
Équipe de Recherche DALI

Laboratoire LP2A, EA 3679
Université de Perpignan Via Domitia

Compensated Horner Scheme

S. Graillat, Ph. Langlois, N. Louvet

stef.graillat@univ-perp.fr
philippe.langlois@univ-perp.fr
nicolas.louvet@univ-perp.fr

30 août 2005

Research Report No RR2005-04

Université de Perpignan Via Domitia
52 avenue Paul Alduy, 66860 Perpignan cedex, France

Téléphone : +33(0)4.68.66.20.64
Télécopieur : +33(0)4.68.66.22.87

Adresse électronique : dali@univ-perp.fr

Compensated Horner Scheme

S. Graillat, Ph. Langlois, N. Louvet

stef.graillat@univ-perp.fr

philippe.langlois@univ-perp.fr

nicolas.louvet@univ-perp.fr

30 août 2005

Abstract

We present a compensated Horner scheme, that is an accurate and fast
algorithm to evaluate univariate polynomials in floating point arith-
metic. The accuracy of the computed result is similar to the one given
by the Horner scheme computed in twice the working precision. This
compensated Horner scheme runs at least as fast as existing implemen-
tations producing the same output accuracy. We also propose to com-
pute in pure floating point arithmetic a valid error estimate that bound
the actual accuracy of the compensated evaluation. Numerical experi-
ments involving ill-conditioned polynomials illustrate these results. All
algorithms are performed at a given working precision and are portable
assuming the floating point arithmetic satisfies the IEEE-754 standard.

Keywords: IEEE-754 floating point arithmetic, error-free transformations, extended
precision, polynomial evaluation, compensated Horner scheme, running error bound

Résumé

Nous présentons un schéma de Horner compensé, c’est-à-dire un
algorithme précis et rapide pour évaluer des polynômes univariés
en arithmétique flottante. La précision du résultat ainsi obtenu est
équivalente à celle fournie par le schéma de Horner exécuté en précision
double de la précision courante. Ce schéma de Horner compensé
s’exécute au moins aussi rapidement que les implémentations existantes
qui permettent la même précision du résultat. Nous proposons aussi de
calculer en arithmétique flottante une borne garantie de l’erreur effec-
tive de l’évaluation compensée. Des expérimentations numériques sur
des polynômes trés mal conditionnés illustrent ces résultats. Tous ces
algorithmes sont exécutés à une précision courante donnée et sont por-
tables dès lors que les hypothèses de l’arithmétique flottante IEEE-754
sont satisfaites.

Mots-clés: arithmétique flottante IEEE-754, précision étendue, évaluation polynomiale,
schéma de Horner compensé, borne d’erreur dynamique

AMS subject classifications: 65G, 65Y99

Contents

1 Introduction 2
1.1 Numerical Polynomial Evaluation . 2
1.2 The compensated Horner scheme improves the classic rule of thumb 3
1.3 Using error-free transformations to provide more accuracy 4
1.4 Outline of the paper . 5

2 Standard model of floating point arithmetic and the Horner scheme 5
2.1 Standard model . 5
2.2 The Horner scheme . 6

3 Error-free transformations (EFT) 7
3.1 EFT for the elementary operations . 7
3.2 An EFT for the Horner scheme . 9

4 Compensated Horner scheme 12
4.1 Evaluation of the sum of two polynomials . 12
4.2 The compensated Horner scheme and its error bound 13
4.3 A dynamic error bound . 15

5 Experimental results 17
5.1 DDHorner is the Horner scheme with internal double-double computation 17
5.2 Accuracy of the compensated Horner scheme . 18
5.3 Accuracy of the dynamic error bound . 18
5.4 Time performances . 20

6 Concluding remarks 21

A Proofs in case of underflow 23

1

1 Introduction

Polynomials appear in many areas of scientific computing and engineering. Computer Aided
Design and Modeling, Mechanical Systems Design, Signal Processing and Filter Design, Civil
Engineering, Robotics, Simulation are for instance quoted in [6, 5]. Developing fast algorithms
and reliable implementations of polynomial solvers are of challenging interest. Numerical
approaches include iterative methods like Newton’s method or homotopy continuation methods.
These iterative methods needs to evaluate polynomials and their derivatives. Higham [10,
chap. 5] devotes an entire chapter to polynomials and more especially to polynomial evaluation.

In this paper we present an accurate and fast algorithm to evaluate univariate polynomials in
floating point arithmetic. By accurate, we mean that the accuracy of the computed result is
similar to the one given by the Horner scheme computed in twice the working precision. By
fast, we mean that the algorithm run at least as fast as existing counterparts that produce the
same output accuracy. We also present how to compute in pure floating point arithmetic a
valid error error bound to check the actual accuracy of the proposed polynomial evaluation.
These algorithms are performed at a given working precision (no higher precision is necessary)
and are portable assuming the floating point arithmetic satisfies the IEEE-754 standard.

Since we improve the Horner schema similarly as the well known Kahan’s compensated summa-
tion method [12], the proposed evaluation algorithm is presented as a compensated Horner
scheme. The recent accurate sum and dot product algorithms by Ogita-Rump-Oishi [20]
strongly motivates this paper (the proofs of presented error bounds use techniques introduced
in this latter reference).

1.1 Numerical Polynomial Evaluation

The classic Horner scheme is the optimal algorithm with respect to algebraic complexity for
evaluating a polynomial p with given coefficients in the monomial basis. Horner scheme is
often provided by numerical and scientific libraries, e.g. SPOLY and DPOLY in IBM ESSL,
gsl poly eval in GNU GSL, . . . The small backward error the Horner scheme introduce when
computing in finite precision justifies its practical interest in floating point arithmetic for
instance. It is well known that the computed evaluation of p(x) is the exact value at x of a
polynomial obtained by making relative perturbations of at most size 2nu to the coefficients
of p where n denotes the polynomial degree and u the finite precision of the computation [10].

The relative accuracy of the computed evaluation p̂(x) with the Horner scheme verifies the
classic rule of thumb that links the forward error to the condition number and the backward
error. The classic condition number of the evaluation of p(x) =

∑n
i=0 aix

i at a given data x is

cond(p, x) =

∑n
i=0 |ai||x|

i

|
∑n

i=0 aixi|
=

p̃(x)

|p(x)|
. (1)

The classic rule of thumb tells us that the accuracy of computed p̂(x) is bounded as

|p(x) − p̂(x)|

|p(x)|
≤ α(n)u × cond(p, x),

where α(n) is a (reasonable) linear function of the polynomial degree n (here α(n) ≈ 2n). Of
course, the computed result p̂(x) can be arbitrary less accurate than the working precision u
when evaluating p(x) is ill-conditioned. This is the case for example in the neighborhood of

2

multiple roots where all the digits or even the order of the computed value of p(x) could be false.

How can we accurately perform an ill-conditioned polynomial evaluation? Before describing
the main existing tools, let us distinguish two levels of (polynomial) ill-condition. When the
computing precision is u, evaluating p(x) is ill-conditioned when 1 ¿ cond(p, x) ≤ 1/u. There
is no sense to consider (arbitrary) more ill-conditioned polynomials, i.e., polynomials such
that cond(p, x) > 1/u, except for example when the coefficients are exact in precision u.
In the following, we consider and define as ill-conditioned polynomials both ill-conditioned
polynomials and arbitrary ill-conditioned polynomials assuming the latter satisfy this kind of
necessary condition for significance.

Numerous multiprecision libraries are available when the computing precision u is not
sufficient to guarantee a prescribed accuracy. Fixed-length expansions such as “double-double”
or “quad-double” libraries [9] are actual and effective solutions to simulate twice or four times
the IEEE-754 double precision [11]. For example a quad-double number is an unevaluated
sum of four IEEE-754 double precision numbers and its associated arithmetic provides at
least 212 bits of significand. These fixed-length expansions are currently embedded in major
developments such for example within the new extended and mixed precision BLAS [16]. In
this context the natural way to improve the accuracy of a given subroutine is to perform its
internal computation within the extended precision these libraries provide and to return a
result rounded to the (external) working precision. A more detailed discussion and references
about existing implementations of expansions are for example available in [20].

1.2 The compensated Horner scheme improves the classic rule of thumb for
the computed solution accuracy

We focus on the Horner scheme and constraint all computations to be performed in a fixed
precision, for instance the IEEE-754 double precision. In this paper and in its companion paper
[7] we present an alternative strategy to the fixed-length expansion libraries. As mentioned
before, we propose accurate and fast algorithms to evaluate univariate polynomials in floating
point arithmetic. By accurate, we mean that the accuracy of the computed result is similar
to the one given by the Horner scheme computed in higher precision, for example using
fixed-length expansions. This higher precision corresponds to twice the working precision for
the proposed compensated Horner scheme. In the companion paper [7], we generalize this
compensated Horner scheme such that this higher precision is k-fold the working precision. Of
course the accuracy of the result still depends on the condition number cond(p, x). By fast, we
mean that these algorithms run at least as fast as the fixed-length expansion challenger that
produce the same output accuracy. Here the corresponding fixed-length expansions are the
double-double format [1].

The proposed compensated Horner scheme requires no branch nor access to the mantissa, and
uses only one working precision. We prove that the computed result res by the compensated
Horner scheme is as accurate as if computed in doubled working precision. This means that the
accuracy of r now satisfies a “compensated rule of thumb” being of the following form,

|res − p(x)|

|p(x)|
≤ u + β(n)u2 × cond(p, x). (2)

Again β(n) is a (reasonable) linear function of the polynomial degree n and u is the precision
of the computation. Such a result is given in next Corollary 6.

3

The second summand in the right hand side of Relation (2) reflects the accuracy of a backward
stable computation performed in doubled working precision u2. The first one comes from the
final rounding back to the working precision u and means that the accuracy improvement the
second summand guarantee can not of course yield more accuracy than the available precision.
Hence we can first expect an evaluation as accurate as possible for polynomials such that
cond(p, x) ≤ 1/(β(n)u2), and then for more ill-conditioned polynomials, an accuracy that
satisfies the classic rule of thumb with doubled working precision u2. Next Figure 1 illustrates
such a behavior.

We also provide a dynamic bound for the accuracy of the compensated Horner scheme. This
bound is proved to be valid and computable in pure floating point arithmetic. Together with
the compensated evaluation, this bound is useful to replace the classic couple Horner scheme
and its associated running error bound (see [10, chap. 5] for instance) when more accuracy
is necessary. This is the case for example when implementing good stopping criteria for the
Newton’s method in the neighborhood of ill-conditioned roots.

1.3 Using error-free transformations to provide more accuracy

These compensated algorithms reduce the effect in the Horner scheme of the rounding errors
generated by the finite precision arithmetic. The key tool to introduce more accuracy is what
Ogita, Rump and Oishi call error-free transformations in [20]: “it is for long known that the
approximation error of a floating point operation is itself a floating point number”. Let fl(x)
denotes the rounding to the working precision evaluation of the real value x. It means that
for two floating point numbers a and b, and ◦ an arithmetic operator in {+,−,×}, it exists a
floating point number e, computable with floating point operations, such that

a ◦ b = fl(a ◦ b) + e.

We later detail the corresponding algorithms for the summation and the product from
Knuth [13] and Dekker [3]. Other error-free transformations exist for the division and the
Fused-Multiply-and-Add FMA operator [2] – FMA (a, b, c) = fl(a × b + c).

The accuracy improvement is actually a correction of the global rounding error p(x) − p̂(x),
where p̂(x) is the result of the Horner scheme performed in working precision. Such a correction
has also been experimented by Pichat for summation [21] and mentioned for the Horner scheme
in [22].

Using Tienari [23] and Linnainmaa [17, 18] results about linearization error, Langlois developed
a method and a software that computes the first order corrected version of any algorithm
[14, 15]. He also proved that the final error of the Horner scheme is linear with respect to
the generated errors and so could be corrected computing (exactly) the first order term of
p(x) − p̂(x). The generic correction in [14] relies on error-free transformations and algorithmic
differentiation. It can be used as a tool to identify algorithms that could be improved by this
first order correction. An efficient implementation of such a corrected algorithm is derived
in-lining the computation of the correcting term in the original algorithm. Some algorithms we
present hereafter (and in [7]) have been designed like this.

We have mentioned that our algorithms are at least as fast as the fixed-length expansion coun-
terparts that produce the same output accuracy. The practical efficiency of algorithms derived
from error-free transformations is emphasized in [20] and motivates this article. From a theoret-
ical point of view, the computation of every step of the compensated algorithm is similar to the

4

corresponding “double-double” computation but without performing the renormalization algo-
rithm required by the non-overlapping “double-double” representation. In term of measured
computing time, our experiments show that the compensated Horner scheme is therefore more
than twice faster than the Horner scheme with “double-double”. See Table 3 at the end of this
paper for such ratios.

1.4 Outline of the paper

The paper is organized as follows. We introduce the classic assumptions and notations for
floating point arithmetic and error analysis in Section 2. In Section 3, we briefly review the
algorithms for the error-free transformations of the summation and the product of two float-
ing point numbers, and we introduce the error-free transformation of the Horner scheme. In
Section 4, we describe our compensated algorithm for the polynomial evaluation, and we prove
that the computed result is of the same accuracy as if computed in doubled working precision.
We also provide a valid and computable error bound for the compensated Horner scheme. Nu-
merical experiments for extremely ill-conditioned evaluations are presented in Section 5. We
compare the compensated algorithm, in term of computing time, to other algorithms with the
same output accuracy.
At the first reading, one who know Ogita-Rump-Oishi’s paper [20] can jump to the EFT of the
polynomial evaluation (Theorem 2) and then to the compensated Horner scheme (Algorithm 9),
its accuracy (Theorem 5) and the associated dynamic bound (Theorem 8). As in [20] we provide
extended results that take care of the possible underflow; proofs for this case are gather in
Annex A.

2 Standard model of floating point arithmetic and the Horner
scheme

2.1 Standard model

The notations used throughout the paper are presented hereafter. Most of them come from [10,
chap. 2]. As in the previous section, fl (·) denotes the result of a floating point computation,
where all the operations inside the parenthesis are performed in the working precision. We also
introduce the symbols ⊕, ª, ⊗ and ®, representing respectively the floating point addition,
subtraction, multiplication and division (e.g., a ⊕ b = fl (a + b)). We adopt MATLAB like
notations for algorithms.

The presented results are valid for any IEEE-754 like floating point arithmetic [11], with round
to the nearest. We constraint all the computations to be performed in one working precision. We
assume that no overflow occur during the computations, but we take into account the gradual
underflow. Let us denote F the set of the floating point numbers, and let

• u be the relative error unit,

• λ be the smallest positive normalized floating point number,

• v = λu be the underflow unit which is half the spacing between two consecutive subnor-
mal numbers.

For IEEE-754 double precision with round to the nearest and gradual underflow, we have
u = 2−53 ≈ 1.11 · 10−16, λ = 2−1022 ≈ 2.22 · 10−308, and v = 2−1075 ≈ 2.47 · 10−324.

5

When no underflow occur, the following standard model describes the accuracy of every consid-
ered floating point computation. For a and b in F (or in F

∗ if necessary) and for ◦ in {+,−,×, /},
the floating point evaluation fl(a ◦ b) of a ◦ b is such that

fl(a ◦ b) = (a ◦ b)(1 + ε1) = (a ◦ b)/(1 + ε2), (3)

with |ε1|, |ε2| ≤ u. Addition and subtraction are exact in case of underflow [8]. To deal with
possible gradual underflow, the standard model is extended by replacing Relation (3) by the
following one for multiplication and division [4]. For ◦ in {×, /}, the floating point evaluation
of a ◦ b is such that

fl(a ◦ b) = (a ◦ b)(1 + ε1) + η1 = (a ◦ b)/(1 + ε2) + η2, (4)

with |ε1|, |ε2| ≤ u, |η1|, |η2| ≤ v, and ε1η1 = ε2η2 = 0 (at most one of ε1 and η1 or ε2 and η2 is
nonzero).

Remark 1. Let a and b be two nonnegative floating point numbers, and let ◦ be in {+,×}.
From the standard model (3), it follows that

0 ≤ a ◦ b ≤ (1 + u) fl (a ◦ b) and 0 ≤ a ◦ b ≤ (1 − u)−1 fl (a ◦ b).

To deal with gradual underflow in the case of the product, Relation (4) yields

0 ≤ a × b ≤ (1 + u) fl (a × b) + v and 0 ≤ a × b ≤ (1 − u)−1 fl (a × b) + v.

To keep track of the (1 + ε) factors in next error analysis, we use the relative error counters
introduced by Stewart. For a positive integer n, 〈n〉 denotes the following product,

〈n〉 =
n∏

i=1

(1 + εi)
ρi , with ρi = ±1 and |εi| ≤ u (i = 1, · · · , n).

The relative error counters verify 〈j〉〈k〉 = 〈j〉/〈k〉 = 〈j + k〉. The quantities γn are defined as
usual to be

γn =
nu

1 − nu
.

When using γn, we always implicitly assume nu < 1. When 〈n〉 denotes any error counter,
there exists a quantity θn such that

〈n〉 = 1 + θn and |θn| ≤ γn.

Remark 2. Next relations (about γn) will be useful in the sequel. We verify the following
inequalities for any positive integer n,

nu ≤ γn, γn ≤ γn+1, (1 + u)γn ≤ γn+1, 2nu(1 + γ2n−2) ≤ γ2n.

2.2 The Horner scheme

The Horner scheme is the classic method for evaluating a polynomial p(x) =
∑n

i=0 aix
i (Algo-

rithm 1). For any floating point value x we denote Horner (p, x) the result of the floating point
evaluation of the polynomial p at x using the Horner scheme.

Algorithm 1. Horner scheme

6

function [r0] = Horner (p, x)
rn = an

for i = n − 1 : −1 : 0
ri = ri+1 ⊗ x ⊕ ai

end

A forward error bound for the result of Algorithm 1 is (see [10, p.95])

|p(x) − Horner (p, x) | ≤ γ2n p̃(x), (5)

where

p̃(x) =
n∑

i=0

|ai||x
i|.

So, the accuracy of the computed evaluation is linked to the condition number of the polynomial
evaluation (1) satisfying the previously mentioned rule of thumb,

|p(x) − Horner (p, x) |

|p(x)|
≤ γ2n cond(p, x). (6)

Clearly, the condition number cond(p, x) can be arbitrarily large. In particular, when
cond(p, x) > 1/γ2n, we cannot guarantee that the computed result Horner (p, x) contains any
correct digit.
If a FMA instruction is present on the architecture, then we can change the line ri = ri+1⊗x⊕ai

in Algorithm 1 by ri = FMA (ri+1, x, ai). This enable to improve the previous error bound since
we have now,

|p(x) − Horner (p, x) |

|p(x)|
≤ γn cond(p, x).

3 Error-free transformations (EFT)

In this section, we review well known results concerning the error-free transformations of the
elementary floating point operations +, − and ×. We also introduce a new EFT for the
polynomial evaluation using the Horner scheme.

3.1 EFT for the elementary operations

Let ◦ be in {+,−,×}, a and b be two floating point numbers, and x̂ = fl(a◦ b). The elementary
rounding error in the computation of x̂ is

y = (a ◦ b) − fl(a ◦ b), (7)

that is the difference between the exact result and the computed result of the operation. In
particular, for ◦ in {+,−,×}, the elementary rounding error y both belongs to F, and is com-
putable using only the operations defined within F. Thus, for ◦ in {+,−,×}, any pair of inputs
(a, b) in F

2 can be transformed into an output pair (x̂, y) in F
2 such that

a ◦ b = x̂ + y and x̂ = fl(a ◦ b).

Let us emphasize that this relation between these four floating point values relies on real
operators and exact equality (i.e., not on approximate floating point counterparts). Ogita et
al. [20] call such a transformation an error-free transformation (EFT).

7

The EFT for the addition (◦ = +) is given by the well known TwoSum algorithm by Knuth [13].
TwoSum (Algorithm 2) requires 6 flops (floating point operations).

Algorithm 2. EFT of the sum of two floating point numbers.

function [x, y] = TwoSum (a, b)
x = a ⊕ b
z = x ª a
y = (a ª (x ª z)) ⊕ (b ª z)

If the two floating point inputs a and b are such |a| ≤ |b|, then we can use the following
algorithm FastTwoSum for the EFT of the addition. It satisfies the same properties as TwoSum
but requires only 3 flops. Nevertheless, if we count absolute value and comparison as one flop,
this algorithm requires 6 flops. In practice, FastTwoSum is up to 50 % slower than TwoSum du
to the presence of branching.

Algorithm 3. EFT of the sum of two floating point numbers when |a| ≤ |b|.

function [x, y] = FastTwoSum (a, b)
x = a ⊕ b
y = b ª (x ª a)

For the EFT of the product, we first need to split the input arguments into two parts. It is
done using Algorithm 4 by Dekker [3]. If q is the number of bits of the mantissa, let r = dq/2e.
Algorithm 4 splits a floating point number a into two parts x and y, both having at most r − 1
nonzero bits, such that a = x + y. For example, with the IEEE-754 double precision, q = 53,
r = 27, therefore the output numbers have at most r − 1 = 26 bits. The trick is that one bit
sign is used for the splitting.

Algorithm 4. Splitting of a floating point number into two parts.

function [x, y] = Split (a)
z = a ⊗ (2r + 1)
x = z ª (z ª a)
y = a ª x

Then, Algorithm 5 by Veltkamp (see [3]) can be used for the EFT of the product. This
algorithm is commonly called TwoProduct and requires 17 flops.

Algorithm 5. EFT of the product of two floating point numbers.

function [x, y] = TwoProduct (a, b)
x = a ⊗ b
[ah, al] = Split (a)
[bh, bl] = Split (b)
y = al ⊗ bl ª (((x ª ah ⊗ bh) ª al ⊗ bh) ª ah ⊗ bl)

8

The next theorem exhibits the main properties of TwoSum and TwoProd, even in presence of
underflow.

Theorem 1 ([20]). Let a, b in F and x, y ∈ F such that [x, y] = TwoSum(a, b) (Algorithm 2).
Then, also in the presence of underflow,

a + b = x + y, x = a ⊕ b, |y| ≤ u|x|, |y| ≤ u|a + b|.

Algorithm TwoSum requires 6 flops.
Let a, b ∈ F and x, y ∈ F such that [x, y] = TwoProduct(a, b) (Algorithm 5). Then, if no
underflow occurs,

a × b = x + y, x = a ⊗ b, |y| ≤ u|x|, |y| ≤ u|a × b|,

and, in the presence of underflow,

a × b = x + y + 5η, x = a ⊗ b, |y| ≤ u|x| + 5v, |y| ≤ u|a × b| + 5v with |η| ≤ v.

Algorithm TwoProduct requires 17 flops.

TwoProduct can be rewritten in a very straightforward way for processors that provide a
Fused-Multiply-and-Add operator (FMA), such as Intel Itanium or IBM PowerPC. For a, b and
c in F, FMA (a, b, c) is the exact result a × b + c rounded to the nearest floating point value.
Thus y = a × b − a ⊗ b = FMA (a, b,−(a ⊗ b)) and TwoProduct can be replaced by following
Algorithm 6 requiring only 2 flops.

Algorithm 6. EFT of the sum of two floating point numbers with a FMA.

function [x, y] = TwoProductFMA (a, b)
x = a ⊗ b
y = FMA (a, b,−x)

We notice that algorithms TwoSum, TwoProduct and TwoProductFMA require only well
optimizable floating point operations. They do not use branches, nor access to the mantissa
that can be time consuming.

In the sequel of the paper, we assume that no FMA operation is used except in algorithm
TwoProductFMA. Our goal is to design algorithms whose proofs are valid on any IEEE-754
compliant computer. All the flop counts reported in the sequel of the paper have been done
under this assumption.

3.2 An EFT for the Horner scheme

We now propose an EFT for the polynomial evaluation with the Horner scheme.

Theorem 2. Let p(x) =
∑n

i=0 aix
i be a polynomial of degree n with floating point coefficients,

and let x be a floating point value. Then Algorithm 7 computes both

i) the floating point evaluation Horner (p, x) and

ii) two polynomials pπ and pσ of degree n − 1 with floating point coefficients,

9

and we write
[Horner (p, x) , pπ, pσ] = EFTHorner (p, x) .

Then, if no underflow occurs,

p(x) = Horner (p, x) + (pπ + pσ)(x), (8)

and, in the presence of underflow,

p(x) = Horner (p, x) + (pπ + pσ)(x) + 5
n−1∑

i=0

ηix
i, with |ηi| ≤ v. (9)

Algorithm 7 requires 23n flops. If TwoProductFMA is used instead of TwoProduct, then the
flops count drops to 8n.

Algorithm 7. EFT for the Horner scheme

function [Horner (p, x) , pπ, pσ] = EFTHorner(p, x)
sn = an

for i = n − 1 : −1 : 0
[pi, πi] = TwoProduct(si+1, x)
[si, σi] = TwoSum(pi, ai)
Let πi be the coefficient of degree i in pπ

Let σi be the coefficient of degree i in pσ

end
Horner (p, x) = s0

If no underflow occurs during the computation, Relation (8) means that EFTHorner is an EFT
for the polynomial evaluation with the Horner scheme. In the presence of underflow, we do not
have an EFT anymore, but we still write [Horner (p, x) , pπ, pσ] = EFTHorner (p, x).

Proof of Theorem 2 (without underflow). Since TwoProduct and TwoSum are EFT from Theo-
rem 1 it follows that si+1x = pi + πi and pi + ai = si + σi. Thus we have

si = si+1x + ai − πi − σi, for i = 0, . . . , n − 1.

Since sn = an, the whole for loop yields

s0 =

[
n∑

i=0

aix
i

]
−

[
n−1∑

i=0

πix
i

]
−

[
n−1∑

i=0

σix
i

]
,

and Horner (p, x) = p(x) − (pπ + pσ)(x).

The following proposition is useful to prove the accuracy bound on compensated Horner scheme
in next section. This result proves that the conditioning of the (polynomial) error evaluation is
better by a factor of the precision uthan the conditioning of the initial polynomial evaluation.
This property justifies the interest to apply recursively such compensated accuracy improvement
in [7].

Proposition 3. Given p(x) =
∑n

i=0 aix
i a polynomial of degree n with floating point coeffi-

cients, and x a floating point value. Let y be the floating point value, pπ and pσ be the two poly-
nomials of degree n − 1, with floating point coefficients, such that [y, pπ, pσ] = EFTHorner(p, x)
(Algorithm 7). Then, if no underflow occurs,

(p̃π + p̃σ)(x) ≤ γ2n p̃(x),

10

and, in the presence of underflow,

(p̃π + p̃σ)(x) ≤ γ2n p̃(x) + (5 + γ2n)v
n−1∑

i=0

|xi|.

Proof (without underflow). Applying the standard model of floating point arithmetic (3), for
i = 1, . . . , n, the two computations in the loop of Algorithm 7 verify

|pn−i| = |sn−i+1⊗x| ≤ (1+ u)|sn−i+1||x| and |sn−i| = |pn−i⊕an−i| ≤ (1+ u)(|pn−i|+|an−i|).

Let us prove by induction that, for i = 1, . . . , n,

|pn−i| ≤ (1 + γ2i−1)
i∑

j=1

|an−i+j ||x
j |, and (10)

|sn−i| ≤ (1 + γ2i)
i∑

j=0

|an−i+j ||x
j |. (11)

For i = 1, since sn = an we have |pn−1| ≤ (1 + u)|an||x| ≤ (1 + γ1)|an||x| and (10) is satisfied.
On the other hand, |sn−1| ≤ (1 + u) ((1 + γ1)|an||x| + |an−1|) ≤ (1 + γ2) (|an||x| + |an−1|), and
(11) is also satisfied. Now we suppose that (10) and (11) are true for some integer i such that
1 ≤ i < n. Then we have,

|pn−(i+1)| ≤ (1 + u)|sn−i||x|.

From the induction hypothesis, we derive,

|pn−(i+1)| ≤ (1 + u)(1 + γ2i)
i∑

j=0

|an−i+j ||x
j+1|

≤ (1 + γ2(i+1)−1)
i+1∑

j=1

|an−(i+1)+j ||x
j |.

Therefore we have,

|sn−(i+1)| ≤ (1 + u)(|pn−(i+1)| + |an−(i+1)|)

≤ (1 + u)(1 + γ2(i+1)−1)




i+1∑

j=1

|an−(i+1)+j ||x
j | + |an−(i+1)|




≤ (1 + γ2(i+1))
i+1∑

j=0

|an−(i+1)+j ||x
j |.

Relation (10) and Relation (11) are proved by induction. Thus, for i = 1, . . . , n,

|pn−i||x
n−i| ≤ (1 + γ2i−1) p̃(x) and |sn−i||x

n−i| ≤ (1 + γ2i) p̃(x).

From Theorem 1, since TwoSum and TwoProd are EFT, for i = 0, · · · , n−1, we have |πi| ≤ u|pi|
and |σi| ≤ u|si|. Therefore,

(p̃π + p̃σ)(x) =
n−1∑

i=0

(|πi| + |σi|)|x
i| ≤ u

n∑

i=1

(|pn−i| + |σn−i|)|x
n−i|,

11

and we obtain

(p̃π + p̃σ)(x) ≤ u
n∑

i=1

(2 + γ2i−1 + γ2i) p̃(x) ≤ 2nu (1 + γ2n) p̃(x).

Since 2nu(1 + γ2n) = γ2n, we finally obtain (p̃π + p̃σ)(x) ≤ γ2n p̃(x).

The proof in case of underflow is presented in Annex A.

4 Compensated Horner scheme

From Theorem 2 the global forward error affecting the floating point evaluation of p at x
according to the Horner scheme is

e(x) = p(x) − Horner (p, x) = (pπ + pσ)(x).

The coefficients of these polynomials are exactly computed by Algorithm 7, together with
Horner (p, x). Indeed, if [Horner (p, x) , pπ, pσ] = EFTHorner(p, x), then pπ and pσ are two exactly
representable polynomials such that p(x) = Horner (p, x) + (pπ + pσ)(x). Therefore, the key of
the algorithm proposed in this section is to compute an approximate of the global error e(x) in
working precision, and then to compute a corrected result

res = Horner (p, x) ⊕ fl(e(x)).

We say that c = fl(e(x)) is a corrective term for Horner (p, x). The corrected result res is expected
to be more accurate than the first result Horner (p, x) as proved in the sequel of the section.

4.1 Evaluation of the sum of two polynomials

Our aim is now to compute the corrective term c = fl ((pπ + pσ)(x)). Two different ways to
evaluate this sum of polynomials are

i) evaluate the polynomial whose coefficients are those of pπ + pσ rounded to the nearest
floating point value,

ii) compute Horner (pπ, x) and Horner (pσ, x) and then sum the two results.

In this subsection, we consider the first solution which is here better in term of computing
time.

Let p and q be two polynomials with floating point coefficients, such that p(x) =
∑n

i=0 aix
i

and q(x) =
∑n

i=0 bix
i. The coefficients of (p + q)(x) =

∑n
i=0(ai + bi)x

i are not necessarily
floating point numbers. We compute an approximate of (p+q)(x) by evaluating the polynomial
whose coefficients are those of p + q rounded to the nearest floating point value. This process
is described by Algorithm 8.

Algorithm 8. Evaluation of the sum of two polynomials.

function [r0] = HornerSum (p, q, x)
rn = an ⊕ bn

for i=n-1:-1:0
ri = ri+1 ⊗ x ⊕ (ai ⊕ bi)

end

12

Lemma 4. Let us consider the floating point evaluation of (p + q)(x) computed with
HornerSum (p, q, x) (Algorithm 8). Then, in case no underflow occurs, the computed result
satisfies the following forward error bound,

|HornerSum (p, q, x) − (p + q)(x)| ≤ γ2n+1(p̃ + q̃)(x),

and, in the presence of underflow,

|HornerSum (p, q, x) − (p + q)(x)| ≤ (p̃ + q̃)(x) + (1 + γ2n−1)v
n−1∑

i=0

|xi|.

Algorithm HornerSum requires 3n + 1 flops.

Proof (without underflow). Considering Algorithm 8, we have rn = an ⊕ bn = (an + bn)〈1〉, and
for i = n − 1, · · · , 0,

ri = ri+1 ⊗ x ⊕ (ai ⊕ bi) = ri+1x〈2〉 + (ai + bi)〈2〉.

Therefore it can be proved by induction that

r0 = (an + bn)xn〈2n + 1〉 +
n−1∑

i=0

(ai + bi)x
i〈2(i + 1)〉.

Thus there exist quantities θ2n+1, θ2n, · · · , θ1, bounded according to |θi| ≤ γi, such that

r0 = (an + bn)xn(1 + θ2n+1) +
n−1∑

i=0

(ai + bi)x
i(1 + θ2(i+1)).

Since r0 = HornerSum (p, q, x), we finally obtain

∣∣∣∣∣res −
n∑

i=0

(ai + bi)x
i

∣∣∣∣∣ ≤ γ2n+1

n∑

i=0

|ai + bi||x
i| ≤ γ2n+1(p̃ + q̃)(x).

The proof in case of underflow is presented in Annex A.

4.2 The compensated Horner scheme and its error bound

In the previous subsection, we have chosen algorithm HornerSum to compute an approximate
of the evaluation of the sum of two polynomials at a given value. This algorithm is used with
EFTHorner (Algorithm 7) to compute the corrective term for the polynomial evaluation with
the Horner scheme.

Algorithm 9. Compensated Horner scheme

function [res] = CompensatedHorner (p, x)
[h, pπ, pσ] = EFTHorner (p, x)
c = HornerSum (pπ, pσ, x)
res = h ⊕ c

13

We prove hereafter that the result of a polynomial evaluation computed with this compensated
Horner scheme (Algorithm 9) is as accurate as if computed by the classic Horner scheme using
twice the working precision and then rounded to the working precision.

Theorem 5. Given a polynomial p =
∑n

i=0 aix
i of degree n with floating point coefficients,

and x a floating point value. We consider the result CompensatedHorner (p, x) computed by
Algorithm 9. Then, if no underflow occurs,

|CompensatedHorner (p, x) − p(x)| ≤ u|p(x)| + γ2
2n p̃(x), (12)

and, in the presence of underflow,

|CompensatedHorner (p, x) − p(x)| ≤ u|p(x)| + γ2
2n p̃(x) + K v

n−1∑

i=0

|xi|,

with K ≤ 7. CompensatedHorner requires 26n + 3 flops. If TwoProductFMA is used instead of
TwoProduct, then the flops count drops to 11n − 1.

Proof (without underflow). The absolute forward error generated by Algorithm 9 is

|res − p(x)| = |(h ⊕ c) − p(x)| = |(1 + ε)(h + c) − p(x)| with |ε| ≤ u.

Let e(x) = (pπ + pσ)(x). From Theorem 2 we have h = Horner (p, x) = p(x) − e(x), thus

|res − p(x)| = |(1 + ε) (p(x) − e(x) + c) − p(x)|

≤ u|p(x)| + (1 + u)|c − e(x)|.

Since pπ and pσ are two polynomials of degree n − 1, and c = HornerSum (pπ, pσ, x), applying
Lemma 4, we write

|c − e(x)| ≤ γ2n−1(p̃π + p̃σ)(x).

Then we use Proposition 3 to bound (p̃π + p̃σ)(x) as

|c − e(x)| ≤ γ2n−1γ2n p̃(x).

Since (1 + u)γ2n−1 ≤ γ2n, we finally write the expected bound

|res − p(x)| ≤ u|p(x)| + γ2
2n p̃(x).

The proof in case of underflow is presented in Annex A.

It is very interesting to interpret the previous theorem in terms of the condition number(1) of the
polynomial evaluation of p at x. Combining the error bound in Theorem 5 with the expression
of the condition number | p̃(x)|/|p(x)| for the polynomial evaluation gives the following result.

Corollary 6. Given p a polynomial of degree n with floating point coefficients, and x a floating
point value. If no underflow occurs,

|CompensatedHorner (p, x) − p(x)|

|p(x)|
≤ u + γ2

2n cond(p, x). (13)

In other words, the bound for the relative error of the computed result is essentially γ2
2n times

the condition number of the polynomial evaluation, plus the inevitable summand u for rounding
back the result to the working precision. In particular, if cond(p, x) < γ−1

2n , then the relative
accuracy of the result is bounded by a constant of the order u. This means that the compensated
Horner scheme computes an evaluation accurate to the last few bits as long as the condition
number is smaller than γ−1

2n ≈ (2nu)−1. Besides that, Corollary 6 tells us that the computed
result is as accurate as if computed by the classic Horner scheme with twice the working precision
u2 and then rounded to the working precision u.

14

4.3 A dynamic error bound

The error bound (12) for the result of a polynomial evaluation with algorithm Compensated-
Horner is entirely adequate for theoretical purposes. However, it is an a priori error bound
that takes no account of the actual rounding errors. Moreover, it is not computable in practical
applications since it involves the exact result p(x) of the polynomial evaluation. We introduce
here how to compute a valid error bound in pure floating point arithmetic in round to the
nearest, which is also less pessimistic than the error estimate (12). Since underflow is rare and
the quantities involved are almost always negligible, we do not take into account underflow in
the following analysis.

First, we state the following lemma. When the coefficients of the polynomials p and q, and
the argument x are all nonnegative floating point numbers, it gives a bound on (p + q)(x) with
respect to HornerSum (p, q, x).

Lemma 7. Given p(x) =
∑n

i=0 aix
i and q(x) =

∑n
i=0 bix

i two polynomials such that all their
coefficients are nonnegative floating point numbers, and given x a nonnegative floating point
number. The following inequality holds

0 ≤
n∑

i=0

(ai + bi)x
i ≤ (1 + u)2n+1HornerSum (p, q, x) .

Proof (without underflow). We consider Algorithm 8, and the intermediate variables ri, for
i = n − 1, . . . , 0. Let us prove by induction that, for i = 0, . . . , n,

i∑

j=0

(an−i+j + bn−i+j)x
j ≤ (1 + u)2i+1rn−i. (14)

For i = 0, (an + bn) ≤ (1 + u)(an ⊕ bn) = (1 + u)rn, so Relation (14) is satisfied. Now we
assume that Relation (14) is true for some integer i such that 0 ≤ i < n. Then

i+1∑

j=0

(an−(i+1)+j + bn−(i+1)+j)x
j =




i∑

j=0

(an−i+j + bn−i+j)x
j


x + (an−i + bn−i).

By induction hypothesis we have

i+1∑

j=0

(an−(i+1)+j + bn−(i+1)+j)x
j ≤ (1 + u)2i+1rn−ix + (an−i + bn−i)

≤ (1 + u)2i+1(1 + u)2 (rn−i ⊗ x ⊕ (an−i ⊕ bn−i))

≤ (1 + u)2(i+1)+1rn−(i+1).

Therefore Relation (14) is proved by induction, which in turn proves the lemma.

The proof in case of underflow is presented in Annex A.

Theorem 8. Given a polynomial p with floating point coefficients, and a floating point value
x, we consider res = CompensatedHorner (p, x) the accurate evaluation of p at x (Algorithm 9).
The absolute forward error affecting the evaluation is bounded according to

|CompensatedHorner (p, x) − p(x)| ≤ fl
(
u|res| +

(
γ4n+2HornerSum (|pπ|, |pσ|, |x|) + 2u2|res|

))
.

(15)

15

For the proof of Theorem 8, we need the following two relations.

i) For (k + 1)u < 1, we have γk ≤ (1 − u)γk+1. Indeed, if (k + 1)u < 1 then k u <
(1 − u)(k + 1)u and therefore

γk ≤
(1 − u)(k + 1)u

1 − (k + 1)u
= (1 − u)γk+1.

ii) We know that fl(ku) = ku ∈ F. Moreover, if k u < 1, then fl(1− ku) = 1− ku ∈ F. So only
the division suffers from a rounding error in the computation of γk. Thus

γk =
k u

1 − k u
≤ (1 − u)−1 [(k u) ® (1 − k u)] = (1 − u)−1 fl(γk).

Proof of Theorem 8 (without underflow). The key of the proof is to use relations in Re-
mark 1 to bound real quantities with computable expressions. The result res =
CompensatedHorner (pπ, pσ, x) computed by Algorithm 9 suffers from the following absolute
forward error,

|res − p(x)| = |Horner (p, x) ⊕ HornerSum (pπ, pσ, x) − p(x)|

≤ |(Horner (p, x) ⊕ HornerSum (pπ, pσ, x)) − (Horner (p, x) + HornerSum (pπ, pσ, x))|

+ |(Horner (p, x) + HornerSum (pπ, pσ, x)) − p(x)| .

As before, let e(x) = (pπ + pσ)(x). From Theorem 2, the EFT of p(x) satisfies p(x) =
Horner (p, x) + e(x). Thus

|res − p(x)| ≤ u |Horner (p, x) ⊕ HornerSum (pπ, pσ, x)| + |HornerSum (pπ, pσ, x) − e(x)|

≤ u|res| + |HornerSum (pπ, pσ, x) − e(x)| .

Now we bound the rightmost absolute value. Since pπ and pσ are of degree n − 1, Lemma 4
yields

|HornerSum (pπ, pσ, x) − e(x)| ≤ γ2n−1(p̃π + p̃σ)(x),

and from Lemma 7, we write

|HornerSum (pπ, pσ, x) − e(x)| ≤ (1 + u)2n−1γ2n−1HornerSum (|pπ|, |pσ|, |x|) .

Let E = HornerSum (|pπ|, |pσ|, |x|). Since (1 + u)2n−1γ2n−1 ≤ γ4n−2 ≤ (1− u)4γ4n+2, it follows

|res − p(x)| ≤ u|res| + (1 − u)4γ4n+2E.

Since γ4n+2E ≤ (1 − u)−1 fl(γ4n+2)E ≤ (1 − u)−2 fl(γ4n+2E), we deduce

|res − p(x)| ≤ u|res| + (1 − u)2 fl(γ4n+2E)

≤ (1 − u)u|res| + (1 − u)2 fl(γ4n+2E) + u2|res|.

We notice that u2|res| and 2u2|res| are representable floating point values, since we assume
that no underflow occurs. We can always assume that 2(1 − u)2 ≥ 1, thus

|res − p(x)| ≤ (1 − u)u|res| + (1 − u)2
[
fl(γ4n+2E) + 2u2|res|

]

≤ (1 − u)
[
u|res| + fl(γ4n+2E + 2u2|res|)

]

≤ fl
(
u|res| + (γ4n+2E + 2u2|res|)

)
.

16

Relation (15) is easily evaluated concurrently with the computation of p(x) according to Al-
gorithm 9. One possible use of this error estimate is to provide a stopping criterion for a
polynomial root finder. For instance, if |CompensatedHorner (p, x) | is of the same order as the
computed error bound, then further iteration serves no purpose, as x could be a zero. We present
some experiments to show the accuracy of the computable error estimate (15) compared to the
accuracy of the a priori error bound (12) at the end of next Section 5.

5 Experimental results

All our experiments are performed using IEEE-754 double precision.

5.1 DDHorner is the Horner scheme with internal double-double computation

We compare the CompensatedHorner algorithm to an implementation of the classic Horner
scheme that use internally the double-double format and denoted as DDHorner. Our imple-
mentation is based on the one proposed by the authors of [9, 16].

For our purpose, it suffices to know that a double-double number a is the pair (ah, al) of
IEEE-754 floating point numbers with a = ah + al and |al| ≤ u|ah|. To implement the Horner
scheme using the double-double format, we only need two basic operations: i) the product of
a double-double number by a double number, and ii) the addition of a double number to a
double-double number. For the first operation we use Algorithm 10 that requires 25 flops. If
TwoproductFMA is used instead of Twoproduct, then the flop count drops to 10. For the second
operation, we use Algorithm 11 that requires 9 flops.

Horner scheme with internal double-double, DDHorner (Algorithm 12), requires 34n flops. If
TwoProductFMA is used then the flops count drops to 19n flops.

Algorithm 10. Product of the double-double number (ah, al) by the double number b

function [ch, cl] = prod dd d (ah, al, b)
[sh, sl] = TwoProduct (ah, b)
[th, tl] = FastTwoSum (sh, (al ⊗ b))
[ch, cl] = FastTwoSum (th, (tl ⊕ sl))

Algorithm 11. Addition of the double number b to the double-double number (ah, al)

function [ch, cl] = add dd d (ah, al, b)
[th, tl] = TwoSum (ah, b)
[ch, cl] = FastTwoSum (th, (tl ⊕ al))

Algorithm 12. Horner scheme with internal double-double computations

function [ch, cl] = DDHorner (p, x)
sh = an

sl = 0
for i = n − 1 : −1 : 0

[ph, pl] = prod dd d (sh, sl, x)
[sh, sl] = add dd d (ph, pl, ai)

end
res= sh

17

Table 1: Description of the routines experimented for the doubled working precision

routine description of the corresponding Horner scheme

Horner IEEE-754 double precision (Algorithm 1)

CompensatedHorner Compensated Horner scheme (Algorithm 9)

DDHorner Horner scheme with internal double-double computation (Algorithm 12)

MPFRHorner Horner scheme in 106-bits precision arithmetic from MPFR library

5.2 Accuracy of the compensated Horner scheme

We test the expanded form of the polynomial pn(x) = (x− 1)n. The argument x is chosen near
to the unique real root 1 of pn, and with many significant bits so that a lot of rounding errors
occur during the evaluation of pn(x). We increment the degree n from 1 until a sufficiently large
range has been covered by the condition number cond(pn, x). Here we have

cond(pn, x) =
p̃n(x)

|pn(x)|
=

∣∣∣∣
1 + x

1 − x

∣∣∣∣
n

,

and cond(pn, x) grows exponentially with respect to n. In the experiments reported on
Figure 1, cond(pn, x) varies from 102 to 1040 (for x = fl(1.333), that corresponds to the degree
range n = 3, . . . , 42). These huge condition numbers have a sense since here the coefficients of
p and the value x are chosen to be exact floating point numbers.

We experiment both Horner, CompensatedHorner and DDHorner (see Table 1). For each poly-
nomial pn, the exact value pn(x) is approximate with a high accuracy thanks to the arbitrary
accurate MPFR library [19]. Figure 1 presents the relative accuracy |y − pn(x)|/|pn(x)| of the
evaluation y computed by the three algorithms. We set to the value one relative errors greater
than one, which means that almost no useful information is left. The dotted lines represent
the a priori error estimates (6) and (13).

We observe that the compensated algorithm exhibits the expected behavior, i.e., the compen-
sated rule of thumb. The full precision solution is computed as long as the condition number
is smaller than u−1 ≈ 1016. Then, for condition numbers between u−1 and u−2 ≈ 1032, the
relative error degrades to no accuracy at all. However, when the condition number is beyond
u−1, the a priori error estimate (13) is always pessimistic by 2 or 3 order of magnitude.

5.3 Accuracy of the dynamic error bound

We experiment the accuracy of the dynamic error bound (15), compared to the a priori
error bound (12) and to the actual forward error. We evaluate the expanded form of
p5(x) = (1 − x)5 for 1024 points near x = 1. For each value of the argument x, we compute
CompensatedHorner (p5, x), the associated dynamic error bound, and the actual forward error.
The results are reported on Figure 2.

As already noticed in the previous paragraph, the closer the argument is to the root 1 (i.e., the
more the condition number increases), the more pessimistic becomes the a priori error bound.
The proposed dynamic error bound is more accurate as it takes into account the rounding errors
that occur during the computation.

18

 1e-18

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 100000 1e+10 1e+15 1e+20 1e+25 1e+30 1e+35

re
la

tiv
e

fo
rw

ar
d

er
ro

r

condition number

Condition number and relative forward error

u

γ2n cond u + γ2n
2 cond

Horner
CompensatedHorner

DDHorner

Figure 1: Accuracy of the Horner scheme performed in IEEE-754 precision compared to the
accuracy of two algorithms CompensatedHorner and DDHorner.

 1e-34

 1e-32

 1e-30

 1e-28

 1e-26

 1e-24

 0.99 0.995 1 1.005 1.01

A
bs

ol
ut

e
er

ro
r

Argument x

Accuracy of the absolute error bounds

u

A priori error bound
Running error bound
Actual forward error

Figure 2: The dynamic error bound (15) compared to the theoretical bound (12) and to the
actual absolute forward error.

19

Table 2: Experimental environments
environment description

(I) Intel Celeron, 2.4GHz, 1024kB L2 cache. GNU Compiler Collection 3.4.1

(II) Intel Pentium, 3.0GHz, 1024kB L2 cache. GNU Compiler Collection 3.4.1

Table 3: Measured time performances for CompensatedHorner, DDHorner and MPFRHorner.

environment CompensatedHorner/Horner DDHorner/Horner MPFRHorner/Horner
min. mean max. theo. min. mean max. theo. min. mean max.

(I) 1.4 3.1 3.4 13 2.3 8.4 9.4 17 22.4 97.5 124.4
(II) 1.5 2.9 3.2 13 2.3 8.4 9.4 17 18.1 83.7 96.8

5.4 Time performances

All the algorithms are implemented in C-code. In particular we use essentially the same
programming techniques for the implementations of the routines CompensatedHorner and
DDHorner. The experimental environments we have considered are listed in Table 2. Our
measures are performed with polynomials whose degrees vary from 5 to 500 by steps of 5.
We choose the coefficients and the arguments at random. For each degree, the routines are
tested on the same polynomial with the same argument. Figure 3 displays the timings of
CompensatedHorner, DDHorner and MPFRHorner normalized (dividing them) by the timing of
the Horner routine. The minimum, the mean and the maximum of these normalized timings
are reported in Table 3. For CompensatedHorner and DDHorner, the theoretical ratios are also
reported, resulting from the number of flops involved by each algorithm.

First, we have to notice that the measured slowdown factor introduced either by Compensat-
edHorner or DDHorner is always significantly smaller than theoretically expected. This is an
astonishing fact since the code for these functions is designed to be easily portable, and no
algorithmic optimizations are performed, neither in CompensatedHorner, nor in DDHorner. This
interesting property seems to be due to the fact that the classic algorithm performs only one

 0

 20

 40

 60

 80

 100

 120

 140

 50 100 150 200 250 300 350 400 450 500

R
at

io
 o

f t
he

 c
om

pt
in

g
tim

es

Degree of the polynomial

Normalized execution times [Intel Celeron, 2.4GHz, 256kB L2 cache]

CompensatedHorner / Horner
DDHorner / Horner

MPFRHorner / Horner

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 50 100 150 200 250 300 350 400 450 500

R
at

io
 o

f t
he

 c
om

pt
in

g
tim

es

Degree of the polynomial

Normalized execution times [Intel Pentium 4, 3.0GHz, 1024kB L2 cache]

CompensatedHorner / Horner
DDHorner / Horner

MPFRHorner / Horner

Figure 3: Normalized execution times of the three routines CompensatedHorner, DDHorner and
MPFRHorner.

20

operation with each coefficient of the polynomial, whereas CompensatedHorner and DDHorern
perform much more operations with each coefficient. Most of these operations are performed
at the register level, without incurring much memory traffic. This practical efficiency is
emphasized in [20] and motivates this kind of development.

The results reported in Table 3 show that the compensated algorithm CompensatedHorner is
about 3 times slower than the classic Horner scheme. The same slowdown factor is about 8 for
algorithm DDHorner. From a practical point of view, we can state that the proposed algorithm
is more than twice faster than the Horner scheme with double-doubles. Table 3 also shows us
that comparison with the MPFR library is not entirely fair in this context. Indeed, the routine
MPFRHorner exhibits a slowdown factor of more than 80. It is not surprising since the MPFR
library is specially designed to handle floating point numbers with extremely large mantissa.

6 Concluding remarks

We presented a compensated version of the Horner scheme to evaluate univariate polynomials
in floating point arithmetic. We proved that the accuracy of the result computed by this
compensated algorithm is similar to the one given by the Horner scheme performed in doubled
working precision. The only assumption we made is that the floating point arithmetic available
on the computer satisfies the IEEE-754 floating point standard. The same frame applies to
the presented algorithm that compute the associated dynamic bound and to the recursive
implementation in [7]. These low requirement make it highly portable and so these compensated
algorithms could be easily integrated into numerical libraries or in-lined in specific subroutines.

This compensated algorithm uses only basic floating point operations and only the same
working precision as the data. It uses no branch nor access to the mantissa that can be time
consuming on modern architectures. As a result, it is fast not only in term of flop count
but also in term of measured computing time. In particular, the slowdown factor due to the
improvement of the accuracy is much smaller than theoretically expected. Our numerical
experiments show than compensated Horner runs only about three times slower than the
classic Horner scheme on nowadays computers.

Ogita-Rump-Oishi stress the interest to benefit from error-free transformations as,
e.g., TwoSum, TwoProd, available directly from the processor [20]. This paper emphasizes
such an interest to provide more accurate and reliable numerical algorithms at a reasonable cost.

References

[1] David H. Bailey. A Fortran-90 double-double library, 2001. Available at URL =
http://crd.lbl.gov/~dhbailey/mpdist/index.html.

[2] Sylvie Boldo and Jean-Michel Muller. Some functions computable with a fused-mac. In
IEEE, editor, Proceedings of the 17th IEEE Symposium on Computer Arithmetic, 2005,
Cape Cod, Massachusetts, USA. IEEE Computer Society Press, 2005.

[3] Theodorus J. Dekker. A floating-point technique for extending the available precision.
Numer. Math., 18:224–242, 1971.

21

http://crd.lbl.gov/~dhbailey/mpdist/index.html

[4] James Demmel. Underflow and the reliability of numerical software. SIAM J. Sci. Stat.
Comput., 5(4):887–919, 1984.

[5] FRISCO - a framework for integrated symbolic/numeric computation. Available at
http://www.nag.co.uk/local/projects/FRISCO.html.

[6] Johannes Grabmeier, Erich Kaltofen, and Volker Weispfenning, editors. Computer Algebra
Handbook. Springer-Verlag, Berlin, 2003.

[7] Stef Graillat, Philippe Langlois, and Nicolas Louvet. Recursive compensated Horner
scheme. Research Report, DALI Research Project, Laboratory LP2A, Université de Per-
pignan Via Domitia, France, July 2005. (In progress).

[8] John R. Hauser. Handling floating-point exceptions in numeric programs. ACM Trans.
Program. Lang. Syst., 18(2):139–174, 1996.

[9] Yozo Hida, Xiaoye S. Li, and David H. Bailey. Algorithms for quad-double precision
floating point arithmetic. In Neil Burgess and Luigi Ciminiera, editors, Proceedings of the
15th Symposium on Computer Arithmetic, Vail, Colorado, pages 155–162, Los Alamitos,
CA, USA, 2001. Institute of Electrical and Electronics Engineers.

[10] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, second edition, 2002.

[11] IEEE Standards Committee 754. IEEE Standard for binary floating-point arithmetic,
ANSI/IEEE Standard 754-1985. Institute of Electrical and Electronics Engineers, Los
Alamitos, CA, USA, 1985. Reprinted in SIGPLAN Notices, 22(2):9-25, 1987.

[12] William Kahan. Further remarks on reducing truncation errors. Comm. ACM, 8(1):40,
1965.

[13] Donald Ervin Knuth. The Art of Computer Programming: Seminumerical Algorithms,
volume 2. Addison-Wesley, Reading, MA, USA, third edition, 1998.

[14] Philippe Langlois. Automatic linear correction of rounding errors. BIT, 41(3):515–539,
September 2001.

[15] Philippe Langlois. More accuracy at fixed precision. J. Comp. Appl. Math., 162(1):57–77,
January 2004.

[16] Xiaoye S. Li, James W. Demmel, David H. Bailey, Greg Henry, Yozo Hida, Jimmy Iskandar,
William Kahan, Suh Y. Kang, Anil Kapur, Michael C. Martin, Brandon J. Thompson,
Teresa Tung, and Daniel J. Yoo. Design, implementation and testing of extended and
mixed precision BLAS. ACM Trans. Math. Software, 28(2):152–205, 2002.

[17] Seppo Linnainmaa. Towards accurate statistical estimation of rounding errors in floating-
point computations. BIT, 15(2):165–173, 1975.

[18] Seppo Linnainmaa. Error linearization as an effective tool for experimental analysis of the
numerical stability of algorithms. BIT, 23(3):346–359, 1983.

[19] The MPFR library. Available at http://www.mpfr.org.

[20] Takeshi Ogita, Siegfried M. Rump, and Shin’ichi Oishi. Accurate sum and dot product.
SIAM J. Sci. Comput., 26(6):1955–1988, 2005.

22

[21] Michèle Pichat. Correction d’une somme en arithmétique à virgule flottante. (French)
[correction of a sum in floating-point arithmetic]. Numer. Math., 19:400–406, 1972.

[22] Michèle Pichat. Contributions à l’étude des erreurs d’arrondi en arithmétique à virgule
flottante. (French) [Contributions to the error analysis of rounding errors in floating-point
arithmetic]. Thèse, Université Scientifique et Médicale de Grenoble, 1976.

[23] Martti Tienari. A statistical model of roundoff error for varying length floating-point
arithmetic. BIT, 10:355–365, 1970.

A Proofs in case of underflow

Proof of Theorem 2 (with underfow). Considering Algorithm 7, for i = 0 · · ·n − 1, we have
si+1x = pi + πi + 5ηi with |ηi| ≤ v, and pi + ai = si + σi, thus

si = si+1x + ai − πi − σi − 5ηi.

Since sn = an we have therefore

s0 = p(x) −

[
n−1∑

i=0

πix
i

]
−

[
n−1∑

i=0

σix
i

]
− 5

[
n−1∑

i=0

ηix
i

]
with |ηi| ≤ v.

Proof of Proposition 3 (with underfow). Applying the standard model of floating point arith-
metic with underflow (4), for i = 1, . . . , n, the two computations in the loop of Algorithm 7
verify

|pn−i| = |sn−i+1 ⊗ x| ≤ (1 + u)|sn−i+1||x| + v, and

|sn−i| = |pn−i ⊕ an−i| ≤ (1 + u)(|pn−i| + |an−i|).

Let us prove by induction that, for i = 1, . . . , n,

|pn−i| ≤ (1 + γ2i−1)
i∑

j=1

|an−i+j ||x
j | + (1 + γ2i−2)v

i−1∑

j=0

|xj |, and (16)

|sn−i| ≤ (1 + γ2i)
i∑

j=0

|an−i+j ||x
j | + (1 + γ2i−1)v

i−1∑

j=0

|xj |. (17)

For i = 1, since sn = an we have |pn−1| ≤ (1 + u)|an||x| + v ≤ (1 + γ1)|an||x| + v and
(16) is satisfied. On the other hand, |sn−1| ≤ (1 + u) ((1 + γ1)|an||x| + v + |an−1|) ≤ (1 +
γ2) (|an||x| + |an−1|) + (1 + γ1)v, and (17) is also satisfied. Now we suppose that (16) and (17)
are true for integers i such that 1 ≤ i < n. Then

|pn−(i+1)| ≤ (1 + u)|sn−i||x| + v.

By induction hypothesis,

|pn−(i+1)| ≤ (1 + u)(1 + γ2i)
i∑

j=0

|an−i+j ||x
j+1| + (1 + u)(1 + γ2i−1)v

i−1∑

j=0

|xj+1| + v

≤ (1 + γ2(i+1)−1)
i+1∑

j=1

|an−(i+1)+j ||x
j | + (1 + γ2(i+1)−2)v

(i+1)−1∑

j=0

|xj |.

23

Therefore we have

|sn−(i+1)| ≤ (1 + u)(|pn−(i+1)| + |an−(i+1)|)

≤ (1 + u)(1 + γ2(i+1)−1)




i+1∑

j=1

|an−(i+1)+j ||x
j | + |an−(i+1)|




+(1 + u)(1 + γ2(i+1)−2)v

(i+1)−1∑

j=0

|xj |

≤ (1 + γ2(i+1))
i+1∑

j=0

|an−(i+1)+j ||x
j | + (1 + γ2(i+1)−1)v

(i+1)−1∑

j=0

|xj |.

Relation (16) and Relation (17) are proved by induction. Thus, for i = 1, . . . , n,

|pn−i||x
n−i| ≤ (1 + γ2n−1) p̃(x) + (1 + γ2n−2)v

n−1∑

j=0

|xj |, and

|sn−i||x
n−i| ≤ (1 + γ2n) p̃(x) + (1 + γ2n−1)v

n−1∑

j=0

|xj |.

From Theorem 1, since TwoSum and TwoProd are EFT, for i = 0, · · · , n − 1, we have |πi| ≤
u|pi| + 5v and |σi| ≤ u|si|. Therefore

(p̃π + p̃σ)(x) =
n−1∑

i=0

(|πi| + |σi|)|x
i| ≤ u

n∑

i=1

(|pn−i| + |σn−i|)|x
n−i| + 5v

n−1∑

i=0

|xi|.

And we obtain

(p̃π + p̃σ)(x) ≤ nu

[
(2 + γ2n−1 + γ2n) p̃(x) + (2 + γ2n−2 + γ2n−1)v

n−1∑

i=0

|xi|

]
+ 5v

n−1∑

i=0

|xi|

≤ 2nu(1 + γ2n) p̃(x) + [5 + 2nu(1 + γ2n−1)] v
n−1∑

i=0

|xi|

Since 2nu(1+γ2n) = γ2n and 2nu(1+γ2n−1) ≤ γ2n, we finally obtain (p̃π + p̃σ)(x) ≤ γ2n p̃(x)+
(5 + γ2n)v

∑n−1
i=0 |xi|.

Proof of Lemma 4 (with underfow). Considering Algorithm 8, we have rn = an ⊕ bn = (an +
bn)〈1〉, and for i = n − 1, · · · , 0,

ri = ri+1 ⊗ x ⊕ (ai ⊕ bi) = 〈2〉ri+1x + 〈2〉(ai + bi) + ηi, with |ηi| ≤ v.

Therefore it can be proved by induction that

r0 = 〈2n + 1〉(an + bn)xn +
n−1∑

i=0

〈2(i + 1)〉(ai + bi)x
i +

n−1∑

i=0

〈2i + 1〉ηix
i.

Since r0 = HornerSum (p, q, x), we finally obtain
∣∣∣∣∣HornerSum (p, q, x) −

n∑

i=0

(ai + bi)x
i

∣∣∣∣∣ ≤ γ2n+1(p̃ + q̃)(x) + (1 + γ2n−1)v

n−1∑

i=0

|xi|.

24

Proof of Theorem 5 (with underfow). As before, we use the notation e(x) = (pπ +pσ)(x). From
Theorem 2,

|res − p(x)| = |(1 + ε)(s0 + c) − p(x)|

=

∣∣∣∣∣(1 + ε)

(
p(x) − e(x) − 5

(
n−1∑

i=0

ηix
i

)
+ c

)
− p(x)

∣∣∣∣∣

≤ u|p(x)| + (1 + u) |c − e(x)| + 5(1 + u)v
n−1∑

i=0

|xi|.

Since pπ and pσ are two polynomials of degree n − 1, and c = HornerSum (pπ, pσ, x), applying
Lemma 4, we have

|c − e(x)| ≤ γ2n−1(p̃π + p̃σ)(x) + (1 + γ2n−1)v
n−2∑

i=0

|xi|.

Then we apply Proposition 3 to bound (p̃π + p̃σ)(x). We write

|c − e(x)| ≤ γ2n−1γ2n p̃(x) + γ2n−1(5 + γ2n)v
n−1∑

i=0

+(1 + γ2n−1)v
n−2∑

i=0

|xi|.

Since (1 + u)γ2n−1 ≤ γ2n, we finally write,

|res − p(x)| ≤ u|p(x)| + γ2
2n p̃(x) + α

with

α = (1 + u) [γ2n−1(5 + γ2n) + 5] v
n−1∑

i=0

|xi| + (1 + u)(1 + γ2n−1)v
n−2∑

i=0

|xi|.

As v is a very small constant, we simply bound the term α as follow.

α ≤ (1 + u) [6 + 6γ2n−1 + γ2n−1γ2n] v
n−1∑

i=0

|xi| ≤ K v
n−1∑

i=0

|xi|,

with K ≤ 7.

25

	Introduction
	Numerical Polynomial Evaluation
	The compensated Horner scheme improves the classic rule of thumb
	Using error-free transformations to provide more accuracy
	Outline of the paper

	Standard model of floating point arithmetic and the Horner scheme
	Standard model
	The Horner scheme

	Error-free transformations (EFT)
	EFT for the elementary operations
	An EFT for the Horner scheme

	Compensated Horner scheme
	Evaluation of the sum of two polynomials
	The compensated Horner scheme and its error bound
	A dynamic error bound

	Experimental results
	DDHorner is the Horner scheme with internal double-double computation
	Accuracy of the compensated Horner scheme
	Accuracy of the dynamic error bound
	Time performances

	Concluding remarks
	Proofs in case of underflow

