Pseudozeros and Pseudospectra

Stef Graillat

LIP6/PEQUAN - Université Pierre et Marie Curie (Paris 6) - CNRS

Groupe de travail AriC LIP, ENS Lyon, October 1st, 2013

- Pseudozeros
- Application of pseudozeros
- Pseudozeros of interval polynomials
- Pseudozeros of multivariate polynomials
- Pseudosectra and structures
- Open problems

Motivations

- Polynomials appear in almost all areas in scientific computing and engineering
- The relationships between industrial applications and polynomial systems solving studied by the European Community Project FRISCO
- Applications in Computer Aided Design and Modeling, Mechanical Systems Design, Signal Processing and Filter Design, Civil Engineering, Robotics, Simulation
- The wide range of use of polynomial systems needs to have fast and reliable methods to solve them
 - symbolic approach based either on the theory of Gröbner basis or on the theory of resultants
 - numeric approach based on iterative methods like Newton's method or homotopy continuation methods
 - recently, hybrid methods, combining both symbolic and numeric methods

- In practice, from situations arising in science or engineering, the data are known only to a limited accuracy
- Analytical sensitivity analysis introduces a condition number that bounds the magnitudes of the (first order) changes of the roots with respect to the coefficient perturbations
- Continuous sensitivity analysis, introduced by Ostrowski, considers the uncertainty of the coefficients as a continuity problem. The most powerful tool of this last type of methods seems to be the pseudozero set of a polynomial

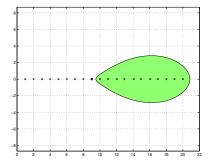
An example for the univariate case

Computing the zeros of the Wilkinson polynomial of degree 20

$$W(x) = (x-1)(x-2)\cdots(x-20)$$

= $x^{20} - 210x^{19} + \dots + 20!$

Uncertainty of 2^{-23} on the coefficient of x^{19}



S. Graillat (Univ. Paris 6)

Perturbation : Neighborhood of polynomial *p*

$$N_{\varepsilon}(p) = \left\{ \widehat{p} \in \mathbb{C}_n[z] : \|p - \widehat{p}\| \le \varepsilon \right\}.$$

Definition of the ε **-pseudozero set:**

$$Z_{\varepsilon}(p) = \left\{ z \in \mathbb{C} : \widehat{p}(z) = 0 \text{ for } \widehat{p} \in N_{\varepsilon}(p) \right\}.$$

 $\|\cdot\|$ a norm on the vector of the coefficients of p

This set is formed by the zeros of polynomials "near p".

- Mosier (1986): Definition and study form the ∞ -norm.
- Hinrichsen and Kelb: spectral value sets
- ► Trefethen and Toh (1994): Study for the 2-norm. pseudozeros ≈ pseudospectra of the companion matrix.
- Chatelin and Frayssé (1996): propose a Synthesis in Lectures on Finite Precision Computations (SIAM)
- Stetter (1999,2004): Numerical polynomial algebra. Generalization of the previous works.
- Zhang (2001): Study of the influence of the basis for the 2-norm (condition number of the evaluation).
- ► Karow (2003): thesis on Spectral value sets

Theorem 1

The ε -pseudozeros set satisfies

$$Z_{\varepsilon}(p) = \left\{ z \in \mathbb{C} : |g(z)| := \frac{|p(z)|}{\|\underline{z}\|_*} \le \varepsilon \right\},$$

where $\underline{z} = (1, z, ..., z^n)$ and $\|\cdot\|_*$ is the dual norm of $\|\cdot\|_*$

$$\|y\|_* = \sup_{x \neq 0} \frac{|y^*x|}{\|x\|}$$

Let *p* be in $\mathbb{C}_n[z]$ and $u \in \mathbb{C}$. Statement of the problem:

Find a polynomial $p_u \in \mathbb{C}_n[z]$ satisfying $p_u(u) = 0$ and such that if there exists a polynomial $q \in \mathbb{C}_n[z]$ with q(u) = 0 then we get $||p - p_u|| \le ||p - q||$.

We are looking for:

- an expression of *p_u*;
- uniqueness of p_u .

Let us denote $\underline{u} := (1, u, u^2, ..., u^n) \in \mathbb{C}^{n+1}$. There exists $d \in \mathbb{C}^{n+1}$ satisfying ${}^t d\underline{u} = ||\underline{u}||_*$ et ||d|| = 1. Let us define the polynomials *r* and p_u by

$$r(z) = \sum_{k=0}^{n} r_k z^k \text{ with } r_k = d_k,$$

$$p_u(z) = p(z) - \frac{p(u)}{r(u)} r(z).$$

p_u is the nearest polynomial of p with root u.

A sufficient condition for uniqueness :

Theorem 2

If the norm $\|\cdot\|$ is strictly convex then p_u is unique.

It is the case, for example, for the norms $\|\cdot\|_p$ for 1 .

We do not have unicity for $\|\cdot\|_1$ and $\|\cdot\|_\infty$. For p(z) = 1 + z

$\ \cdot\ _1, u=1$			$\ \cdot\ _{\infty}, u=0$	
p_u	$p_1^{(1)}(z) = 0$	$p_1^{(2)}(z) = \frac{1}{3}(1-z)$	$p_0^{(1)}(z) = z$	$p_0^{(2)}(z) = \frac{1}{2}z$
$p-p_i$	z-1	$\frac{4}{3}z - \frac{2}{3}$	1	$\frac{1}{2}z + 1$
$\ p-p_i\ $	2	2	1	1

Algorithm to draw the ε -pseudozero set:

- We mesh a square containing all the roots of p (MATLAB command: meshgrid).
- We compute $g(z) := \frac{|p(z)|}{\|z\|_*}$ for all the nodes *z* in the grid.
- We draw the contour level $|g(z)| = \varepsilon$ (MATLAB command: contour).

Problems:

- Find a square containing all the roots of *p* and all the pseudozeros.
- Find a grid step that separates all the roots.

Let *p* be a unitary polynomial of degree *n* and $\{z_i\}$ the set of its *n* roots. Let us denote $r = \max_{i=1;...;n} |z_i|$. We have

$$r \le \max\{1, \sum_{k=1}^{n} |p_k|\}.$$

Let us denote $R := \max\{1, \sum_{i=1}^{n} |p_i| + n\varepsilon\}$. We can prove (in $\|\cdot\|_p$)

 $Z_{\varepsilon}(p) \subset B(0, R)$ the closed ball of centre 0 and radix R.

Let *L* be the length of the square and *h* the step of discretization. The evaluation of $g(z) = \frac{|p(z)|}{\|z\|_*}$ needs

- the evaluation of polynomial p, that can be done in $\mathcal{O}(n)$,
- the computation of the norm of a vector (the complexity depends on the norm).

Let us denote $\mathcal{O}(\|\cdot\|_*)$ this complexity. The complexity of the algorithm to draw the pseudozero set is

 $\mathcal{O}((L/h)^2(n+\|\cdot\|_*)) \ .$

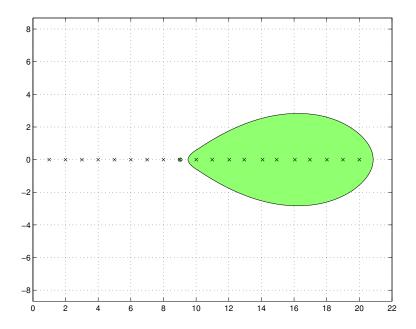
L and h depend on n but also on the polynomial coefficients.

Pseudozero set of the *Wilkinson* polynomial $W_{20} = (z-1)(z-2)\cdots(z-20),$ $= z^{20} - 210z^{19} + \cdots + 20!.$

We perturb only the coefficient of z^{19} with $\varepsilon = 2^{-23}$. One use the weighted-norm $\|\cdot\|_{\infty}$:

$$||p||_{\infty} = \max_{i} \frac{|p_{i}|}{m_{i}}$$
 with m_{i} non negative

with $m_{19} = 1$, $m_i = 0$ otherwise and the convention $m/0 = \infty$ if m > 0 and 0/0 = 0.



Pseudozero set provides:

- a qualitative study of polynomials
- a better understanding of the results of polynomial algorithms
- a use of polynomials with coefficients known to a certain accuracy.

Drawback

• the cost

If $p \in \mathbb{R}_n[x]$, we define

$$N_{\varepsilon}(p) := \{q \in \mathbb{R}_n[x] : \|p - q\| \le \varepsilon\}.$$

Two cases :

- we seek the real pseudozeros: the same as the complex case;
- we seek all the complex non real pseudozeros.

We define the pseudozero set by

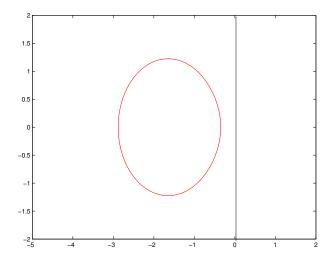
$$Z_{\varepsilon}(p) := \{ z \in \mathbb{C} : \widehat{p}(z) = 0 \text{ for } \widehat{p} \in N_{\varepsilon}(p) \}.$$

 $Z_{\varepsilon}(p)$ is symmetrical with respect to the real axis.

Other applications of pseudozeros

Hurwitz robust stability in control theory

Hurwitz stability: Real part of roots of p < 0. ε -pseudozero set of $p(z) = (z+1)^2$ for $\varepsilon = 0.4$.



S. Graillat (Univ. Paris 6)

Computation of stability radius

- \mathcal{P}_n : polynomials of $\mathbb{C}[X]$ of degree less or equal than n \mathcal{M}_n : monic polynomials of \mathcal{P}_n
- \mathcal{M}_n : mome polynomials of \mathcal{P}_n
- $\|\cdot\|$: the 2-norm of the coefficients of a polynomial

Definition 1

A polynomial is said to be stable if all the roots have negative real part and unstable otherwise (Hurwitz stability).

The function *abscissa* $a: \mathscr{P} \to \mathbb{R}$ is defined by

 $a(p) = \max\{\operatorname{Re}(z) : p(z) = 0\}.$

A polynomial *p* is stable $\iff a(p) < 0$

En control theory, a transfer function can be written as $H(p) = \frac{N(p)}{D(p)}$ where *N* and *D* are polynomials.

The system is stable if *D* is a stable polynomial .

Question : if *D* is stable, is it far from unstable system?

Problem : Find the distance to the nearest unstable system. (we assume that *D* is monic)

Stability radius $\beta(p)$: distance of the polynomial $p \in \mathcal{M}_n$ from the set of monic unstable polynomials.

 $\beta(p) = \min\{\|p - q\| : q \in \mathcal{M}_n \text{ and } a(q) \ge 0\}.$

Statement of the problem:

Given a polynomial $p \in \mathcal{M}_n$ *, compute* $\beta(p)$ *.*

Solution

Tools

- an explicit formula giving the pseudozeros
- the continuous dependency of the roots with respect to the polynomial coefficients
- the Sturm sequences to count the real roots

The results

- a algorithm calculating $\beta(p)$ with an arbitrary tolerance τ
- a drawing showing the pseudozeros at the distance $\beta(p)$
 - \longrightarrow enable a qualitative analysis of the result
 - \longrightarrow visualization of the result

Another characterization of $Z_{\varepsilon}(p)$

Let us denote $h_{p,\varepsilon} : \mathbb{R}^2 \to \mathbb{R}$ the function defined by

$$h_{p,\varepsilon}(x,y) = |p(x+iy)|^2 - \varepsilon^2 \sum_{j=0}^{n-1} (x^2 + y^2)^j.$$

Then one has

$$Z_{\varepsilon}(p) = \{(x, y) \in \mathbb{R}^2 : h_{p,\varepsilon}(x, y) \le 0\}$$

 \implies $h_{\varepsilon}(\cdot, y)$ et $h_{\varepsilon}(x, \cdot)$ are polynomials of degree 2n.

Theoretical results

Proposition 1

The function abscissa

$$a:\mathscr{P}_n\to\mathbb{R}$$

defined by $a(p) = \max{\text{Re}(z) : p(z) = 0}$ is continuous on \mathcal{M}_n .

Proposition 2

One has the following relation

$$\beta(p) = \min\{\|p - q\| : q \in \mathcal{M}_n \text{ and } \underline{a(q)} = 0\}.$$

Theorem 3

The equation $h_{p,\varepsilon}(0, y) = 0$ *has a real solution* y *if and only if* $\beta(p) \le \varepsilon$.

Require: a stable polynomial *p* and a tolerance τ **Ensure:** a number α such that $|\alpha - \beta(p)| \le \tau$

- 1: $\gamma := 0$, $\delta := \|p z^n\|$ 2: while $|\gamma - \delta| > \tau$ do 3: $\varepsilon := \frac{\gamma + \delta}{2}$ 4: if the equation $h_{p,\varepsilon}(0, y) = 0$, $y \in \mathbb{R}$ has a solution then 5: $\delta := \varepsilon$
- 6: **else**
- 7: $\gamma := \varepsilon$
- 8: **end if**
- 9: end while

10: return $\alpha = \frac{\gamma + \delta}{2}$

Numerical simulation

For the polynomial p(z) = z + 1, the algorithm gives $\beta(p) \approx 0.999996$

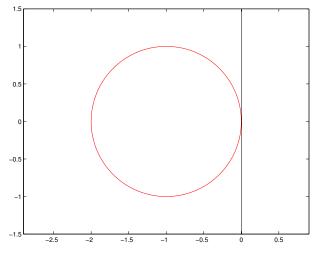


Figure : $\beta(p)$ -pseudozero set of p(z) = z + 1

S. Graillat (Univ. Paris 6)

Numerical simulation (contd)

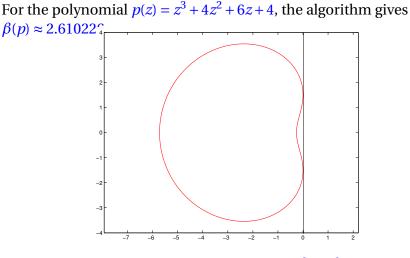


Figure : $\beta(p)$ -pseudozero set of $p(z) = z^3 + 4z^2 + 6z + 4$

Pseudozero set of interval polynomials

An interval polynomial: polynomial whose coefficients are real intervals.

We denote by $\mathbb{R}[z]$ the set of interval polynomials and by $\mathbb{R}_n[z]$ the set of interval polynomials with degree at most *n*. Let $p \in \mathbb{R}_n[z]$. We can write

$$p(z) = \sum_{i=0}^{n} [a_i, b_i] z^i.$$

zeros of an interval polynomial is the set

 $\mathbb{Z}(p) := \{z \in \mathbb{C} : \text{there exist } m_i \in [a_i, b_i], i = 0 : n \text{ such that } \sum_{i=0}^n m_i z^i = 0\}.$ $\implies \text{Compute } \mathbb{Z}(p).$

The

Let $p = \sum_{i=0}^{n} p_i z^i$ be a polynomial of $\mathbb{R}_n[z]$ **Perturbations :** Real neighborhood of p

$$N_{\varepsilon}^{R}(p) = \left\{ \widehat{p} \in \mathbb{R}_{n}[z] : \|p - \widehat{p}\| \le \varepsilon \right\}.$$

Definition of the real ε -pseudozero set

$$Z_{\varepsilon}^{R}(p) = \left\{ z \in \mathbb{C} : \widehat{p}(z) = 0 \text{ for } \widehat{p} \in N_{\varepsilon}^{R}(p) \right\}.$$

Computation of the real pseudozero set

Theorem:

The real ε -pseudozero set satisfies

$$Z_{\varepsilon}^{R}(p) = Z(p) \cup \left\{ z \in \mathbb{C} \setminus Z(p) : h(z) := d(G_{R}(z), \mathbb{R}G_{I}(z)) \geq \frac{1}{\varepsilon} \right\},$$

where *d* is defined for $x, y \in \mathbb{R}^{n+1}$ by

$$d(x,\mathbb{R}y) = \inf_{\alpha\in\mathbb{R}} \|x - \alpha y\|_*$$

and where $G_R(z)$, $G_I(z)$ are the real and imaginary part of

$$G(z) = \frac{1}{p(z)} (1, z, \dots, z^n)^T, \ z \in \mathbb{C} \setminus Z(p)$$

Can be viewed as a special case of spectral value set [Karow 03]

Lemma 1

Given $z \in \mathbb{R}$, z belongs to $Z_{\varepsilon}^{R}(p)$ if and only if z belongs to $Z_{\varepsilon}(p)$.

Draw the complex pseudozero set or the real pseudozero set on the real axis is similar.

Some properties

The function *d* defined for $x, y \in \mathbb{R}^{n+1}$ by

$$d(x, \mathbb{R}y) = \inf_{\alpha \in \mathbb{R}} \|x - \alpha y\|_*$$

satisfies

$$d(x, \mathbb{R}y) = \begin{cases} \sqrt{\|x\|_{2}^{2} - \frac{\langle x, y \rangle^{2}}{\|y\|_{2}^{2}}} & \text{if } y \neq 0, \\ \|x\|_{2} & \text{if } y = 0 \end{cases} \quad \text{for the norm} \|\cdot\|_{2}$$

$$d(x, \mathbb{R}y) = \begin{cases} \min_{\substack{i=0:n \\ y_{i} \neq 0 \\ \|x\|_{1}}} \|x - (x_{i}/y_{i})y\|_{1} & \text{if } y \neq 0, \\ \|x\|_{1} & \text{if } y = 0 \end{cases} \quad \text{for the norm} \|\cdot\|_{\infty}$$

Proposition 3

The real ε -pseudozero set $Z_{\varepsilon}^{R}(p)$ is symmetric with respect to the real axis.

Proposition 4

The real ε *-pseudozero set* $Z_{\varepsilon}^{R}(p)$ *is included in the complex* ε *-pseudozero set.*

Drawing of real ε -pseudozero set:

- We mesh a square containing all the roots of p (MATLAB command: meshgrid).
- 2 We compute $h(z) := d(G_R(z), \mathbb{R}G_I(z))$ for all the nodes *z* in the grid.
- We draw the contour level $|h(z)| = \frac{1}{\varepsilon}$ (MATLAB command: contour).

Pseudozero set with weighted norm

$$p(z) = \sum_{i=0}^{n} p_i z^i.$$

- identification of *p* with the vector $(p_0, p_1, ..., p_n)^T$
- $d := (d_0, ..., d_n)^T \in \mathbb{R}^{n+1}$ represents the weight of the coefficients of p
- $\|\cdot\|_{\infty,d}$ defined by

$$\|p\|_{\infty,d} = \max_{i=0:n} \{|p_i|/|d_i|\}.$$

Its dual norm is

$$||x||_{1,d} := \sum_{i=0}^{n} |d_i| |x_i|.$$

Zeros of interval polynomials and real pseudozero set

Let us denote p_c the central polynomial defined by

$$p_c(z) = \sum_{i=0}^n c_i z^i,$$

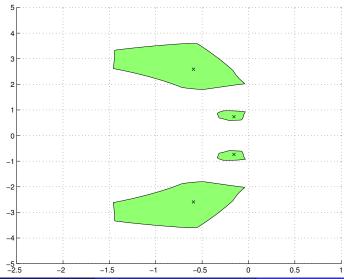
with $c_i = (a_i + b_i)/2$. Let us denote $d_i := (b_i - a_i)/2$. **Proposition:**

With the notation above, we have

$$\mathbb{Z}(p) = Z_{\varepsilon}^{R}(p_{c})$$
 with $\varepsilon = 1$.

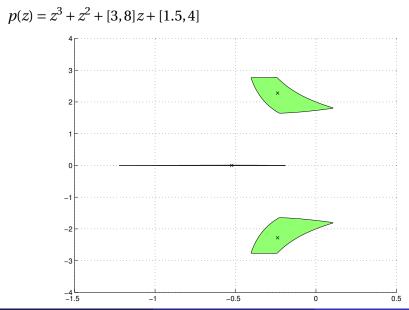
Example 1

$p(z) = [1,2]z^4 + [3.2,3]z^3 + [10,14]z^2 + [3,5\sqrt{2}]z + [5,7]$



S. Graillat (Univ. Paris 6)

Example 2



S. Graillat (Univ. Paris 6)

41 / 88

Lemma :

Let $p(z) = \sum_{i=0}^{n} [a_i, b_i] z^i$ an interval polynomial and

$$R := 1 + \frac{\max_{i=0:n} \{\max\{|a_i|, |b_i|\}\}}{\min\{|a_n|, |b_n|\}}.$$

Then

 $\mathbb{Z}(p) \subset B(O,R),$

where B(O, R) the ball in \mathbb{C} of centre O and radius R.

Lemma [Hinrichsen et Kelb]: The function

$$d: \mathbb{R}^{n+1} \times \mathbb{R}^{n+1} \to \mathbb{R}_+, \quad (x, y) \mapsto d(x, \mathbb{R}y)$$

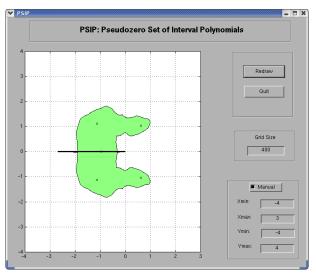
is continue for all (x, y) with $y \neq 0$ or x = 0 and discontinue for all $(x, 0) \in \mathbb{R}^{n+1} \times \mathbb{R}^{n+1}$, $x \neq 0$.

 \implies Those discontinuties imply some difficulties for drawing near the real axis.

Solution : on the real axis, we draw complex pseudozero set.

Presentation of PSIP

A tool to draw zeros of interval polynomials



S. Graillat (Univ. Paris 6)

Pseudozeros and Pseudospectra

Presentation of PSIP (cont'd)

- a graphical interface for MATLAB (version 6.5 (R13))
- computation of grid that contains all the zeros
- possibilities of zoom and mesh refinement

Limitations :

- problem if the leading interval contains 0
- problems with discontinuities

Pseudozero set of multivariate polynomials

Definitions (1/3)

A monomial in the *n* variables z_1, \ldots, z_n is the power product

$$z^j := z_1^{j_1} \cdots z_n^{j_n}, \quad \text{with } j = (j_1, \dots, j_n) \in \mathbb{N}^n;$$

j is the exponent and $|j| := \sum_{\sigma=1}^{n} j_{\sigma}$ the *degree* of the monomial z^{j} .

Definition 2

A complex (real) polynomial in n variables is a finite linear combination of monomials in n variables with coefficients from \mathbb{C} (from \mathbb{R}),

$$p(z) = p(z_1,...,z_n) = \sum_{(j_1,...,j_n)\in J}^n a_{j_1\cdots j_n} z_1^{j_1}\cdots z_n^{j_n} = \sum_{j\in J} a_j z^j.$$

 $\mathcal{P}^n(\mathbb{C})$ ($\mathcal{P}^n(\mathbb{R})$) represents the set of all complex (real) polynomials in *n* variables.

S. Graillat (Univ. Paris 6)

Definitions (2/3)

Given $p = \sum_{j \in J} a_j z^j \in \mathscr{P}^n(\mathbb{K})$ with $\mathbb{K} = \mathbb{R}$ or \mathbb{C} $\longrightarrow |J|$ the number of elements of *J*

If |J| = M and let $\|\cdot\|$ be a norm on \mathbb{K}^M

 $\longrightarrow ||p||$ is the norm of the vector $a = (\dots, a_j, \dots, j \in J)$

Given a norm $\|\cdot\|$ on \mathbb{K}^N with $\mathbb{K} = \mathbb{R}$ or \mathbb{C} , the dual norm is defined by $\|x\|_* := \sup_{\|y\|=1} |y^T x|$.

Given a vector $x \in \mathbb{K}^N$, there exists a dual vector $y \in \mathbb{K}^N$ with ||y|| = 1 satisfying $x^T y = ||x||_*$.

Norms	Dual norms
$ x _1 := \sum_j x_j $	$ x _1^* = \max_j x_j = x _\infty$
$ x _2 := (\sum_j x_j ^2)^{1/2}$	$\ x\ _{2}^{*} = (\sum_{j} x_{j} ^{2})^{1/2} = \ x\ _{2}$
$\ x\ _{\infty} := \max_{j} x_{j} $	$\ x\ _{\infty}^{*} = \sum_{j} x_{j} = \ x\ _{1}$

Given $\varepsilon > 0$, the ε -neighborhood $N_{\varepsilon}(p)$ of the polynomial $p \in \mathcal{P}^{n}(\mathbb{K})$ is the set of all polynomials of $\mathcal{P}^{n}(\mathbb{K})$ with $\tilde{p} = \sum_{j \in \tilde{J}} \tilde{a}_{j} z^{j} \in \mathcal{P}^{n}(\mathbb{K})$ with support $\tilde{J} \subset J$ and $\|\tilde{p} - p\| \le \varepsilon$.

Definition 3

A value $z \in \mathbb{K}^n$ is an ε -pseudozero of a polynomial $p \in \mathscr{P}^n$ if it is a zero of some polynomial \tilde{p} in $N_{\varepsilon}(p)$.

Definition 4

The ε *-pseudozero set* of a polynomial $p \in \mathscr{P}^n$ (denoted by $Z_{\varepsilon}(p)$) is the set of all the ε *-pseudozeros*,

 $Z_{\varepsilon}(p) := \{ z \in \mathbb{K}^n : \exists \widetilde{p} \in N_{\varepsilon}(p), \ \widetilde{p}(z) = 0 \}.$

Pseudozeros of complex multivariate polynomials (1/2)

Theorem 4 (Stetter)

The complex ε -pseudozero set of $p = \sum_{j \in J} a_j z^j \in \mathscr{P}^n(\mathbb{C})$ verifies

$$Z_{\varepsilon}(p) = \left\{ z \in \mathbb{C}^n : g(z) := \frac{|p(z)|}{\|\mathbf{z}\|_*} \le \varepsilon \right\}$$

where $\mathbf{z} := (..., |z|^{j}, ..., j \in J)^{T}$.

Pseudozeros of complex multivariate polynomials (2/2)

Corollary 1 (Stetter)

The complex ε *-pseudozero set of* $P = \{p_1, \dots, p_k\}$ *,* $k \in \mathbb{N}$ *verifies*

$$Z_{\varepsilon}(P) = \left\{ z \in \mathbb{C}^n : \frac{|p_l(z)|}{\|\mathbf{z}_l\|_*} \le \varepsilon \text{ for } l = 1, \dots, k \right\},\$$

where
$$\mathbf{z}_{\mathbf{l}} := (..., |z|^{j}, ..., j \in J_{l})^{T}$$
.

We restrict our attention to situations where *P* as well as all the systems in $N_{\varepsilon}(P)$ are 0-dimensional, that is, if the solution of the system is non-empty and finite.

Theorem 5 (Stetter)

Each system $\tilde{P} \in N_{\varepsilon}(P)$ has the same number of zeros (counting multiplicities) in a fixed pseudozero set connected component of $Z_{\varepsilon}(P)$.

Pseudozeros of real multivariate polynomials: definition

A real ε -neighborhood of p is the set of all polynomials of $\mathscr{P}^n(\mathbb{R})$, close enough to p, that is to say,

$$N_{\varepsilon}^{R}(p) = \left\{ \widetilde{p} \in \mathscr{P}^{n}(\mathbb{R}) : \|p - \widetilde{p}\| \le \varepsilon \right\}.$$

The real ε -pseudozero set of p is defined to include all the zeros of the real ε -neighborhood of p:

$$Z_{\varepsilon}^{R}(p) = \left\{ z \in \mathbb{C}^{n} : \widetilde{p}(z) = 0 \text{ for } \widetilde{p} \in N_{\varepsilon}^{R}(p) \right\}.$$

For $\varepsilon = 0$, the pseudozero set $Z_0^R(p)$ is the set of the roots of p we denote Z(p).

Pseudozeros of real multivariate polynomials: computation

Distance of a point $x \in \mathbb{R}^N$ from the linear subspace $\mathbb{R}y = \{\alpha y, \alpha \in \mathbb{R}\}$

$$d(x,\mathbb{R}y) = \inf_{\alpha\in\mathbb{R}} \|x-\alpha y\|_*,$$

Theorem 6

The real ε -pseudozero set of $p = \sum_{j \in J} a_j z^j \in \mathscr{P}^n(\mathbb{R})$ verifies

$$Z_{\varepsilon}^{R}(p) = Z(p) \cup \left\{ z \in \mathbb{C}^{n} \setminus Z(p) : h(z) := d(G_{R}(z), \mathbb{R}G_{I}(z)) \geq \frac{1}{\varepsilon} \right\},$$

where $G_R(z)$ and $G_I(z)$ are the real and imaginary parts of

$$G(z) = \frac{1}{p(z)}(\dots, z^j, \dots, j \in J)^T, \ z \in \mathbb{C}^n \setminus Z(p).$$

Computing the distance

- computing real ε -pseudozero set $Z_{\varepsilon}^{R}(p)$ needs to evaluate the distance $d(G_{R}(z), \mathbb{R}G_{I}(z))$.
- the 2-norm $\|\cdot\|_2$ and $\langle\cdot,\cdot\rangle$ the corresponding inner product

$$d(x, \mathbb{R}y) = \begin{cases} \sqrt{\|x\|_2^2 - \frac{\langle x, y \rangle^2}{\|y\|_2^2}} & \text{if } y \neq 0, \\ \|x\|_2 & \text{if } y = 0. \end{cases}$$

• the ∞ -norm,

$$d(x, \mathbb{R}y) = \begin{cases} \min_{\substack{i=0:n \ y_i \neq 0}} \|x - (x_i/y_i)y\|_1 & \text{if } y \neq 0, \\ y_i \neq 0 & \text{if } y = 0. \end{cases}$$

• other *p*-norm with $p \neq 2, \infty$, no easy computable formula to calculate $d(x, \mathbb{R}y)$.

Corollary 2

The real ε *-pseudozero set of* $P = \{p_1, ..., p_k\}$ *,* $k \in \mathbb{N}$ *verifies*

$$Z_{\varepsilon}^{R}(P) = \bigcap_{l=1}^{k} \left\{ Z(p_{l}) \cup \left\{ z \in \mathbb{C}^{n} \setminus Z(p_{l}) : d(G_{R}^{l}(z), \mathbb{R}G_{I}^{l}(z)) \ge \frac{1}{\varepsilon} \right\} \right\}$$

where $G_R^l(z)$ and $G_I^l(z)$ are the real and imaginary parts of

$$G^{l}(z) = \frac{1}{p_{l}(z)}(\ldots, z^{j}, \ldots, j \in J_{l})^{T}, \ z \in \mathbb{C}^{n} \setminus Z(p_{l}).$$

Visualization of pseudozero sets (1/5)

- The descriptions of Z_ε(P) and Z_ε^R(P) given previously make it possible to compute, plot and visualize pseudozero set of multivariate polynomials.
- The pseudozero set is a subset of \mathbb{C}^n which can only be seen by its projections on low dimensional spaces that is often \mathbb{C} .

We have written a MATLAB program to compute and visualize these projections. This program requires the Symbolic Math Toolbox.

Visualization of pseudozero sets (2/5)

For a given $v \in \mathbb{C}^n$, let $Z_{\varepsilon}(P, j, v)$ be the projection of $Z_{\varepsilon}(P)$ onto the z_j -space around v. Then, it follows that for $P = \{p_1, \dots, p_k\}$,

$$Z_{\varepsilon}(P,j,\nu) = \left\{ z \in \mathbb{C}^n : z_i = \nu_i, \ i \neq j, \ \max_{l=1,\dots,k} \frac{|p_l(z)|}{\|\mathbf{z}_l\|_*} \le \varepsilon \right\},\$$

where $\mathbf{z}_{l} := (..., |z|^{j}, ..., j \in J_{l})^{T}$.

One way for visualizing $Z_{\varepsilon}(P, j, v)$ is to plot the values of the projection of

$$ps(z) := \log_{10} \left(\max_{l=1,...,k} \frac{|p_l(z)|}{\|\mathbf{z}_l\|_*} \right)$$

over a set of grid points around v in z_j -space.

Visualization of pseudozero sets (3/5)

In the same way, we define for a given $v \in \mathbb{C}^n$, $Z_{\varepsilon}^R(P, j, v)$ by the projection of $Z_{\varepsilon}^R(P)$ onto the z_j -space around v. It follows that for $P = \{p_1, \ldots, p_k\}$,

$$Z_{\varepsilon}^{R}(P,j,\nu) = \left\{ z \in \mathbb{C}^{n} : z_{i} = \nu_{i}, \ i \neq j, \ \max_{l=1,\dots,k} d(G_{R}^{l}(z), \mathbb{R}G_{I}^{l}(z))^{-1} \leq \varepsilon \right\}$$

where $G_R^l(z)$ and $G_I^l(z)$ are the real and imaginary parts of

$$G^{l}(z) = \frac{1}{p_{l}(z)}(\ldots, z^{j}, \ldots, j \in J_{l})^{T}, \ z \in \mathbb{C}^{n} \setminus Z(p_{l}).$$

One way for visualizing $Z_{\varepsilon}^{R}(P, j, v)$ is still to plot the values of the projection of

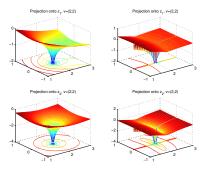
$$ps^{R}(z) := \log_{10} \left(\max_{l=1,\dots,k} d(G_{R}^{l}(z), \mathbb{R}G_{I}^{l}(z))^{-1} \right)$$

over a set of grid points around v in z_j -space.

Visualization of pseudozero sets (4/5)

We examine the following system using the 2-norm: two unit balls intersection at (2,2),

$$P_1 = \begin{cases} p_1 = (z_1 - 1)^2 + (z_2 - 2)^2 - 1, \\ p_2 = (z_1 - 3)^2 + (z_2 - 2)^2 - 1. \end{cases}$$



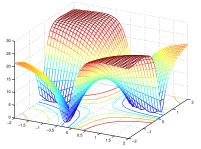
Projections of the complex pseudozero set (on the left) and the real pseudozero set (on the right) of P_1 We can be only interested in the real zeros of a polynomial systems. In this case, we can only draw $\mathbb{R}^n \cap Z_{\varepsilon}^R(P)$.

$$P_2 = \begin{cases} p_1 = z_1^2 + z_2^2 - 1, \\ p_2 = 25z_1z_2 - 12. \end{cases}$$

We have computed the function

$$g(x, y) = \max_{l=1,2} \frac{p_l(x, y)}{\|\mathbf{z}_l\|_*},$$

with
$$\mathbf{z}_{\mathbf{l}} := (..., |x + iy|^{j}, ..., j \in J_{l})^{T}$$
.



Projection of the real pseudozero set of *P*₂

Pseudospectra of matrices

- Structured matrices are used in various fields such as signal processing, etc.
- Using the structure of a matrix, we get some better properties
- Substantial interest in algorithms for structured problems in recent years
- Growing interest in structured perturbation analysis
- In general perturbation and error analysis for structured solvers are performed with *general* perturbations: for a structured solver nothing else but structured perturbations are *possible*

Our structures

	$\begin{pmatrix} t_0 & t_{-1} & \cdots & t_{1-n} \end{pmatrix}$
Toeplitz matrices $(t_{i-j})_{i,j=0}^{n-1}$	$t_1 t_0 \ddots \vdots$
	$\vdots \cdots t_{-1}$
	$\begin{pmatrix} t_{n-1} & \cdots & t_1 & t_0 \end{pmatrix}$
Hankel matrices $(h_{i,j})_{i,j=0}^{n-1}$	$\begin{pmatrix} h_0 & h_1 & \cdots & h_{n-1} \end{pmatrix}$
	$h_1 h_2 \cdot \cdot h_n$
	$\left(\begin{array}{cccc} \vdots & \ddots & \ddots & \vdots \\ h_{n-1} & h_n & \cdots & h_{2n-2} \end{array}\right)$
	$\begin{pmatrix} h_{n-1} & h_n & \cdots & h_{2n-2} \end{pmatrix}$
Circulant matrices $(v_i)_{i=0}^{n-1}$	$\begin{pmatrix} v_0 & v_{n-1} & \cdots & v_1 \end{pmatrix}$
	$v_1 v_0 \ddots \vdots$
	\vdots \cdots v_{n-1}
	$\left(\begin{array}{ccc} v_{n-1} & \cdots & v_1 & v_0 \end{array} \right)$

Number of independant parameters

• In the following table, *k* represents the number of independant parameters for the different structures

Structure	general	Toeplitz	circulant	Hankel
k	n^2	2n - 1	n	2 <i>n</i> -1

In this talk, we will use the following notation:

struct	Toeplitz, circulant or Hankel
$M_n(\mathbb{C})$	set of complex $n \times n$ matrices
$M_n^{\text{struct}}(\mathbb{C})$	set of structured complex $n \times n$ matrices
•	spectral norm
<i>I</i> , <i>I</i> _n	identity matrix (with <i>n</i> rows and columns)
$\sigma_{\min}(A)$	smallest singular value of A
$\Lambda(A)$	spectrum of A

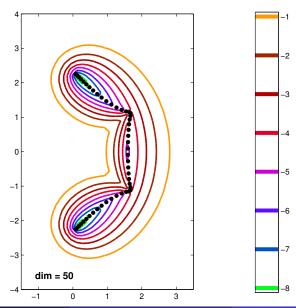
The ε -pseudospectrum of a matrix A, denoted $\Lambda_{\varepsilon}(A)$, is the subset of complex numbers consisting of all eigenvalues of all complex matrices within a distance ε of A

Definition 5

For a real $\varepsilon > 0$, the ε -pseudospectrum of a matrix $A \in M_n(\mathbb{C})$ is the set

 $\Lambda_{\varepsilon}(A) = \{ z \in \mathbb{C} : z \in \Lambda(X) \text{ where } X \in M_n(\mathbb{C}) \text{ and } \|X - A\| \le \varepsilon \}.$

Example of pseudospectra



S. Graillat (Univ. Paris 6)

Definition 6

Given a nonsingular matrix $A \in M_n(\mathbb{C})$, we define the distance to singularity by

 $d(A) = \min\{\|\Delta A\| : A + \Delta A \text{ singular}, \Delta A \in M_n(\mathbb{C})\}.$

Lemma 2 (Gastinel)

Let nonsingular $A \in M_n(\mathbb{C})$. Then we have

$$d(A) = \|A^{-1}\|^{-1}.$$

Theorem 7 (Trefethen)

The following assertions are equivalent

(i) $\Lambda_{\varepsilon}(A)$ is the ε -pseudospectrum of a matrix A

(ii)
$$\Lambda_{\varepsilon}(A) = \{z \in \mathbb{C} : ||(zI - A)^{-1}|| \ge \varepsilon^{-1}\}$$

(iii)
$$\Lambda_{\varepsilon}(A) = \{z \in \mathbb{C} : \sigma_{min}(zI - A) \| \le \varepsilon\}$$

(iv) $\Lambda_{\varepsilon}(A) = \{z \in \mathbb{C} : d(zI - A) \le \varepsilon\}$

The structured ε -pseudospectrum of a matrix A, denoted $\Lambda_{\varepsilon}^{\text{struct}}(A)$, is the subset of complex numbers consisting of all eigenvalues of all complex structured matrices within a distance ε of A

Definition 7

For a real $\varepsilon > 0$, the structured ε -pseudospectrum of a matrix $A \in M_n^{\text{struct}}(\mathbb{C})$ is the set

$$\Lambda_{\varepsilon}^{\text{struct}}(A) = \{ z \in \mathbb{C} : z \in \Lambda(X) \text{ where } X \in M_n^{\text{struct}}(\mathbb{C}) \}$$

and $||X - A|| \le \varepsilon$ }.

Definition 8

Given a nonsingular matrix $A \in M_n^{\text{struct}}(\mathbb{C})$, we define the structured distance to singularity by

 $d^{\text{struct}}(A) = \min\{\|\Delta A\| : A + \Delta A \text{ singular}, \Delta A \in M_n^{\text{struct}}(\mathbb{C})\}.$

Theorem 8 (Rump)

Let nonsingular $A \in M_n^{\text{struct}}(\mathbb{C})$ with struct being Toeplitz , Hankel or circulant. Then we have

$$d^{\text{struct}}(A) = d(A) = ||A^{-1}||^{-1}.$$

Lemma 3

Given $\varepsilon > 0$ and $A \in M_n^{\text{struct}}(\mathbb{C})$ with struct Toeplitz or circulant, the structured ε -pseudospectrum satisfies

$$\Lambda_{\varepsilon}^{\text{struct}}(A) = \{ z \in \mathbb{C} : d^{\text{struct}}(A - zI) \le \varepsilon \}.$$

Theorem 9

Given $\varepsilon > 0$ and $A \in M_n^{\text{struct}}(\mathbb{C})$ with struct Toeplitz or circulant, the ε -pseudospectrum and the structured ε -pseudospectrum satisfy

 $\Lambda_{\varepsilon}^{\text{struct}}(A) = \Lambda_{\varepsilon}(A).$

- We do not have equality for Hermitian and skew-Hermitian structures.
- For example for Hermitian structure we always have $\Lambda_{\varepsilon}^{\text{herm}}(A) \subsetneq \mathbb{R}$ whereas one can find an Hermitian matrix such that $\Lambda_{\varepsilon}(A) \nsubseteq \mathbb{R}$.

The polynomial eigenvalue problem

Problem 10

Find the solutions $(x, \lambda) \in \mathbb{C}^n \times \mathbb{C}$ *of*

 $P(\lambda)x=0,$

where

$$P(\lambda) = \lambda^m A_m + \lambda^{m-1} A_{m-1} + \dots + A_0,$$

with $A_k \in M_n(\mathbb{C})$, k = 0 : m

If $x \neq 0$ then λ is called an eigenvalue and x the corresponding eigenvector. The set of eigenvalues of P is denoted $\Lambda(P)$. We assume that P has only finite eigenvalues (and pseudoeigenvalues)

Definition of pseudospectra

Let us define

$$\Delta P(\lambda) = \lambda^m \Delta A_m + \lambda^{m-1} \Delta A_{m-1} + \dots + \Delta A_0,$$

where $\Delta A_k \in M_n(\mathbb{C})$.

Definition 9

For a given $\varepsilon > 0$, the ε -pseudospectrum of P is the set

$$\begin{split} \Lambda_{\varepsilon}(P) &= \{\lambda \in \mathbb{C} : (P(\lambda) + \Delta P(\lambda)) x = 0 \text{ for some } x \neq 0 \\ with \|\Delta A_k\| \leq \alpha_k \varepsilon, k = 0 : m \}. \end{split}$$

The nonnegative parameters $\alpha_1, \ldots, \alpha_m$ allow freedom in how perturbations are measured

Characterisation of pseudospectra

Lemma 4 (Tisseur and Higham (2001))

 $\Lambda_{\varepsilon}(P) = \{\lambda \in \mathbb{C} : d(P(\lambda)) \le \varepsilon p(|\lambda|)\},\$

where $p(x) = \sum_{k=0}^{m} \alpha_k x^k$.

Definition of structured pseudospectra

We suppose that ΔA_k have a structure belonging to struct. We also suppose that all the matrices A_k and ΔA_k , k = 0 : n, belong to $M_n^{\text{struct}}(\mathbb{C})$ for a given structure struct. Let

$$P(\lambda) = \lambda^m A_m + \lambda^{m-1} A_{m-1} + \dots + A_0,$$

with $A_k \in M_n^{\text{struct}}(\mathbb{C})$, k = 0 : m and

$$\Delta P(\lambda) = \lambda^m \Delta A_m + \lambda^{m-1} \Delta A_{m-1} + \dots + \Delta A_0,$$

where $\Delta A_k \in M_n^{\text{struct}}(\mathbb{C})$. $P(\lambda)$ and $\Delta P(\lambda)$ belong to $M_n^{\text{struct}}(\mathbb{C})$.

Definition 10

We define the structured ε -pseudospectrum of P by

$$\begin{split} \Lambda^{\mathrm{struct}}_{\varepsilon}(P) &= \{\lambda \in \mathbb{C} : (P(\lambda) + \Delta P(\lambda))x = 0 \text{ for some } x \neq 0 \\ with \ \Delta A_k \in M^{\mathrm{struct}}_n(\mathbb{C}), \|\Delta A_k\| \leq \alpha_k \varepsilon, k = 0 : n \}. \end{split}$$

Characterisation of structured pseudospectra

Lemma 5

For struct \in {Toep, circ, Hankel}*, we have*

 $\Lambda_{\varepsilon}^{\text{struct}}(P) = \{\lambda \in \mathbb{C} : d^{\text{struct}}(P(\lambda)) \le \varepsilon p(|\lambda|)\},\$

where $p(x) = \sum_{k=0}^{n} \alpha_k x^k$.

Theorem 11

Given $\varepsilon > 0$ and $P(\lambda) \in M_n^{\text{struct}}(\mathbb{C})$ a matrix polynomial with struct \in {Toep, circ, Hankel}, the ε -pseudospectrum and the structured ε -pseudospectrum satisfy

 $\Lambda_{\varepsilon}^{\text{struct}}(P) = \Lambda_{\varepsilon}(P).$

Real structured perturbations

Consider

$$P(\lambda) = \lambda^m A_m + \lambda^{m-1} A_{m-1} + \dots + A_0,$$

with $A_k \in M_n(\mathbb{R})$, k = 0 : m and

$$\Delta P(\lambda) = \lambda^m \Delta A_m + \lambda^{m-1} \Delta A_{m-1} + \dots + \Delta A_0,$$

where $\Delta A_k \in M_n(\mathbb{R})$. Suppose that $P(\lambda)$ is subject to structured perturbations:

$$[\Delta A_0,\ldots,\Delta A_m]=D\Theta[E_0,\ldots,E_m],$$

with $D \in M_{n,1}(\mathbb{R})$, $\Theta \in M_{1,t}(\mathbb{R})$ and $E_k \in M_{t,n}(\mathbb{R})$, k = 0 : m. For notational convenience, we introduce

$$E(\lambda) = E[I_n, \lambda I_n, \dots, \lambda^m I_n]^T = \lambda^m E_m + \lambda^{m-1} E_{m-1} + \dots + E_0,$$

and

$$G(\lambda) = E(\lambda)P(\lambda)^{-1}D = G_R(\lambda) + iG_I(\lambda), \quad G_R(\lambda), G_I(\lambda) \in \mathbb{R}^t.$$

Definition and characterisation of pseudospectra

Definition 11

The structured ε -pseudospectrum is defined by

 $\Lambda_{\varepsilon}(P) = \{\lambda \in \mathbb{C} : (P(\lambda) + D\Theta E(\lambda)) x = 0 \text{ for some } x \neq 0, \|\Theta\| \le \varepsilon\}$

We denote for $x, y \in \mathbb{R}^t$,

$$d(x,\mathbb{R}y) = \inf_{\alpha\in\mathbb{R}} \|x-\alpha y\|,$$

the distance of the point *x* from the linear subspace $\mathbb{R}y = \{\alpha y, \alpha \in \mathbb{R}\}$.

Theorem 12

 $\Lambda_{\varepsilon}(P) = \{\lambda \in \mathbb{C} \setminus \Lambda(P) : d(G_R(\lambda), \mathbb{R}G_I(\lambda)) \ge 1/\varepsilon\} \cup \Lambda(P)$

We have

- The structured pseudospectrum is equal to the pseudospectrum for the two following structures: Toeplitz and circulant
- This result is false for structures Hermitian and skew-Hermitian
- We have generalized these results to pseudospectra of matrix polynomials.
- We have given a formula for structured pseudospectra of real matrix polynomials

Open problems

Pseudozeros of interval polynomials

Problem

Given

- an ball polynomial $p(x) = \sum_{i=0}^{n} B(a_i, r_i) x^i$ with $a_i \in \mathbb{C}$, $r_i \ge 0$ and
- $z \in \mathbb{C}$

does there exist $c_i \in B(a_i, r_i)$ such that $p_c(z) := \sum_{i=0}^n c_i z^i = 0$

Solution [Mosier (1986)]

The c_i exist if and only if

$$\frac{|p(z)|}{r_0 + r_1 |z| + \dots + r_n |z|^n} \le 1$$

Pseudozeros of interval polynomials

Problem

Given

- an interval polynomial $p(x) = \sum_{i=0}^{n} [a_i; b_i] x^i$ with $a_i, b_i \in \mathbb{R}$, $a_i \le b_i$ and
- $z \in \mathbb{C}$

does there exist $c_i \in [a_i, b_i]$ such that $p_c(z) := \sum_{i=0}^n c_i z^i = 0$

Given a vector $d := (d_0, ..., d_n)^T$ in \mathbb{C}^{n+1} , we consider the weighted norms

$$||x||_{\infty,d} = \max_{i=0:n} \{|p_i|/|d_i|\}$$
 and $||x||_{1,d} := \sum_{i=0}^n |d_i||x_i|.$

We define

$$dist_{d}(x, \mathbb{R}y) = \inf_{\alpha \in \mathbb{R}} ||x - \alpha y||_{1,d},$$
$$dist_{d}(x, \mathbb{R}y) = \begin{cases} \min_{\substack{i=0:n \\ y_i \neq 0 \\ ||x||_{1,d}} & \text{if } y = 0. \end{cases}$$

and $G_R(p, z)$ and $G_I(p, z)$ being the real and imaginary parts of

$$G(p, z) = \frac{1}{p(z)} (1, z, ..., z^n)^T, z \in \mathbb{C} \text{ with } p(z) \neq 0.$$

Let $p_m(x) = \sum_{i=0}^n m_i x^i$ with $m_i = (a_i + b_i)/2$ et $d_i := (b_i - a_i)/2$.

Solution

The c_i exist if and only if either p(z) = 0 or

 $\operatorname{dist}_d(G_R(p_m, z), \mathbb{R}G_I(p_m, z)) \ge 1$

Problem

Given

- an ball polynomial $p(x) = \sum_{i=0}^{n} ([a_j; b_j] + i[c_j; d_j])x^j$ with $a_j, b_j, c_j, d_j \in \mathbb{C}, a_j \ge b_j, c_j \ge d_j$ and
- $z \in \mathbb{C}$

does there exist $\alpha_j \in [a_j; b_j]$ and $\beta_j \in [c_j; d_j]$ such that $p_c(z) := \sum_{i=0}^n (\alpha_j + i\beta_j) z^i = 0$

For the moment, no closed formula ! Maybe NP-hard ?

Thank you for your attention