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Outline

@ Pseudozeros

@ Application of pseudozeros

@ Pseudozeros of interval polynomials

@ Pseudozeros of multivariate polynomials
@ Pseudosectra and structures

© Open problems
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@ Polynomials appear in almost all areas in scientific computing
and engineering
@ The relationships between industrial applications and
polynomial systems solving studied by the European
Community Project FRISCO
@ Applications in Computer Aided Design and Modeling,
Mechanical Systems Design, Signal Processing and Filter Design,
Civil Engineering, Robotics, Simulation
e The wide range of use of polynomial systems needs to have fast
and reliable methods to solve them
e symbolic approach based either on the theory of Grobner basis or
on the theory of resultants
e numeric approach based on iterative methods like Newton’s
method or homotopy continuation methods
o recently, hybrid methods, combining both symbolic and numeric
methods
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Dealing with uncertainties

e In practice, from situations arising in science or engineering, the
data are known only to a limited accuracy

e Analytical sensitivity analysis introduces a condition number
that bounds the magnitudes of the (first order) changes of the
roots with respect to the coefficient perturbations

e Continuous sensitivity analysis, introduced by Ostrowski,
considers the uncertainty of the coefficients as a continuity
problem. The most powerful tool of this last type of methods
seems to be the pseudozero set of a polynomial
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An example for the univariate case

Computing the zeros of the Wilkinson polynomial of degree 20

Wkx) = (x-1)x-2)---(x—20)
= ¥0-210x"9+---+ 20!

2—23

Uncertainty of on the coefficient of x'°
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Pseudozero set; definition

Perturbation :
Neighborhood of polynomial p

Ny(p) ={peCylal:lIp-pl <e}.
Definition of the ¢-pseudozero set:

Ze(p) ={z€C:P(z) =0 for pe N:(p)}.

[ - I a norm on the vector of the coefficients of p

This set is formed by the zeros of polynomials “near p”.
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Pseudozeros: brief survey of existing references

Mosier (1986): Definition and study form the co-norm.
Hinrichsen and Kelb: spectral value sets

Trefethen and Toh (1994): Study for the 2-norm.
pseudozeros = pseudospectra of the companion matrix.

Chatelin and Frayssé (1996): propose a Synthesis in Lectures on
Finite Precision Computations (SIAM)

Stetter (1999,2004): Numerical polynomial algebra. Generalization
of the previous works.

Zhang (2001): Study of the influence of the basis for the 2-norm
(condition number of the evaluation).

Karow (2003): thesis on Spectral value sets

S. Graillat (Univ. Paris 6) Pseudozeros and Pseudospectra



Pseudozeros are easily computable

The € -pseudozeros set satisfies

Ze(p) = {ze C:lg@)|:= 'lf’z(ﬁ)' - g},

wherez=(1,z,...,2"") and || - || « is the dual norm of || - ||,

ly* x|
lyll« =sup
x20 Xl
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The nearest polynomial with a given root p,

Let pbein C,[z] and ue C.
Statement of the problem:

Find a polynomial p, € C,z] satisfying p,(u) = 0 and such
that if there exists a polynomial q € C,[z] with q(u) =0 then
we get[|p=pul < llp—qll.

We are looking for:

 an expression of py;

e uniqueness of py,.
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Computation of p,,

Let us denote u:= (1,u,u?,...,u") € C"*"1.
There exists d € C"*! satisfying ‘du = ||ul|. et ||d|| = 1.
Let us define the polynomials r and p, by

n
r(z) = Z rkzk with 1, =dj,
k=0
pul@d = p(Z)——p () r(z).
r(u)
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Uniqueness of p,

A

If the norm | - || is strictly convex then p, is unique. l

for

It is the case, for example, for the norms || - ||, for 1 < p < oo.

We do not have unicity for || - [I; and ||  |o- For p(2) =1+ 2

-1, u=1 Iy u=0
e | @)= Q’(z) 3(1 2| )@=z pP@=
p—pi z—1 32— % 1 1z+1
lp= pill 2 2 1 1
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Algorithm of computation

Algorithm to draw the e-pseudozero set:

@ We mesh a square containing all the roots of p (MATLAB
command: meshgrid).

@ We compute g(2) := 22 for all the nodes z in the grid.

Az«
© We draw the contour level |g(z)| = € (MATLAB command:
contour).

Problems :

 Find a square containing all the roots of p and all the pseudozeros.
 Find a grid step that separates all the roots.
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Choice of the grid

Let p be a unitary polynomial of degree n and {z;} the set of its nroots.

Let us denote r = max |z;| . We have
i=1;..;n

n
r < max{l, Z |prl}.
k=1

Let us denote R:=max{l,}.? , |p;| + ne}. We can prove (in || - || ,)

Z¢(p) < B(0, R) the closed ball of centre 0 and radix R.
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Complexity of drawing pseudozero set

Let L be the length of the square and 4 the step of discretization. The

evaluation of g(z) = 'lf’z(f)l needs

@ the evaluation of polynomial p, that can be done in &'(n),

e the computation of the norm of a vector (the complexity
depends on the norm).

Let us denote O (| - || «) this complexity. The complexity of the
algorithm to draw the pseudozero set is

O(LIW*(n+-1)) |

Land h depend on n but also on the polynomial coefficients.
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A famous example

Pseudozero set of the Wilkinson polynomial
Wy = (z2-D(z-2)---(2-20),
= 22°-210z"+-.-+ 20!
We perturb only the coefficient of z!® with e = 2723,
One use the weighted-norm || - [|o:
lpil . .
| pllco = max — with m; non negative
14

1

with my9 = 1, m; = 0 otherwise and the convention m/0=coif m >0
and 0/0 =0.
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Interests of pseudozeros

Pseudozero set provides:

@ a qualitative study of polynomials
@ abetter understanding of the results of polynomial algorithms

@ ause of polynomials with coefficients known to a certain
accuracy.

Drawback

o the cost
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Pseudozeros of real polynomials

If pe R,[x], we define

Ne(p):={qeRy[x]: Ip—qll < €}

Two cases :

» we seek the real pseudozeros: the same as the complex case;
» we seek all the complex non real pseudozeros.
We define the pseudozero set by

Ze(p) :={z€ C: P(z) = 0 for pe Ny (p)}.

Z¢(p) is symmetrical with respect to the real axis.
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Other applications of
pseudozeros
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Hurwitz robust stability in control theory

Hurwitz stability: Real part of roots of p < 0.
e-pseudozero set of p(z) = (z+ 1)2 for € = 0.4.

2

15F

O; / \
N
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Computation of stability radius

22, : polynomials of C[X] of degree less or equal than n
M5, : monic polynomials of 22,
[ -1l : the 2-norm of the coefficients of a polynomial

A polynomial is said to be stable if all the roots have negative real part
and unstable otherwise (Hurwitz stability).

The function abscissa a: & — R is defined by

a(p) = max{Re(z) : p(z) = 0}.
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En control theory, a transfer function can be written as H(p) = %
where N and D are polynomials.

Question : if Dis stable, is it far from unstable system?

Problem : Find the distance to the nearest unstable system.
(we assume that D is monic)
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Statement of the problem

Stability radius B(p) : distance of the polynomial p € .4, from the set
of monic unstable polynomials.

B(p) =min{|lp—qll : g€ 4, and a(q) = 0}.

Statement of the problem:
Given a polynomial p € M, compute B(p).
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Tools
@ an explicit formula giving the pseudozeros

e the continuous dependency of the roots with respect to the
polynomial coefficients

e the Sturm sequences to count the real roots

The results
@ aalgorithm calculating f(p) with an arbitrary tolerance t

e a drawing showing the pseudozeros at the distance S(p)
— enable a qualitative analysis of the result
— visualization of the result
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Another characterization of Z,(p)

Let us denote /¢ : R? — R the function defined by

n-1 .
hp,e(x;J/) =|plx+ iJ/)|2 —€? Z (x2 +y2)].
=0

= h.(-,y) et h.(x,-) are polynomials of degree 2n.

Then one has
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Theoretical results

Proposition 1
The function abscissa

a:%?,—R
defined by a(p) = max{Re(2) : p(z) = 0} is continuous on 4.

Proposition 2
One has the following relation

B(p) =min{llp—qll : g€ M, and a(q) = 0}.

The equation hy,¢(0,y) = 0 has a real solution y if and only if f(p) < €. \
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Algorithm (bisection)

Require: a stable polynomial p and a tolerance t
Ensure: a number a such that o — (p)| <1
cy:=0, O:=|p-2"l
while |y - 6] > 7 do
€:= %5
if the equation h,(0,y) =0, y € R has a solution then
0:=¢
else
Y:i=¢€
end if
end while

Y+6

return o = -

-
=4
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Numerical simulation

For the polynomial p(z) = z+ 1, the algorithm gives 5(p) = 0.999996

1.5

051

I I I I I I
-25 -2 -15 -1 -0.5 0 0.5

Figure : B(p)-pseudozero set of p(z) = z+1
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Numerical simulation (contd)

For the polynomial p(z) = Z° + 4z° + 6z + 4, the algorithm gives
B(p) = 2.61022%

3L

oL

s

L L L L L L L L L
-7 -6 -5 -4 -3 -2 -1 0 1 2

Figure : B(p)-pseudozero set of p(z) = 2> + 42> + 62+ 4
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Pseudozero set of interval
polynomials
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Interval polynomial

An interval polynomial: polynomial whose coefficients are real
intervals.

We denote by IR[z] the set of interval polynomials and by IR, [z] the
set of interval polynomials with degree at most 7.

Let p€R,[z]. We can write

p@ =Y la;,biz.

i=0
The zeros of an interval polynomial is the set

n .
Z(p) :={z € C: there exist m; € [a;, b;],i=0: nsuch thatZ m;z' = 0}.

—> Compute Z(p). =0
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Definition of real pseudozero set

Letp=Y7, piz' be a polynomial of R,,[Z]
Perturbations :
Real neighborhood of p

NE(p) ={peR,lzl: Ip-Dl <¢}.
Definition of the real ¢-pseudozero set

ZR(p) = {ze C: p(2) = 0 for pe NR(p)}.

S. Graillat (Univ. Paris 6) Pseudozeros and Pseudospectra



Computation of the real pseudozero set

Theorem:
The real e-pseudozero set satisfies

1
Zf(p) =Z(pu {ZE C\Z(p) : h(z) := d(Gg(z),RG;(z)) = E},
where d is defined for x,y € R""! by
d(x,Ry) = inf || x— ayll «
acR
and where Gg(2), Gi(z) are the real and imaginary part of

G(z) = %(1,;...,%)? ze C\Z(p)

Can be viewed as a special case of spectral value set [Karow 03]
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What for Rn ZF(p) ?

Given z€ R, z belongs to ZR(p) if and only if z belongs to Z.(p).

Draw the complex pseudozero set or the real pseudozero set on the
real axis is similar.
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Some properties

The function d defined for x,y € R"*! by

d(x,Ry) = inf || x— ayll «
acR

satisfies
|2 = &gy,
d(x,Ry) = { Ixll3 Iyll3 y# for the norm|| - ||
[l xll2 ify=0
min;—g., [l x— (x;/y)yllh ify#0,
d(x,Ry) = Yi#0 for the norm | - [l oo
Il xll1 ify=0
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Some properties (cont'd)

Proposition 3

The real e -pseudozero set ZX(p) is symmetric with respect to the real
axis.

| A

Proposition 4

The real ¢ -pseudozero set ZX(p) is included in the complex
e-pseudozero set.
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Algorithm to draw real pseudozero set

Drawing of real ¢-pseudozero set:

@ We mesh a square containing all the roots of p (MATLAB
command: meshgrid).

@ We compute h(z) := d(Gr(2z),RGj(z)) for all the nodes z in the grid.

© We draw the contour level |h(z)| = % (MATLAB command:
contour).
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Pseudozero set with weighted norm

n .
plz) =) piz'.
i=0

e identification of p with the vector (po, p1,..., pn) "

o d:=(dy,...,d,)T eR™! represents the weight of the coefficients
of p

@ |- lloo,¢ defined by
| Plloo,a = max{| p;|/|d;l}.
i=0:n
o Its dual norm is

n
lxlly,a:= D ldillxil.
=0
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Zeros of interval polynomials and real

pseudozero set

Let us denote p, the central polynomial defined by
n .
pe(d) =) ¢z,
i=0

with ¢; = (a; + b;) /2.

Let us denote d;:= (b; — a;) /2.
Proposition:

With the notation above, we have

Z(p) = ZX(p;) with e = 1.
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Example 1

p(z) = [1,2]2* +[3.2,3]2% + [10,14] 2% + [3,5V/2] 2+ [5, 7]

3+
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Example 2

p(z) = 22+ z2 +[3,8]z+ [1.5,4]

4

_4 L L
1.5 -1 -0.5
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Problem: choice of the grid

Lemma:
Let p(z) = X!, [a;, bj] 2" an interval polynomial and

max;—o.,{max{|a;l, | b;|}}
minf{|ayl, |byl}

R=1+

Then
Z(p) < B(O,R),

where B(O, R) the ball in C of centre O and radius R.
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Problems: discontinuities

Lemma [Hinrichsen et Kelb]:
The function

d: R xR SR, (x,)) — d(x,Ry)

is continue for all (x, y) with y # 0 or x = 0 and discontinue for all
(x,0) e R™ 1 x R™1 x#£0.

— Those discontinuties imply some difficulties for drawing near the
real axis.

Solution : on the real axis, we draw complex pseudozero set.
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Presentation of PSIP

A tool to draw zeros of interval polynomials

‘ PSIP: Pseudozero Set of Interval Polynomials ‘

Reraw

1

Grid Size

[
FIEEEN|

W Manual
Eas : 1 |
L
Sl
T
H YmaK )
” i H
4 3 2 B 0 1 z 3
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Presentation of PSIP (cont'd)

e agraphical interface for MATLAB (version 6.5 (R13))
e computation of grid that contains all the zeros

@ possibilities of zoom and mesh refinement

Limitations :
e problem if the leading interval contains 0

@ problems with discontinuities
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Pseudozero set of multivariate
polynomials
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Definitions (1/3)

A monomial in the n variables z,..., 2, is the power product
di=2 2y, withj= (..., jn) €N

jis the exponent and |jl := Y.)_, j, the degree of the monomial 7.

Definition 2

A complex (real) polynomial in n variables is a finite linear
combination of monomials in n variables with coefficients from C

(fromR),

p2) = p(z1,...,2,) = Z ajl___jnzil...z’,;’:zajz]-
(i) €T j€l

v

2MC) (™(R)) represents the set of all complex (real) polynomials in
nvariables.
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Definitions (2/3)

Given p=Yjc; a7 € 2" (K) with K =R or C
— |J| the number of elements of J

If|J| = M and let | - || be a norm on KM
— |pll is the norm of the vector a= (..., a;,...,j€])

Given a norm || - | on K with K = R or C, the dual norm is defined by
il 2= supy -y ly" xl.

Given a vector x € KV, there exists a dual vector Y€ KN with || yi=1
satisfying xTy = |1 xll .

Norms Dual norms

llxlly == 211 Ixl} = malele—llxlloo
lxllz == (152 | llxlly = (21192 =[xl
[ Xlloo := max;lx;l | llxll5, =X ;1x1 = llxlh
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Definitions (3/3)

Given € > 0, the e-neighborhood N;(p) of the polynomial pe PMK)is
the set of all polynomials of 22"(K) with p=}_ jejﬁjzf € 2"(K) with
supportJ < Jand |[p—pl <e.

Definition 3

Avalue ze K" is an e-pseudozero of a polynomial p € 22" if it is a zero
of some polynomial p in N¢(p).

Definition 4

The e-pseudozero set of a polynomial p e 22" (denoted by Z.(p)) is the
set of all the e -pseudozeros,

| \

Ze(p):={ze K":3pe N¢(p), plz) =0}
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Pseudozeros of complex multivariate

polynomials (1/2)

Theorem 4 (Stetter)

The complex € -pseudozero set of p= 3 je; ajzf € 2"(C) verifies

Zg(p) = {ZE c": g(Z) = % < E}

wherez:=(...,|zl,...,je DT.
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Pseudozeros of complex multivariate

polynomials (2/2)

Corollary 1 (Stetter)

The complex -pseudozero set of P = {p, ..., px}, k € N verifies

|p1(2)]| )I
lzyll

Zg(P):{ZEC” <eforl=1 k},

wherez;:= (..., Izlj,...,jejl)T.

4

We restrict our attention to situations where P as well as all the systems in
N¢(P) are 0-dimensional, that is, if the solution of the system is non-empty
and finite.

Theorem 5 (Stetter)

Each system P € N,(P) has the same number of zeros (counting
multiplicities) in a fixed pseudozero set connected component of Z.(P).
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Pseudozeros of real multivariate polynomials:

definition

A real e-neighborhood of pis the set of all polynomials of 2"(R),
close enough to p, that is to say,

NEp) = {pe?"®:Ip-pl <e}.

The real e-pseudozero set of pis defined to include all the zeros of the
real e-neighborhood of p:

ZB(p) = {z€ C": p(2) = 0 for pe NE(p)}.

For € = 0, the pseudozero set Zg(p) is the set of the roots of p we
denote Z(p).
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Pseudozeros of real multivariate polynomials:

computation

Distance of a point x € RY from the linear subspace Ry = {ay, a € R}

d(x,Ry) = inf |x— ayl«,
aceR

The real e -pseudozero set of p= Y je; ajzf € 2"(R) verifies

1
Zf(p) =Z(pu {ze C"\Z(p) : h(z) := d(Gr(2),RG/(2)) = - } ,
where Gr(2) and Gj(z) are the real and imaginary parts of

6@ = ——(...7,... jent, zeC"\Z(p).
p(z) ) ) ) )
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Computing the distance

e computing real e-pseudozero set Zf (p) needs to evaluate the
distance d(Gg(z),RG(2)).

e the 2-norm || - [|2 and (:,-) the corresponding inner product

xn? .
)2 — =22 ify#0,
2"z MY

d(x,Ry) = {
112 ify=0.

@ the co-norm,

min;—g., llx— (x;/y)yllh  ify#0,
d(x,Ry) = yi#0
llxIl1 if y=0.

e other p-norm with p # 2,00, no easy computable formula to
calculate d(x,Ry).
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Real pseudozeros of polynomial systems

Corollary 2

The real e -pseudozero set of P={py,..., px}, k € N verifies

k

1
ZRp =N (Z(pl) u {ze C™\Z(p) : d(GL(2),RGL(2) = . })
=1

where Gf?(z) and G}(z) are the real and imaginary parts of

Glz) = ﬁ(...,zj,...,j(-:]l)T, ze C"\Z(p)).
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Visualization of pseudozero sets (1/5)

o The descriptions of Z(P) and Z&(P) given previously make it
possible to compute, plot and visualize pseudozero set of
multivariate polynomials.

@ The pseudozero set is a subset of C"” which can only be seen by
its projections on low dimensional spaces that is often C.

We have written a MATLAB program to compute and visualize these
projections. This program requires the Symbolic Math Toolbox.
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Visualization of pseudozero sets (2/5)

For a given ve C", let Z.(P, j, v) be the projection of Z.(P) onto the
zj-space around v. Then, it follows that for P= {py,..., pi},

| o [pi(2)] }
Z, p;y = ECn: i — Ui, ’ = ’
+(Pj,v) {Z GV R A =€

wherez;:=(...,|z/,...,je pT.

One way for visualizing Z, (P, j, v) is to plot the values of the projection

of |pi1(2)|
Pl <
s(2):=lo ( max )
p 810 I=1,...k ||zl «

over a set of grid points around vin z;-space.
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Visualization of pseudozero sets (3/5)

In the same way, we define for a given ve C", ZE(P, j, v) by the
projection of Zf(P) onto the z;-space around v. It follows that for

P={p,...,p}

ZRwp,jv) = {ze C:zi=v,, i#], lgllaxkd(cg(z),mec;}(z))‘l < s}

where Gllq(z) and G}(z) are the real and imaginary parts of
Glz) = L(... 2,....jel)’, ze C"\Z(p).
pl(Z) )&y ’ )

One way for visualizing ZZ(P, j, v) is still to plot the values of the
projection of

psR(z) :=log,, lgllaxkd(Gf?(z),RGf(z))_l

over a set of grid points around v in z;-space.
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Visualization of pseudozero sets (4/5)

We examine the following system
using the 2-norm: two unit balls
intersection at (2,2),

Projection onto z,, v=(2.2) Projection onto z,, v=(2.2)

P pr=(@-1?+(z-27%-1,
"= @ -3+ (22— 1.

Projections of the complex
pseudozero set (on the left) and
the real pseudozero set (on the

right) of P,
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Visualization of pseudozero sets (5/5)

We can be only interested in the real zeros of a polynomial systems. In
this case, we can only draw R" N Zf (P).

P, = plzz%+z§—1,
2 p2=2521Z2—12.

We have computed the function

pi(x,y)
(x,y) = max ———,
§0 V= Tl
withz:= (..., |x+ iylj, .je T Projection of the real

pseudozero set of P,
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Pseudospectra of matrices
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Why structured matrices?

e Structured matrices are used in various fields such as signal
processing, etc.

e Using the structure of a matrix, we get some better properties

e Substantial interest in algorithms for structured problems in
recent years

e Growing interest in structured perturbation analysis

e In general perturbation and error analysis for structured solvers
are performed with general perturbations: for a structured solver
nothing else but structured perturbations are possible
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Our structures

h -1 - h-n
Toeplitz matrices ()" = 0 h h .
ot
Ih-1 =+ O b
ho h -+ hp
hy  h hy

Hankel matrices (k) = 0

Vo Un-1 4]
4] %)
Circulant matrices (v;)
Un-1
Un-1 (%1 40
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Number of independant parameters

o In the following table, k represents the number of independant
parameters for the different structures

Structure general Toeplitz  circulant Hankel
k n 2n—1 n 2n—1
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In this talk, we will use the following notation:

struct

M, (C)
Mztruct (C)
-

I 1,

O min (A)
A(A)

Toeplitz, circulant or Hankel

set of complex n x n matrices

set of structured complex n x n matrices
spectral norm

identity matrix (with 7 rows and columns)
smallest singular value of A

spectrum of A

S. Graillat (Univ. Paris 6)
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Definition of pseudospectra

The e-pseudospectrum of a matrix A, denoted A, (A), is the subset of
complex numbers consisting of all eigenvalues of all complex
matrices within a distance € of A

For areal € >0, the €-pseudospectrum of a matrix A€ My(C) is the set

Ae(A) ={ze C:ze A(X) where X € M,(C) and | X - Al < €}.
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Example of pseudospectra

4 ] -1
sl i

— >
2r 4

—_3
1F - .

— 4
ok i

—_5
_1F ]
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Distance to singularity

Definition 6

Given a nonsingular matrix A€ M,(C), we define the distance to
singularity by

d(A) = min{||AA|l : A+ AA singular, AA € M, (C)}.

Lemma 2 (Gastinel)
Let nonsingular A€ M, (C). Then we have

d) = |IA 7L
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Characterisation of pseudospectra

Theorem 7 (Trefethen)

The following assertions are equivalent
(i) A¢(A) is the e-pseudospectrum of a matrix A
(i) Ae(A)={zeC:l(E-A7"=e™)
(iii) Ae(A) ={zeC:0opmin(zl— Al < €}
(iv) Ag(A)={zeC:d(zl-A) <¢}
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Definition of structured pseudospectra

The structured e-pseudospectrum of a matrix A, denoted AST™(4), is

the subset of complex numbers consisting of all eigenvalues of all
complex structured matrices within a distance € of A

Definition 7

For areal € >0, the structured € -pseudospectrum of a matrix
A€ MSMY(C) is the set

ASTUYA) = {z€ C: z€ A(X) where X € M;™(C)
and | X -A| < e}.

S. Graillat (Univ. Paris 6)
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Structured distance to singularity

Definition 8

Given a nonsingular matrix A€ M5™°(C), we define the structured
distance to singularity by

d*""(A) = min{||AAl : A+ AA singular, AA € M,™(C)}.

Theorem 8 (Rump)

Let nonsingular A€ M,S,ltruCt(C) with struct being Toeplitz , Hankel or
circulant. Then we have

AN A) = d(A) = |ATH 7L
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Characterisation of structured pseudospectra

Given € > 0 and A€ M3™Y(C) with struct Toeplitz or circulant, the
structured € -pseudospectrum satisfies

AZUUCt(A) ={zeC:d*"YA-1z]) <&l

Theorem 9

Given e > 0 and A € M3™Y(C) with struct Toeplitz or circulant, the
e-pseudospectrum and the structured € -pseudospectrum satisfy

AFNA) = Ag(A).
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What for others linear structures?

We do not have equality for Hermitian and skew-Hermitian
structures.

For example for Hermitian structure we always have AP™(4) C R
whereas one can find an Hermitian matrix such that A (A) SZ R.

S. Graillat (Univ. Paris 6)
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The polynomial eigenvalue problem

Problem 10
Find the solutions (x, 1) € C"* x C of

P(A)x=0,

where
PA) = A" A+ A A+ + Ao,

with A€ M,(C), k=0:m

If x # 0 then A is called an eigenvalue and x the corresponding
eigenvector. The set of eigenvalues of P is denoted A(P). We assume
that P has only finite eigenvalues (and pseudoeigenvalues)
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Definition of pseudospectra

Let us define
AP = A" AA, + ATIAA,, 1 + -+ AAy,

where AAj € M,(C).

Definition 9
For a given € > 0, the e-pseudospectrum of P is the set

Ae(P)={A1eC:(P(A)+AP(A)x=0 for somex#0
with |AAyll < axe, k=0: mj.

The nonnegative parameters ay, ..., &, allow freedom in how
perturbations are measured
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Characterisation of pseudospectra

Lemma 4 (Tisseur and Higham (2001))

Ae(P)={1eC:d(PV) < ep(IAD},

wherep(x) =17 o
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Definition of structured pseudospectra

We suppose that AAj have a structure belonging to struct. We also
suppose that all the matrices A and AAg, k=0: n, belong to
MUY for a given structure struct. Let

PA) = A" A+ A" YA+ + Ay,
with Ag € M3™Y(C), k=0: mand

AP = A" A A, + ATIAA,, 1 + -+ AAy,

where AA; € M5™Y(C). P(1) and AP(A) belong to M3 (C).
Definition 10

We define the structured e -pseudospectrum of P by

ASTUY(P) = {A e C: (P(A) + AP(A))x =0 for some x # 0
with AAr € My™ (), | AALll < are, k=0: n}.

S. Graillat (Univ. Paris 6)
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Characterisation of structured pseudospectra

For struct € {Toep, circ, Hankel}, we have

A:tl‘uCt(P) = {A € C 0 dStIUCt(P(A,)) < €P(|/1|)}»

where p(x) = X ax*.

| A

Theorem 11

Given € >0 and P(A) € MS™°Y(C) a matrix polynomial with
struct € {Toep, circ, Hankel}, the e-pseudospectrum and the structured

e-pseudospectrum satisfy

AJNUP) = Ag(P).
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Real structured perturbations

Consider
PA) = A" Ay + Am_lAm—l +---+ Ay,
with A € M,,(R), k=0: mand
APA) = A" AA, + ATIAA,, 1 + -+ AAy,

where AA € M,(R). Suppose that P(A) is subject to structured
perturbations:

AAO) r D®[E0y m]’

with De M, 1 (R), ® € M ;(R) and Ex € M ,(R), k=0:m.
For notational convenience, we introduce

EA) = ElIL, AL, ... A" L) = A"E), + A YE,q + -+ + Ey,
and

G(A) = EQMP() "' D= Gg(A) +iG(A), Gr(A),Gi(A) e R".
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Definition and characterisation of
pseudospectra

Definition 11

The structured € -pseudospectrum is defined by

Ae(P)={A1eC:(P(A)+ DOEL))x =0 for some x # 0, 0] < &}

We denote for x,y € R/,
d(x,Ry) = inf [x—ayl,
aeR

the distance of the point x from the linear subspace Ry = {ay, a € R}.

Ae(P) ={AeC\A(P): d(Gr(A),RGr(A) = 1/} UA(P) l
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Conclusion

We have

@ The structured pseudospectrum is equal to the pseudospectrum
for the two following structures: Toeplitz and circulant

@ This result is false for structures Hermitian and skew-Hermitian

@ We have generalized these results to pseudospectra of matrix
polynomials.

@ We have given a formula for structured pseudospectra of real
matrix polynomials
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Open problems




Pseudozeros of interval polynomials

Problem
Given

e an ball polynomial p(x) = X7, B(a;, r;)x* with a; € C, r; = 0 and
@ zeC

does there exist ¢; € B(a;, r;) such that p.(z) := :.120 cizt=0

Solution [Mosier (1986)]

The ¢; exist if and only if

|p(2)|
ro+nlzl+---+rylzl™
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Pseudozeros of interval polynomials

Given
@ an interval polynomial p(x) = Z;’zo[ai; b;]x' with a;, b; € R, a; < b;
and
@ zeC
does there exist ¢; € [a;, b;] such that p.(z) := ?:0 c;iZt=0

Given a vector d:= (dy, ...,d,;)T in C"*1, we consider the weighted
norms

n
I %llo0,a = max{ipil/Idily  and llxlh,q:= > ldillxil.
- i=0
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Pseudozeros of interval polynomials

We define
disty(x,Ry) = inf [[x— ayl,q4,
acR

min;—o.p lx— (x;/y)ylh,a ify#0,
distg(x,Ry) = Yi#0
111, ify=0.

and Gr(p, 2) and Gj(p, z) being the real and imaginary parts of

G(p,z) = %(l,z,...,z”)T, z€ C with p(z) # 0.
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Pseudozeros of interval polynomials

Let py(x) = o mix! iwith m; = (a;+ b;) 12 et d;:= (b; — a;) 2.

The c; exist if and only if either p(z) =0 or

dlStd(GR(pm; Z)) RGI(pm; Z)) = ]-
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Pseudozeros of interval polynomials

Given

e an ball polynomial p(x) = X7, (la;; bjl + ilc;; dj])xf with
a;, bj, Cj) dj eC, a; = bj, Cj = dj and
@ zeC
does there exist a; € [aj; bj] and B ;i € [¢j; dj] such that
pe(2) =YL (aj+ifjz' =0

For the moment, no closed formula ! Maybe NP-hard ?
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Thank you for your attention
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