ◦ b)/(1 + ε2), with |ε1|, |ε2| ≤ u. (3)

Given a, b and c three floating point values, the result of FMA (a, b, c) is the exact result a×b+c rounded
to the nearest floating point value. Therefore, we also have

FMA (a, b, c) = (a × b + c)(1 + ε1) = (a × b + c)/(1 + ε2), with |ε1|, |ε2| ≤ u. (4)

To keep track of the (1 + ε) factors in our error analysis, we use the (1 + θk) and γk notations presented
in [7, chap. 3]. For any positive integer k, θk denotes a quantity bounded according to

|θk| ≤ γk =
k u

1− k u
.

When using these notations, we always implicitly assume k u < 1. In the sequel of the paper, we will
essentially use the following relations for our error analysis,

(1 + θk)(1 + θj) ≤ (1 + θk+j), k u ≤ γk, γk ≤ γk+1.
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2.2 The Horner scheme

The Horner scheme is the classic method to evaluate a polynomial p(x) =
∑n

i=0
aix

i (Algorithm 1).
For any floating point value x we denote Horner (p, x) the result of the floating point evaluation of the
polynomial p at x using the Horner scheme.

Algorithm 1. Horner scheme

function [r0] = Horner (p, x)
rn = an

for i = n − 1 : −1 : 0
ri = ri+1 ⊗ x ⊕ ai

end

A forward error bound for the result of Algorithm 1 is (see [7, p.95])

|p(x) − Horner (p, x) | ≤ γ2np(x), (5)

where p(x) =
∑n

i=0
|ai||x

i|. So, the accuracy of the computed evaluation is linked to the condition
number of the polynomial evaluation,

|p(x) − Horner (p, x) |

|p(x)|
≤ γ2n cond(p, x). (6)

Clearly, the condition number cond(p, x) can be arbitrarily large. In particular, when cond(p, x) > γ−1

2n ,
we cannot guarantee that the computed result Horner (p, x) contains any correct digit.
If a FMA instruction is available on the considered architecture, then we can change the line ri =
ri+1 ⊗ x ⊕ ai in Algorithm 1 by ri = FMA (ri+1, x, ai). This gives the following algorithm HornerFMA
(Algorithm 2).

Algorithm 2. Horner scheme with a FMA

function [r0] = HornerFMA (p, x)
rn = an

for i = n − 1 : −1 : 0
ri = FMA (ri+1, x, ai)

end

This enables to improve slightly the error bound, since now,

|p(x) − HornerFMA (p, x) |

|p(x)|
≤ γn cond(p, x). (7)

With this method, the flops count is also divided by two.

2.3 Sum of two polynomials

Here we state a preliminary lemma we use to compute corrective terms for the polynomial evaluation
in Section 4. Let p(x) =

∑n

i=0
aix

i and q(x) =
∑n

i=0
bix

i be two polynomials of degree n with floating
point coefficients, and let x be a floating point value. An approximate of (p + q)(x) can be computed
with Algorithm 3, which requires 2n + 1 flops.

Algorithm 3. Evaluation of the sum of two polynomials.

function [v0] = HornerSumFMA (p, q, x)
vn = an ⊕ bn

for i = n − 1 : −1 : 0
vi = FMA (vi+1, x, (ai ⊕ bi))

end
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Lemma 1. Let us consider the floating point evaluation of (p + q)(x) computed with
HornerSumFMA (p, q, x) (Algorithm 3). The computed result satisfies the following forward error bound,

|HornerSumFMA (p, q, x) − (p + q)(x)| ≤ γn+1(p + q)(x).

Proof. A straightforward error analysis shows that

v0 = (1+θn+1)(an+bn)xn+(1+θn+1)(an−1+bn−1)x
n−1+(1+θn)(an−2+bn−2)x

n−2+· · ·+(1+θ1)(a0+b0).

It follows that

|v0 − (p + q)(x)| ≤ γn+1

n
∑

i=0

|ai + bi||x
i| = γn+1(p + q)(x),

since the quantities θi verify |θi| ≤ γi.

3 Error free transformations

In this section, we review well known results concerning the EFT of the elementary floating point
operations +, − and ×. A recent algorithm by Boldo and Muller is described, for the EFT of the FMA
operation. We also present two different EFT for the polynomial evaluation using the Horner scheme
performed with the FMA.

3.1 EFT for the elementary operations

Let ◦ be in {+,−,×}, a and b be two floating point numbers, and x = fl (a ◦ b). The elementary rounding
error in the computation of x is

y = (a ◦ b) − fl (a ◦ b) , (8)

that is the difference between the exact result and the computed result of the operation. For ◦ in
{+,−,×}, the elementary rounding error y is a floating point value, and is computable using only floating
point operations. Thus, for ◦ in {+,−,×}, any pair of floating point inputs (a, b) can be transformed
into an output pair (x, y) of floating point numbers such that

a ◦ b = x + y and x = fl (a ◦ b) .

Let us emphasize that this relation between these four floating point values relies on real operators and
exact equality. Ogita et al. [14] call such a transformation an error-free transformation.
The EFT for the addition is given by the well known 2Sum algorithm by Knuth [9]. 2Sum (Algorithm 4)
requires 6 flops (floating point operations).

Algorithm 4. EFT of the sum of two floating point numbers.

function [x, y] = 2Sum (a, b)
x = a ⊕ b
z = x 	 a
y = (a 	 (x 	 z)) ⊕ (b 	 z)

For the EFT of the product, we could use the well know 2Prod algorithm by Dekker and Veltkamp [4].
This algorithm requires 17 flops, with no branch nor access to the mantissa. But as the FMA instruction
is available, we can use the following method instead [13, 14]. For a, b and c three floating point values,
we recall that FMA (a, b, c) is the exact result a× b+ c rounded to the nearest floating point value. Since
y = a× b−a⊗ b, then y = FMA (a, b,−(a ⊗ b)) and 2Prod can be replaced by Algorithm 5 which requires
only 2 flops.

Algorithm 5. EFT of the product of two floating point numbers with a FMA.

function [x, y] = 2ProdFMA (a, b)
x = a ⊗ b
y = FMA (a, b,−x)

5



We sum up the properties of these algorithms in the following theorem.

Theorem 2 ([14]). Given two floating point numbers a and b, let x and y the two floating point values
such that [x, y] = 2Sum(a, b) (Algorithm 4). Then,

a + b = x + y, with x = a ⊕ b, |y| ≤ u|x|and |y| ≤ u|a + b|.

Given two floating point numbers a and b, let x and y the two floating point values such that [x, y] =
2ProdFMA(a, b) (Algorithm 5). Then,

a × b = x + y, with x = a ⊗ b, |y| ≤ u|x|and |y| ≤ u|a × b|.

An algorithm that computes an EFT for the FMA has been recently given by Boldo and Muller [2]. The
EFT of a FMA operation cannot be represented as a sum of two floating point numbers, as it is the case
for the addition and for the product. Therefore, the following algorithm 3FMA produces three floating
point numbers. For efficiency reasons, 3FMA does not perform any renormalisation of the final result, as
proposed in [2].

Algorithm 6. EFT for the FMA operation.

function [x, y, z] = 3FMA (a, b, c)
x = FMA (a, b, c)
(u1, u2) = 2ProdFMA (a, b)
(α1, z) = 2Sum (b, u2)
(β1, β2) = 2Sum (u1, α1)
y = (β1 	 x) ⊕ β2

Algorithm 6 requires 17 flops. It satisfies the following properties.

Theorem 3 ([2]). Given a, b, and c three floating point values, let x, y and z be the three floating point
numbers such that [x, y, z] = 3FMA (a, b, c). Then we have

• a × b + c = x + y + z exactly, with x = FMA (a, b, c)

• |y + z| ≤ u|x| and |y + z| ≤ u|ax + b|,

• y = 0 or |y| > |z|.

We notice that the algorithms presented in this subsection require only well optimizable floating point
operations. They do not use branches, nor access to the mantissa that can be time consuming.

3.2 Two EFT for the Horner scheme

We propose here two EFT for the polynomial evaluation with the Horner scheme. Both are used in the
next section to develop two compensated algorithms.

3.2.1 One EFT with 2ProdFMA

We describe here an improvement of the EFT for the polynomial evaluation with the Horner scheme
proposed in [5]. 2ProdFMA is simply used instead of 2Prod to compute the EFT more efficiently.

Theorem 4. Let p(x) =
∑n

i=0
aix

i be a polynomial of degree n with floating point coefficients, and let
x be a floating point value. Then following Algorithm 7 computes both

• the floating point value Horner (p, x) (Algorithm 1), and

• two polynomials pπ and pσ, of degree n − 1, with floating point coefficients,

and we write
[Horner (p, x) , pπ, pσ] = EFTHornerFMA (p, x) .

Then,
p(x) = Horner (p, x) + (pπ + pσ)(x). (9)

This relation means that EFTHornerFMA is an EFT for the polynomial evaluation with the Horner
scheme. Algorithm 7 requires 8n flops.
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Algorithm 7. EFT for the Horner scheme using algorithm 2ProdFMA

function [Horner (p, x) , pπ, pσ] = EFTHornerFMA(p, x)
sn = an

for i = n − 1 : −1 : 0
[pi, πi] = 2ProdFMA (si+1, x)
[si, σi] = 2Sum (pi, ai)
Let πi be the coefficient of degree i in pπ

Let σi be the coefficient of degree i in pσ

end
Horner (p, x) = s0

of Theorem 4. We consider the for loop of Algorithm 7. For i = 0, . . . , n− 1, since 2Sum and 2ProdFMA
are EFT, it follows from Theorem 2 that si+1x = pi + πi and pi + ai = si + σi. Thus we have

si = si+1x + ai − πi − σi, for i = 0, . . . , n − 1.

Since sn = an, the whole for loop yields

s0 =

[

n
∑

i=0

aix
i

]

−

[

n−1
∑

i=0

πix
i

]

−

[

n−1
∑

i=0

σix
i

]

,

and Horner (p, x) = p(x) − (pπ + pσ)(x).

Proposition 5. Given p(x) =
∑n

i=0
aix

i a polynomial of degree n with floating point coefficients, and
x a floating point value. Let y be the floating point value, pπ and pσ be the two polynomials of degree
n − 1, with floating point coefficients, such that [y, pπ, pσ ] = EFTHornerFMA(p, x) (Algorithm 7). Then,

(pπ + pσ)(x) ≤ γ2np(x).

Proof. Applying the standard model of floating point arithmetic (3), for i = 1, . . . , n, the two computa-
tions in the loop of Algorithm 7 verify

|pn−i| = |sn−i+1 ⊗ x| ≤ (1 + u)|sn−i+1||x|
and |sn−i| = |pn−i ⊕ an−i| ≤ (1 + u)(|pn−i| + |an−i|).

A standard error analysis of Algorithm 7 based on the two previous relations yields

pn−i = (1 + θ2i−1)anxi + (1 + θ2i−2)an−1x
i−1 + (1 + θ2i−4)an−2x

i−2 + · · · + (1 + θ2)an−i+1,

and

sn−i = (1 + θ2i)anxi + (1 + θ2i−1)an−1x
i−1 + (1 + θ2i−3)an−2x

i−2 + · · · + (1 + θ1)an−i,

for i = 1, . . . , n. Each of the θj in the previous formulae is bounded according to |θj | ≤ γj . Thus, for
i = 1, . . . , n, we deduce

|pn−i||x
n−i| ≤ (1 + γ2i−1)p(x)

and |sn−i||x
n−i| ≤ (1 + γ2i)p(x).

From Theorem 2, since 2Sum and 2ProdFMA are EFT, for i = 0, · · · , n − 1, we have |πi| ≤ u|pi| and
|σi| ≤ u|si|. Therefore,

(pπ + pσ)(x) =

n−1
∑

i=0

(|πi| + |σi|)|x
i|

≤ u

n
∑

i=1

(|pn−i| + |σn−i|)|x
n−i|,

and we obtain

(pπ + pσ)(x) ≤ u

n
∑

i=1

(2 + γ2i−1 + γ2i) p(x)

≤ 2nu (1 + γ2n) p(x).

Since 2nu(1 + γ2n) = γ2n, we finally prove the result.
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Table 1: Description of the experimented routines, and of the experimental environments
environment description

(I) Intel Itanium I, 733MHz, GNU Compiler Collection 2.96
(II) Intel Itanium II, 900MHz, GNU Compiler Collection 3.3.5
(III) Intel Itanium II, 1.6GHz, GNU Compiler Collection 3.3.3

routine description

HornerFMA IEEE-754 double precision with the FMA (Algorithm 2)
CompHornerFMA Compensated algorithm (Algorithm 9 based on EFTHornerFMA)
CompHorner3FMA Compensated algorithm (Algorithm 10 based on EFTHorner3FMA)

DDHornerFMA Horner scheme performed with the double-double format + FMA

3.2.2 One EFT with 3FMA

We propose here a second EFT that uses 3FMA.

Theorem 6. Let p(x) =
∑n

i=0
aix

i be a polynomial of degree n with floating point coefficients, and let
x be a floating point value. Then following Algorithm 8 computes both

• the floating point evaluation HornerFMA (p, x) (Algorithm 2), and

• two polynomials pε and pϕ, of degree n − 1, with floating point coefficients,

and we write
[HornerFMA (p, x) , pε, pϕ] = EFTHorner3FMA (p, x) .

Then,
p(x) = HornerFMA (p, x) + (pε + pϕ)(x). (10)

This relation means that EFTHorner3FMA is an EFT for the polynomial evaluation with the Horner
scheme. Algorithm 8 requires 17n flops.

Algorithm 8. EFT for polynomial evaluation with the Horner scheme using 3FMA

function [HornerFMA (p, x) , pε, pϕ] = EFTHorner3FMA(p, x)
un = an

for i = n − 1 : −1 : 0
[ui, εi, ϕi] = 3FMA (ui+1, x, ai)
Let εi be the coefficient of degree i in pε

Let ϕi be the coefficient of degree i in pϕ

end
HornerFMA (p, x) = u0

of Theorem 6. As 3FMA is an EFT, from Theorem 3 it follows that ui+1x + ai = ui + εi + ϕi. Thus, for
i = 0, . . . , n − 1, we have ui = ui+1x + ai − εi − ϕi. Since un = an, the whole loop yields

u0 =

[

n
∑

i=0

aix
i

]

−

[

n−1
∑

i=0

εix
i

]

−

[

n−1
∑

i=0

ϕix
i

]

,

that is HornerFMA (p, x) = p(x) − (pε + pϕ)(x).

Proposition 7. Given p(x) =
∑n

i=0
aix

i a polynomial of degree n with floating point coefficients, and x
a floating point value. Let y be the floating point value, pε and pϕ be the two polynomials of degree n−1,
with floating point coefficients, such that [y, pε, pϕ] = EFTHorner3FMA(p, x) (Algorithm 8). Then,

(pε + pϕ)(x) ≤ γnp(x).

Proof. A standard error analysis of Algorithm 8 yields

un−i = (1 + θi)anxi + (1 + θi)an−1x
i−1 + (1 + θi−1)an−2x

i−2 + · · · + (1 + θ1)an−i,
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for i = 1, . . . , n. Each of the θj in the previous formula is bounded according to |θj | ≤ γj , and γi >
γi−1 > · · · > γ1. Thus, for i = 1, . . . , n, we write

|un−i||x
n−i| ≤ (1 + γi)

[

|an||x
n| + · · · + |an−i||x

n−i|
]

≤ (1 + γi)p(x). (11)

On the other hand, since [ui, εi, ϕi] = 3FMA (ui+1, x, ai), from Theorem 3 we have |εn−i + ϕn−i| ≤
u|un−i|, for i = 1, . . . , n. Thus we write

(pε + pϕ)(x) =

n−1
∑

i=0

|εi + ϕi||x
i|

=
n

∑

i=1

|εn−i + ϕn−i||x
n−i|

≤ u

n
∑

i=1

|un−i||x
n−i|.

Relation (11) yields

(pε + pϕ)(x) ≤ u

n
∑

i=1

(1 + γi)p(x)

≤ nu(1 + γn)p(x).

Since nu(1 + γn) = γn, this proves the proposition.

4 Compensating the Horner

scheme

We first present CompHornerFMA, the compensated algorithm with EFTHornerFMA. Next we describe
more briefly algorithm CompHorner3FMA that uses EFTHorner3FMA.

4.1 Algorithm CompHornerFMA

From Theorem 4 the global forward error affecting the floating point evaluation of p at x according to
the Horner scheme is

e(x) = p(x) − Horner (p, x) = (pπ + pσ)(x),

where the two polynomials pπ and pσ are exactly computed by EFTHornerFMA (Algorithm 7), together
with the approximate HornerFMA (p, x). Therefore, the key of the following algorithm is to compute an
approximate of the global error e(x) in working precision, and then to compute a corrected result

res = Horner (p, x) ⊕ fl (e(x)) .

We say that c = fl (e(x)) is a corrective term for the first result HornerFMA (p, x). The corrected result
res is expected to be more accurate than HornerFMA (p, x) as proved in the sequel of the section. We
compute the corrective term c by evaluating the polynomial whose coefficients are those of pπ + pσ

rounded to the nearest floating point value: for this we use HornerSumFMA (Algorithm 3).

Algorithm 9. Compensated Horner scheme with
EFTHornerFMA

function [res] = CompHornerFMA (p, x)
[h, pπ, pσ] = EFTHornerFMA (p, x)
c = HornerSumFMA (pπ, pσ , x)
res = h ⊕ c

9



Table 2: Measured time performances for CompHorner3FMA, CompHornerFMA, DDHornerFMA.

environment CompHorner3FMA/HornerFMA CompHornerFMA/HornerFMA DDHornerFMA/HornerFMA
min. mean max. theo. min. mean max. theo. min. mean max. theo.

(I) 3.5 5.0 5.2 19 2.4 2.9 3.0 10 4.8 7.1 7.4 20
(II) 3.2 4.8 7.5 19 2.2 2.7 2.8 10 5.1 8.2 8.4 20
(III) 4.5 5.3 5.6 19 2.2 2.7 2.8 10 5.1 8.2 8.4 20

We prove hereafter that the result of a polynomial evaluation computed with Algorithm 9 is as accurate
as if computed by the classic Horner scheme using twice the working precision and then rounded to the
working precision. CompHornerFMA requires 10n− 1 flops.

Theorem 8. Given a polynomial p =
∑n

i=0
aix

i of degree n with floating point coefficients, and x a
floating point value. We consider the result CompHornerFMA (p, x) computed by Algorithm 9. Then,

|CompHornerFMA (p, x) − p(x)| ≤ u|p(x)| + (1 + u)γnγ2np(x).

Proof. We denote δ = |CompHornerFMA (p, x) − p(x)|. From Algorithm 9, and applying the standard
model of floating point arithmetic, we have

δ = |(h ⊕ c) − p(x)|
= |(1 + ε)(h + c) − p(x)|,

with |ε| ≤ u. From Theorem 4, p(x) = h + (pπ + pσ)(x), thus

δ ≤ u|p(x)| + (1 + u)|(h + c) − p(x)|.

Since c = HornerSumFMA (pπ, pσ , x) with pπ and pσ two polynomials of degree n − 1, Lemma 1 yields

|(h + c) − p(x)| ≤ γn(pπ + pσ)(x) ≤ γn(pπ + pσ)(x).

Next, we apply Proposition 5 to obtain

|(h + c) − p(x)| ≤ γnγ2np(x),

and finally,
δ ≤ u|p(x)| + (1 + u)γnγ2np(x).

This proves the result.

It is very interesting to interpret the previous theorem with respect to the condition number of the
polynomial evaluation of p at x. Combining the error bound in Theorem 8 with the expression of the
condition number (1) for the polynomial evaluation gives the following relation,

|CompHornerFMA (p, x) − p(x)|

|p(x)|
≤ u + (1 + u)γnγ2n cond(p, x). (12)

In practical applications, we have (1+ u)γnγ2n ≈ u2. In other words, the bound for the relative error of
the computed result is essentially u2 times the condition number of the polynomial evaluation, plus the
inevitable summand u for rounding the result to the working precision. In particular, if cond(p, x) . u−1,
then the relative accuracy of the result is bounded by a constant of the order u. This means that the
compensated Horner scheme computes an evaluation accurate to the last few bits as long as the condition
number is smaller than u−1. Besides that, Relation (12) tells us that the computed result is as accurate
as if computed by the classic Horner scheme with twice the working precision, and then rounded to the
working precision.
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4.2 Algorithm CompHorner3FMA

The principle of algorithm CompHorner3FMA is exactly the same as CompHornerFMA, but instead of
EFTHornerFMA, we use EFTHorner3FMA to compute a corrected result. Following algorithm Com-
pHorner3FMA requires 19n flops.

Algorithm 10. Compensated Horner scheme using
EFTHorner3FMA

function [res] = CompHorner3FMA (p, x)
[h, pε, pϕ] = EFTHorner3FMA (p, x)
c = HornerSumFMA (pε, pϕ, x)
res = h ⊕ c

As for CompHornerFMA, we prove the following theorem.

Theorem 9. Given a polynomial p =
∑n

i=0
aix

i of degree n with floating point coefficients, and x a
floating point value. We consider the result CompHorner3FMA (p, x) computed by Algorithm 10. Then,

|CompHorner3FMA (p, x) − p(x)| ≤ u|p(x)| + (1 + u)γ2
np(x).

Proof. Let δ denotes |CompHorner3FMA (p, x)−p(x)|. From Algorithm 10 and Theorem 6, we have again

δ ≤ u|p(x)| + (1 + u)|(h + c) − p(x)|.

Since c = HornerSumFMA (pε, pϕ, x) with pε and pϕ two polynomials of degree n − 1, Lemma 1 yields

|(h + c) − p(x)| ≤ γn(pε + pϕ)(x).

Next, we apply Proposition 7 to obtain

|(h + c) − p(x)| ≤ γ2
np(x),

and finally
δ ≤ u|p(x)| + (1 + u)γ2

np(x).

This proves the result.

Again, combining the error bound in Theorem 8 with the expression of the condition number (1) for the
polynomial evaluation gives

|CompHorner3FMA (p, x) − p(x)|

|p(x)|
≤ u + (1 + u)γ2

n cond(p, x). (13)

Since (1 + u)γ2
n ≈ u2, the previous remarks about error bound (12) apply.While CompHorner3FMA

needs almost two times more flops than CompHornerFMA, we notice that the error bounds (12) and (13)
are similar. Actually, our experimental results confirm that CompHornerFMA is more efficient than
CompHorner3FMA in terms of computing time while being similarly accurate.

5 Experimental results

All our experiments are performed using IEEE-754 double precision. Since the double-doubles [6, 10]
are usually considered as the most efficient portable library to double the IEEE-754 double precision,
we consider it as a reference in the following comparisons. For our purpose, it suffices to know that a
double-double number a is the pair (ah, al) of IEEE-754 floating point numbers with a = ah + al and
|al| ≤ u|ah|. This property implies a renormalisation step after each arithmetic operation. We denote
by DDHornerFMA our implementation of the Horner scheme with the double-double format, derived
from the implementation proposed by the authors of [10]. We notice that the double-double arithmetic
naturally benefits from the availability of a FMA instruction: DDHornerFMA uses 2ProdFMA in the inner
loop of the Horner scheme. DDHornerFMA requires 20n flops. Using the double-double library proposed
in [6], we can slightly reduce this flops count, but it has almost no impact on the measured computing
times.
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Figure 1: Accuracy of the three experimented routines.

5.1 Accuracy tests

We test the expanded form of the polynomial pn(x) = (x − 1)n. The argument x is chosen near to the
unique real root 1 of pn. The condition number is

cond(pn, x) =
pn(x)

|pn(x)|
=

∣

∣

∣

∣

1 + |x|

1− x

∣

∣

∣

∣

n

,

and cond(pn, x) grows exponentially with respect to n. In the experiments reported on Figure 1, we
have chosen x = fl (1.333) to provide a floating point value with many non-zero bits in its mantissa. The
value of cond(pn, x) varies from 102 to 1040, that corresponds to degrees range n = 3, . . . , 42. These huge
condition numbers have a sense since the coefficients of p and the value x are floating point numbers.
We experiment both HornerFMA, CompHorner3FMA, CompHornerFMA and DDHornerFMA (see Table 1).
For each polynomial pn, the exact value pn(x) is approximated with a high accuracy thanks to the MPFR
library [12]. Figure 1 presents the relative accuracy |y − pn(x)|/|pn(x)| of the evaluation y computed by
the three algorithms. We set to the value one relative errors greater than one, which means that almost
no useful information is available in the computed result. We also display the a priori error estimates
(7), (13) and (12). We observe that our compensated algorithms exhibits the expected behavior. The
full precision solution is computed as long as the condition number is smaller than u−1 ≈ 1016. Then,
for condition numbers between u−1 and u−2 ≈ 1032, the relative error degrades to no accuracy at all,
as the computing precision is u.

5.2 Time performances

All the algorithms are implemented in C-code. We use the same programming techniques for the imple-
mentations of three routines CompHornerFMA, CompHorner3FMA and DDHornerFMA. The experimental
environments are listed in Table 1. Our measures are performed with polynomials whose degrees vary
from 5 to 450 by steps of 5. We choose the coefficients and the arguments at random. For each degree,
the routines are tested on the same polynomial with the same argument. Table 2 displays the time
ratios of the compared algorithms over HornerFMA. We have reported the minimum, the mean and the
maximum of these ratios. The theoretical ratios are also reported, resulting from the number of flops
involved by each algorithm.
We notice that the measured slowdown factors introduced are always significantly smaller than theoret-
ically expected. Our compensated algorithms CompHorner3FMA and CompHornerFMA are both signifi-
cantly faster than DDHorner. Algorithm CompHornerFMA seems to be the most efficient alternative to
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improve the accuracy of the Horner scheme. It runs about 1.8 times faster than CompHorner3FMA and
more than two times faster than DDHorner that uses the double-double library.

6 Concluding remarks

We have presented two accurate algorithms for the evaluation of univariate polynomials in floating point
arithmetic. The only assumptions we made are that the floating point arithmetic is conformed to the
IEEE-754 standard, and that a Fused Multiply-Add instruction is available.We have proven that the
accuracy of the results computed by our compensated algorithms is similar to the one given by the
Horner scheme performed in doubled working precision.
Our algorithms use only basic floating point operations, and only the same precision as the given data.
They use no branch nor access to the mantissa that can be time consuming. As a result, they are fast
not only in terms of flops count, but also in terms of computing time: the slowdown factors due to these
improvements of the accuracy are much smaller than theoretically expected.
According to our experiments, algorithm CompHornerFMA seems to be the most efficient alternative to
improve the accuracy of the Horner scheme: it runs only three times slower than the classic Horner
scheme performed with a FMA, and more than two times faster than other existing alternatives that
guarantee the same output accuracy.
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