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Motivations

Polynomials appear in almost all areas in scientific computing
and engineering
The relationships between industrial applications and
polynomial systems solving studied by the European
Community Project FRISCO
Applications in Computer Aided Design and Modeling,
Mechanical Systems Design, Signal Processing and Filter Design,
Civil Engineering, Robotics, Simulation
The wide range of use of polynomial systems needs to have fast
and reliable methods to solve them

symbolic approach based either on the theory of Gröbner basis or
on the theory of resultants
numeric approach based on iterative methods like Newton’s
method or homotopy continuation methods
recently, hybrid methods, combining both symbolic and numeric
methods
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Dealing with uncertainties

In practice, from situations arising in science or engineering, the
data are known only to a limited accuracy

Analytical sensitivity analysis introduces a condition number
that bounds the magnitudes of the (first order) changes of the
roots with respect to the coefficient perturbations

Continuous sensitivity analysis, introduced by Ostrowski,
considers the uncertainty of the coefficients as a continuity
problem. The most powerful tool of this last type of methods
seems to be the pseudozero set of a polynomial

S. Graillat (Univ. Paris 6) Pseudozeros and Pseudospectra 4 / 88



An example for the univariate case

Computing the zeros of the Wilkinson polynomial of degree 20

W (x) = (x−1)(x−2) · · · (x−20)

= x20 −210x19 +·· ·+20!

Uncertainty of 2−23 on the coefficient of x19
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Pseudozero set: definition

Perturbation :
Neighborhood of polynomial p

Nε(p) = {
p̂ ∈Cn[z] : ‖p− p̂‖ ≤ ε} .

Definition of the ε-pseudozero set:

Zε(p) = {
z ∈C : p̂(z) = 0 for p̂ ∈ Nε(p)

}
.

‖ ·‖ a norm on the vector of the coefficients of p

This set is formed by the zeros of polynomials “near p”.
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Pseudozeros: brief survey of existing references

Ï Mosier (1986): Definition and study form the ∞-norm.

Ï Hinrichsen and Kelb: spectral value sets

Ï Trefethen and Toh (1994): Study for the 2-norm.
pseudozeros ≈ pseudospectra of the companion matrix.

Ï Chatelin and Frayssé (1996): propose a Synthesis in Lectures on
Finite Precision Computations (SIAM)

Ï Stetter (1999,2004): Numerical polynomial algebra. Generalization
of the previous works.

Ï Zhang (2001): Study of the influence of the basis for the 2-norm
(condition number of the evaluation).

Ï Karow (2003): thesis on Spectral value sets
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Pseudozeros are easily computable

Theorem 1
The ε-pseudozeros set satisfies

Zε(p) =
{

z ∈C : |g(z)| := |p(z)|
‖z‖∗

≤ ε
}

,

where z = (1,z, . . . ,zn) and ‖ ·‖∗ is the dual norm of ‖ ·‖,

‖y‖∗ = sup
x 6=0

|y∗x|
‖x‖
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The nearest polynomial with a given root pu

Let p be in Cn[z] and u ∈C.
Statement of the problem:

Find a polynomial pu ∈Cn[z] satisfying pu(u) = 0 and such
that if there exists a polynomial q ∈Cn[z] with q(u) = 0 then
we get ‖p−pu‖ ≤ ‖p−q‖.

We are looking for:

• an expression of pu;

• uniqueness of pu.
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Computation of pu

Let us denote u := (1,u,u2, . . . ,un) ∈Cn+1.
There exists d ∈Cn+1 satisfying tdu = ‖u‖∗ et ‖d‖ = 1.
Let us define the polynomials r and pu by

r(z) =
n∑

k=0
rkzk with rk = dk,

pu(z) = p(z)− p(u)

r(u)
r(z).

pu is the nearest polynomial of p with root u.
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Uniqueness of pu

A sufficient condition for uniqueness :

Theorem 2
If the norm ‖ ·‖ is strictly convex then pu is unique.

It is the case, for example, for the norms ‖ ·‖p for 1 < p <∞.

We do not have unicity for ‖ ·‖1 and ‖ ·‖∞. For p(z) = 1+z

‖ ·‖1, u = 1 ‖ ·‖∞, u = 0

pu p(1)
1 (z) = 0 p(2)

1 (z) = 1
3 (1−z) p(1)

0 (z) = z p(2)
0 (z) = 1

2 z
p−pi z−1 4

3 z− 2
3 1 1

2 z+1
‖p−pi‖ 2 2 1 1
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Algorithm of computation

Algorithm to draw the ε-pseudozero set:
1 We mesh a square containing all the roots of p (MATLAB

command: meshgrid).

2 We compute g(z) := |p(z)|
‖z‖∗ for all the nodes z in the grid.

3 We draw the contour level |g(z)| = ε (MATLAB command:
contour).

Problems :

• Find a square containing all the roots of p and all the pseudozeros.

• Find a grid step that separates all the roots.
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Choice of the grid

Let p be a unitary polynomial of degree n and {zi} the set of its n roots.
Let us denote r = max

i=1;...;n
|zi| . We have

r ≤ max{1,
n∑

k=1
|pk|}.

Let us denote R := max{1,
∑n

i=1 |pi|+nε}. We can prove (in ‖ ·‖p)

Zε(p) ⊂ B(0,R) the closed ball of centre 0 and radix R.
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Complexity of drawing pseudozero set

Let L be the length of the square and h the step of discretization. The
evaluation of g(z) = |p(z)|

‖z‖∗ needs

the evaluation of polynomial p, that can be done in O (n),

the computation of the norm of a vector (the complexity
depends on the norm).

Let us denote O (‖ ·‖∗) this complexity. The complexity of the
algorithm to draw the pseudozero set is

O ((L/h)2(n+‖·‖∗)) .

L and h depend on n but also on the polynomial coefficients.
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A famous example

Pseudozero set of the Wilkinson polynomial
W20 = (z−1)(z−2) · · · (z−20),

= z20 −210z19 +·· ·+20!.

We perturb only the coefficient of z19 with ε= 2−23.
One use the weighted-norm ‖ ·‖∞:

‖p‖∞ = max
i

|pi|
mi

with mi non negative

with m19 = 1, mi = 0 otherwise and the convention m/0 =∞ if m > 0
and 0/0 = 0.
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Interests of pseudozeros

Pseudozero set provides:

a qualitative study of polynomials

a better understanding of the results of polynomial algorithms

a use of polynomials with coefficients known to a certain
accuracy.

Drawback

the cost
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Pseudozeros of real polynomials

If p ∈Rn[x], we define

Nε(p) := {q ∈Rn[x] : ‖p−q‖ ≤ ε}.

Two cases :

• we seek the real pseudozeros: the same as the complex case;

• we seek all the complex non real pseudozeros.

We define the pseudozero set by

Zε(p) := {z ∈C : p̂(z) = 0 for p̂ ∈ Nε(p)}.

Zε(p) is symmetrical with respect to the real axis.
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Other applications of
pseudozeros
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Hurwitz robust stability in control theory

Hurwitz stability: Real part of roots of p < 0.
ε-pseudozero set of p(z) = (z+1)2 for ε= 0.4.
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Computation of stability radius

Pn : polynomials of C[X ] of degree less or equal than n
Mn : monic polynomials of Pn

‖ ·‖ : the 2-norm of the coefficients of a polynomial

Definition 1
A polynomial is said to be stable if all the roots have negative real part
and unstable otherwise (Hurwitz stability).

The function abscissa a : P →R is defined by

a(p) = max{Re(z) : p(z) = 0}.

A polynomial p is stable ⇐⇒ a(p) < 0
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Motivation

En control theory, a transfer function can be written as H(p) = N(p)
D(p)

where N and D are polynomials.

The system is stable if D is a stable polynomial .

Question : if D is stable, is it far from unstable system?

Problem : Find the distance to the nearest unstable system.
(we assume that D is monic)
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Statement of the problem

Stability radius β(p) : distance of the polynomial p ∈Mn from the set
of monic unstable polynomials.

β(p) = min{‖p−q‖ : q ∈Mn and a(q) ≥ 0}.

Statement of the problem:

Given a polynomial p ∈Mn, compute β(p).
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Solution

Tools

an explicit formula giving the pseudozeros

the continuous dependency of the roots with respect to the
polynomial coefficients

the Sturm sequences to count the real roots

The results

a algorithm calculating β(p) with an arbitrary tolerance τ

a drawing showing the pseudozeros at the distance β(p)
−→ enable a qualitative analysis of the result
−→ visualization of the result
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Another characterization of Zε(p)

Let us denote hp,ε :R2 →R the function defined by

hp,ε(x,y) = |p(x+ iy)|2 −ε2
n−1∑
j=0

(x2 +y2)j.

Then one has

Zε(p) = {(x,y) ∈R2 : hp,ε(x,y) ≤ 0}

=⇒ hε(·,y) et hε(x, ·) are polynomials of degree 2n.
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Theoretical results

Proposition 1
The function abscissa

a : Pn →R

defined by a(p) = max{Re(z) : p(z) = 0} is continuous on Mn.

Proposition 2
One has the following relation

β(p) = min{‖p−q‖ : q ∈Mn and a(q) = 0}.

Theorem 3
The equation hp,ε(0,y) = 0 has a real solution y if and only if β(p) ≤ ε.
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Algorithm (bisection)

Require: a stable polynomial p and a tolerance τ
Ensure: a number α such that |α−β(p)| ≤ τ

1: γ := 0, δ := ‖p−zn‖
2: while |γ−δ| > τ do
3: ε := γ+δ

2
4: if the equation hp,ε(0,y) = 0, y ∈R has a solution then
5: δ := ε
6: else
7: γ := ε
8: end if
9: end while

10: return α= γ+δ
2
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Numerical simulation

For the polynomial p(z) = z+1, the algorithm gives β(p) ≈ 0.999996
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Figure : β(p)-pseudozero set of p(z) = z+1
S. Graillat (Univ. Paris 6) Pseudozeros and Pseudospectra 28 / 88



Numerical simulation (contd)

For the polynomial p(z) = z3 +4z2 +6z+4, the algorithm gives
β(p) ≈ 2.610226
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Figure : β(p)-pseudozero set of p(z) = z3 +4z2 +6z+4
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Pseudozero set of interval
polynomials
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Interval polynomial

An interval polynomial: polynomial whose coefficients are real
intervals.
We denote by IR[z] the set of interval polynomials and by IRn[z] the
set of interval polynomials with degree at most n.
Let p ∈ IRn[z]. We can write

p(z) =
n∑

i=0
[ai,bi]z

i.

The zeros of an interval polynomial is the set

Z(p) := {z ∈C : there exist mi ∈ [ai,bi], i = 0 : n such that
n∑

i=0
miz

i = 0}.

=⇒ Compute Z(p).
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Definition of real pseudozero set

Let p =∑n
i=0 pizi be a polynomial of Rn[z]

Perturbations :
Real neighborhood of p

NR
ε (p) = {

p̂ ∈Rn[z] : ‖p− p̂‖ ≤ ε} .

Definition of the real ε-pseudozero set

ZR
ε (p) = {

z ∈C : p̂(z) = 0 for p̂ ∈ NR
ε (p)

}
.
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Computation of the real pseudozero set

Theorem:
The real ε-pseudozero set satisfies

ZR
ε (p) = Z(p)∪

{
z ∈C\Z(p) : h(z) := d(GR(z),RGI (z)) ≥ 1

ε

}
,

where d is defined for x,y ∈Rn+1 by

d(x,Ry) = inf
α∈R

‖x−αy‖∗

and where GR(z), GI (z) are the real and imaginary part of

G(z) = 1

p(z)
(1,z, . . . ,zn)T , z ∈C\Z(p)

Can be viewed as a special case of spectral value set [Karow 03]
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What for R∩ZR
ε (p) ?

Lemma 1
Given z ∈R, z belongs to ZR

ε (p) if and only if z belongs to Zε(p).

Draw the complex pseudozero set or the real pseudozero set on the
real axis is similar.
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Some properties

The function d defined for x,y ∈Rn+1 by

d(x,Ry) = inf
α∈R

‖x−αy‖∗

satisfies

d(x,Ry) =


√
‖x‖2

2 − 〈x,y〉2

‖y‖2
2

if y 6= 0,

‖x‖2 if y = 0
for the norm‖ ·‖2

d(x,Ry) =
mini=0:n

yi 6=0
‖x− (xi/yi)y‖1 if y 6= 0,

‖x‖1 if y = 0
for the norm ‖ ·‖∞
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Some properties (cont’d)

Proposition 3

The real ε-pseudozero set ZR
ε (p) is symmetric with respect to the real

axis.

Proposition 4

The real ε-pseudozero set ZR
ε (p) is included in the complex

ε-pseudozero set.

S. Graillat (Univ. Paris 6) Pseudozeros and Pseudospectra 36 / 88



Algorithm to draw real pseudozero set

Drawing of real ε-pseudozero set:
1 We mesh a square containing all the roots of p (MATLAB

command: meshgrid).
2 We compute h(z) := d(GR(z),RGI (z)) for all the nodes z in the grid.
3 We draw the contour level |h(z)| = 1

ε (MATLAB command:
contour).
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Pseudozero set with weighted norm

p(z) =
n∑

i=0
piz

i.

identification of p with the vector (p0,p1, . . . ,pn)T

d := (d0, . . . ,dn)T ∈Rn+1 represents the weight of the coefficients
of p

‖ ·‖∞,d defined by

‖p‖∞,d = max
i=0:n

{|pi|/|di|}.

Its dual norm is

‖x‖1,d :=
n∑

i=0
|di||xi|.
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Zeros of interval polynomials and real
pseudozero set

Let us denote pc the central polynomial defined by

pc(z) =
n∑

i=0
ciz

i,

with ci = (ai +bi)/2.
Let us denote di := (bi −ai)/2.
Proposition:
With the notation above, we have

Z(p) = ZR
ε (pc) with ε= 1.

S. Graillat (Univ. Paris 6) Pseudozeros and Pseudospectra 39 / 88



Example 1

p(z) = [1,2]z4 + [3.2,3]z3 + [10,14]z2 + [3,5
p

2]z+ [5,7]
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Example 2

p(z) = z3 +z2 + [3,8]z+ [1.5,4]
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Problem: choice of the grid

Lemma :
Let p(z) =∑n

i=0[ai,bi]zi an interval polynomial and

R := 1+ maxi=0:n{max{|ai|, |bi|}}

min{|an|, |bn|}
.

Then
Z(p) ⊂ B(O,R),

where B(O,R) the ball in C of centre O and radius R.
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Problems: discontinuities

Lemma [Hinrichsen et Kelb]:
The function

d :Rn+1 ×Rn+1 →R+, (x,y) 7→ d(x,Ry)

is continue for all (x,y) with y 6= 0 or x = 0 and discontinue for all
(x,0) ∈Rn+1 ×Rn+1, x 6= 0.
=⇒ Those discontinuties imply some difficulties for drawing near the
real axis.

Solution : on the real axis, we draw complex pseudozero set.
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Presentation of PSIP

A tool to draw zeros of interval polynomials
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Presentation of PSIP (cont’d)

a graphical interface for MATLAB (version 6.5 (R13))

computation of grid that contains all the zeros

possibilities of zoom and mesh refinement

Limitations :

problem if the leading interval contains 0

problems with discontinuities
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Pseudozero set of multivariate
polynomials
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Definitions (1/3)

A monomial in the n variables z1, . . . ,zn is the power product

zj := zj1
1 · · ·zjn

n , with j = (j1, . . . , jn) ∈Nn;

j is the exponent and |j| :=∑n
σ=1 jσ the degree of the monomial zj.

Definition 2
A complex (real) polynomial in n variables is a finite linear
combination of monomials in n variables with coefficients from C

(from R),

p(z) = p(z1, . . . ,zn) =
n∑

(j1,...,jn)∈J
aj1···jn zj1

1 · · ·zjn
n =∑

j∈J
ajz

j.

P n(C) (P n(R)) represents the set of all complex (real) polynomials in
n variables.
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Definitions (2/3)

Given p =∑
j∈J ajzj ∈P n(K) withK=R or C

−→ |J | the number of elements of J

If |J | = M and let ‖ ·‖ be a norm onKM

−→ ‖p‖ is the norm of the vector a = (. . . ,aj, . . . , j ∈ J)

Given a norm ‖ ·‖ onKN withK=R or C, the dual norm is defined by
‖x‖∗ := sup‖y‖=1 |yT x|.
Given a vector x ∈KN , there exists a dual vector y ∈KN with ‖y‖ = 1
satisfying xT y = ‖x‖∗.

Norms Dual norms
‖x‖1 :=∑

j |xj| ‖x‖∗1 = maxj |xj| = ‖x‖∞
‖x‖2 := (

∑
j |xj|2)1/2 ‖x‖∗2 = (

∑
j |xj|2)1/2 = ‖x‖2

‖x‖∞ := maxj |xj| ‖x‖∗∞ =∑
j |xj| = ‖x‖1
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Definitions (3/3)

Given ε> 0, the ε-neighborhood Nε(p) of the polynomial p ∈P n(K) is
the set of all polynomials of P n(K) with p̃ =∑

j∈J̃ ãjzj ∈P n(K) with

support J̃ ⊂ J and ‖p̃−p‖ ≤ ε.

Definition 3
A value z ∈Kn is an ε-pseudozero of a polynomial p ∈P n if it is a zero
of some polynomial p̃ in Nε(p).

Definition 4
The ε-pseudozero set of a polynomial p ∈P n (denoted by Zε(p)) is the
set of all the ε-pseudozeros,

Zε(p) := {z ∈Kn : ∃p̃ ∈ Nε(p), p̃(z) = 0}.
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Pseudozeros of complex multivariate
polynomials (1/2)

Theorem 4 (Stetter)
The complex ε-pseudozero set of p =∑

j∈J ajzj ∈P n(C) verifies

Zε(p) =
{

z ∈Cn : g(z) := |p(z)|
‖z‖∗

≤ ε
}

where z := (. . . , |z|j, . . . , j ∈ J)T .
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Pseudozeros of complex multivariate
polynomials (2/2)
Corollary 1 (Stetter)
The complex ε-pseudozero set of P = {p1, . . . ,pk}, k ∈N verifies

Zε(P) =
{

z ∈Cn :
|pl(z)|
‖zl‖∗

≤ ε for l = 1, . . . ,k

}
,

where zl := (. . . , |z|j, . . . , j ∈ Jl)
T .

We restrict our attention to situations where P as well as all the systems in

Nε(P) are 0-dimensional, that is, if the solution of the system is non-empty

and finite.

Theorem 5 (Stetter)
Each system P̃ ∈ Nε(P) has the same number of zeros (counting
multiplicities) in a fixed pseudozero set connected component of Zε(P).
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Pseudozeros of real multivariate polynomials:
definition

A real ε-neighborhood of p is the set of all polynomials of P n(R),
close enough to p, that is to say,

NR
ε (p) = {

p̃ ∈P n(R) : ‖p− p̃‖ ≤ ε} .

The real ε-pseudozero set of p is defined to include all the zeros of the
real ε-neighborhood of p :

ZR
ε (p) = {

z ∈Cn : p̃(z) = 0 for p̃ ∈ NR
ε (p)

}
.

For ε= 0, the pseudozero set ZR
0 (p) is the set of the roots of p we

denote Z(p).
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Pseudozeros of real multivariate polynomials:
computation

Distance of a point x ∈RN from the linear subspace Ry = {αy,α ∈R}

d(x,Ry) = inf
α∈R

‖x−αy‖∗,

Theorem 6
The real ε-pseudozero set of p =∑

j∈J ajzj ∈P n(R) verifies

ZR
ε (p) = Z(p)∪

{
z ∈Cn\Z(p) : h(z) := d(GR(z),RGI (z)) ≥ 1

ε

}
,

where GR(z) and GI (z) are the real and imaginary parts of

G(z) = 1

p(z)
(. . . ,zj, . . . , j ∈ J)T , z ∈Cn\Z(p).
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Computing the distance

computing real ε-pseudozero set ZR
ε (p) needs to evaluate the

distance d(GR(z),RGI (z)).

the 2-norm ‖ ·‖2 and 〈·, ·〉 the corresponding inner product

d(x,Ry) =


√
‖x‖2

2 − 〈x,y〉2

‖y‖2
2

if y 6= 0,

‖x‖2 if y = 0.

the ∞-norm,

d(x,Ry) =
mini=0:n

yi 6=0
‖x− (xi/yi)y‖1 if y 6= 0,

‖x‖1 if y = 0.

other p-norm with p 6= 2,∞, no easy computable formula to
calculate d(x,Ry).
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Real pseudozeros of polynomial systems

Corollary 2
The real ε-pseudozero set of P = {p1, . . . ,pk}, k ∈N verifies

ZR
ε (P) =

k⋂
l=1

(
Z(pl)∪

{
z ∈Cn\Z(pl) : d(Gl

R(z),RGl
I (z)) ≥ 1

ε

})

where Gl
R(z) and Gl

I (z) are the real and imaginary parts of

Gl(z) = 1

pl(z)
(. . . ,zj, . . . , j ∈ Jl)

T , z ∈Cn\Z(pl).
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Visualization of pseudozero sets (1/5)

The descriptions of Zε(P) and ZR
ε (P) given previously make it

possible to compute, plot and visualize pseudozero set of
multivariate polynomials.

The pseudozero set is a subset of Cn which can only be seen by
its projections on low dimensional spaces that is often C.

We have written a MATLAB program to compute and visualize these
projections. This program requires the Symbolic Math Toolbox.
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Visualization of pseudozero sets (2/5)

For a given v ∈Cn, let Zε(P, j,v) be the projection of Zε(P) onto the
zj-space around v. Then, it follows that for P = {p1, . . . ,pk},

Zε(P, j,v) =
{

z ∈Cn : zi = vi, i 6= j, max
l=1,...,k

|pl(z)|
‖zl‖∗

≤ ε
}

,

where zl := (. . . , |z|j, . . . , j ∈ Jl)
T .

One way for visualizing Zε(P, j,v) is to plot the values of the projection
of

ps(z) := log10

(
max

l=1,...,k

|pl(z)|
‖zl‖∗

)
over a set of grid points around v in zj-space.
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Visualization of pseudozero sets (3/5)

In the same way, we define for a given v ∈Cn, ZR
ε (P, j,v) by the

projection of ZR
ε (P) onto the zj-space around v. It follows that for

P = {p1, . . . ,pk},

ZR
ε (P, j,v) =

{
z ∈Cn : zi = vi, i 6= j, max

l=1,...,k
d(Gl

R(z),RGl
I (z))−1 ≤ ε

}
where Gl

R(z) and Gl
I (z) are the real and imaginary parts of

Gl(z) = 1

pl(z)
(. . . ,zj, . . . , j ∈ Jl)

T , z ∈Cn\Z(pl).

One way for visualizing ZR
ε (P, j,v) is still to plot the values of the

projection of

psR(z) := log10

(
max

l=1,...,k
d(Gl

R(z),RGl
I (z))−1

)
over a set of grid points around v in zj-space.
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Visualization of pseudozero sets (4/5)

We examine the following system
using the 2-norm: two unit balls
intersection at (2,2),

P1 =
{

p1 = (z1 −1)2 + (z2 −2)2 −1,

p2 = (z1 −3)2 + (z2 −2)2 −1. 1
2

3

−1

0

1
−2

−1

0

Projection onto z
1
, v=(2,2)

1
2

3

−1

0

1
−4

−2

0

Projection onto z
2
, v=(2,2)

1
2

3

−1

0

1
−2

−1

0

1

Projection onto z
1
, v=(2,2)

1
2

3

−1

0

1
−4

−2

0

2

Projection onto z
2
, v=(2,2)

Projections of the complex
pseudozero set (on the left) and
the real pseudozero set (on the

right) of P1
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Visualization of pseudozero sets (5/5)

We can be only interested in the real zeros of a polynomial systems. In
this case, we can only draw Rn ∩ZR

ε (P).

P2 =
{

p1 = z2
1 +z2

2 −1,

p2 = 25z1z2 −12.

We have computed the function

g(x,y) = max
l=1,2

pl(x,y)

‖zl‖∗
,

with zl := (. . . , |x+ iy|j, . . . , j ∈ Jl)
T .
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Projection of the real
pseudozero set of P2
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Pseudospectra of matrices
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Why structured matrices?

Structured matrices are used in various fields such as signal
processing, etc.

Using the structure of a matrix, we get some better properties

Substantial interest in algorithms for structured problems in
recent years

Growing interest in structured perturbation analysis

In general perturbation and error analysis for structured solvers
are performed with general perturbations: for a structured solver
nothing else but structured perturbations are possible
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Our structures

Toeplitz matrices (ti−j)n−1
i,j=0


t0 t−1 · · · t1−n

t1 t0
. . .

...
...

. . . . . . t−1

tn−1 · · · t1 t0



Hankel matrices (hi,j)n−1
i,j=0


h0 h1 · · · hn−1

h1 h2 . .. hn
... . .. . .. ...

hn−1 hn · · · h2n−2



Circulant matrices (vi)n−1
i=0


v0 vn−1 · · · v1

v1 v0
. . .

...
...

. . . . . . vn−1

vn−1 · · · v1 v0


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Number of independant parameters

In the following table, k represents the number of independant
parameters for the different structures

Structure general Toeplitz circulant Hankel
k n2 2n−1 n 2n−1
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Notations

In this talk, we will use the following notation:

struct Toeplitz, circulant or Hankel
Mn(C) set of complex n×n matrices
Mstruct

n (C) set of structured complex n×n matrices
‖ ·‖ spectral norm
I , In identity matrix (with n rows and columns)
σmin(A) smallest singular value of A
Λ(A) spectrum of A
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Definition of pseudospectra

The ε-pseudospectrum of a matrix A, denotedΛε(A), is the subset of
complex numbers consisting of all eigenvalues of all complex
matrices within a distance ε of A

Definition 5
For a real ε> 0, the ε-pseudospectrum of a matrix A ∈ Mn(C) is the set

Λε(A) = {z ∈C : z ∈Λ(X) where X ∈ Mn(C) and ‖X −A‖ ≤ ε}.
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Example of pseudospectra

−1 0 1 2 3
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Distance to singularity

Definition 6
Given a nonsingular matrix A ∈ Mn(C), we define the distance to
singularity by

d(A) = min{‖∆A‖ : A+∆A singular,∆A ∈ Mn(C)}.

Lemma 2 (Gastinel)
Let nonsingular A ∈ Mn(C). Then we have

d(A) = ‖A−1‖−1.
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Characterisation of pseudospectra

Theorem 7 (Trefethen)
The following assertions are equivalent

(i) Λε(A) is the ε-pseudospectrum of a matrix A

(ii) Λε(A) = {z ∈C : ‖(zI −A)−1‖ ≥ ε−1}

(iii) Λε(A) = {z ∈C :σmin(zI −A)‖ ≤ ε}

(iv) Λε(A) = {z ∈C : d(zI −A) ≤ ε}
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Definition of structured pseudospectra

The structured ε-pseudospectrum of a matrix A, denotedΛstruct
ε (A), is

the subset of complex numbers consisting of all eigenvalues of all
complex structured matrices within a distance ε of A

Definition 7
For a real ε> 0, the structured ε-pseudospectrum of a matrix
A ∈ Mstruct

n (C) is the set

Λstruct
ε (A) = {z ∈C : z ∈Λ(X) where X ∈ Mstruct

n (C)

and ‖X −A‖ ≤ ε}.
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Structured distance to singularity

Definition 8
Given a nonsingular matrix A ∈ Mstruct

n (C), we define the structured
distance to singularity by

dstruct(A) = min{‖∆A‖ : A+∆A singular,∆A ∈ Mstruct
n (C)}.

Theorem 8 (Rump)

Let nonsingular A ∈ Mstruct
n (C) with struct being Toeplitz , Hankel or

circulant. Then we have

dstruct(A) = d(A) = ‖A−1‖−1.
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Characterisation of structured pseudospectra

Lemma 3
Given ε> 0 and A ∈ Mstruct

n (C) with struct Toeplitz or circulant, the
structured ε-pseudospectrum satisfies

Λstruct
ε (A) = {z ∈C : dstruct(A−zI) ≤ ε}.

Theorem 9
Given ε> 0 and A ∈ Mstruct

n (C) with struct Toeplitz or circulant, the
ε-pseudospectrum and the structured ε-pseudospectrum satisfy

Λstruct
ε (A) =Λε(A).
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What for others linear structures?

We do not have equality for Hermitian and skew-Hermitian
structures.
For example for Hermitian structure we always haveΛherm

ε (A)(R

whereas one can find an Hermitian matrix such thatΛε(A)*R.
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The polynomial eigenvalue problem

Problem 10
Find the solutions (x,λ) ∈Cn ×C of

P(λ)x = 0,

where
P(λ) =λmAm +λm−1Am−1 +·· ·+A0,

with Ak ∈ Mn(C), k = 0 : m

If x 6= 0 then λ is called an eigenvalue and x the corresponding
eigenvector. The set of eigenvalues of P is denotedΛ(P). We assume
that P has only finite eigenvalues (and pseudoeigenvalues)
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Definition of pseudospectra

Let us define

∆P(λ) =λm∆Am +λm−1∆Am−1 +·· ·+∆A0,

where ∆Ak ∈ Mn(C).

Definition 9
For a given ε> 0, the ε-pseudospectrum of P is the set

Λε(P) = {λ ∈C : (P(λ)+∆P(λ))x = 0 for some x 6= 0

with ‖∆Ak‖ ≤αkε,k = 0 : m}.

The nonnegative parameters α1, . . . ,αm allow freedom in how
perturbations are measured
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Characterisation of pseudospectra

Lemma 4 (Tisseur and Higham (2001))

Λε(P) = {λ ∈C : d(P(λ)) ≤ εp(|λ|)},

where p(x) =∑m
k=0αkxk.
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Definition of structured pseudospectra

We suppose that ∆Ak have a structure belonging to struct. We also
suppose that all the matrices Ak and ∆Ak, k = 0 : n, belong to
Mstruct

n (C) for a given structure struct. Let

P(λ) =λmAm +λm−1Am−1 +·· ·+A0,

with Ak ∈ Mstruct
n (C), k = 0 : m and

∆P(λ) =λm∆Am +λm−1∆Am−1 +·· ·+∆A0,

where ∆Ak ∈ Mstruct
n (C). P(λ) and ∆P(λ) belong to Mstruct

n (C).

Definition 10
We define the structured ε-pseudospectrum of P by

Λstruct
ε (P) = {λ ∈C : (P(λ)+∆P(λ))x = 0 for some x 6= 0

with ∆Ak ∈ Mstruct
n (C),‖∆Ak‖ ≤αkε,k = 0 : n}.
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Characterisation of structured pseudospectra

Lemma 5
For struct ∈ {Toep,circ,Hankel}, we have

Λstruct
ε (P) = {λ ∈C : dstruct(P(λ)) ≤ εp(|λ|)},

where p(x) =∑n
k=0αkxk.

Theorem 11
Given ε> 0 and P(λ) ∈ Mstruct

n (C) a matrix polynomial with
struct ∈ {Toep,circ,Hankel}, the ε-pseudospectrum and the structured
ε-pseudospectrum satisfy

Λstruct
ε (P) =Λε(P).
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Real structured perturbations

Consider
P(λ) =λmAm +λm−1Am−1 +·· ·+A0,

with Ak ∈ Mn(R), k = 0 : m and

∆P(λ) =λm∆Am +λm−1∆Am−1 +·· ·+∆A0,

where ∆Ak ∈ Mn(R). Suppose that P(λ) is subject to structured
perturbations:

[∆A0, . . . ,∆Am] = DΘ[E0, . . . ,Em],

with D ∈ Mn,1(R),Θ ∈ M1,t(R) and Ek ∈ Mt,n(R), k = 0 : m.
For notational convenience, we introduce

E(λ) = E[In,λIn, . . . ,λmIn]T =λmEm +λm−1Em−1 +·· ·+E0,

and

G(λ) = E(λ)P(λ)−1D = GR(λ)+ iGI (λ), GR(λ),GI (λ) ∈Rt .
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Definition and characterisation of
pseudospectra

Definition 11
The structured ε-pseudospectrum is defined by

Λε(P) = {λ ∈C : (P(λ)+DΘE(λ))x = 0 for some x 6= 0,‖Θ‖ ≤ ε}

We denote for x,y ∈Rt ,

d(x,Ry) = inf
α∈R

‖x−αy‖,

the distance of the point x from the linear subspace Ry = {αy,α ∈R}.

Theorem 12
Λε(P) = {λ ∈C\Λ(P) : d(GR(λ),RGI (λ)) ≥ 1/ε}∪Λ(P)
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Conclusion

We have

The structured pseudospectrum is equal to the pseudospectrum
for the two following structures: Toeplitz and circulant

This result is false for structures Hermitian and skew-Hermitian

We have generalized these results to pseudospectra of matrix
polynomials.

We have given a formula for structured pseudospectra of real
matrix polynomials
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Open problems
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Pseudozeros of interval polynomials

Problem
Given

an ball polynomial p(x) =∑n
i=0 B(ai,ri)xi with ai ∈C, ri ≥ 0 and

z ∈C
does there exist ci ∈ B(ai,ri) such that pc(z) :=∑n

i=0 cizi = 0

Solution [Mosier (1986)]
The ci exist if and only if

|p(z)|
r0 + r1|z|+ · · ·+ rn|z|n

≤ 1
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Pseudozeros of interval polynomials

Problem
Given

an interval polynomial p(x) =∑n
i=0[ai;bi]xi with ai,bi ∈R, ai ≤ bi

and

z ∈C
does there exist ci ∈ [ai,bi] such that pc(z) :=∑n

i=0 cizi = 0

Given a vector d := (d0, . . . ,dn)T in Cn+1, we consider the weighted
norms

‖x‖∞,d = max
i=0:n

{|pi|/|di|} and ‖x‖1,d :=
n∑

i=0
|di||xi|.

S. Graillat (Univ. Paris 6) Pseudozeros and Pseudospectra 84 / 88



Pseudozeros of interval polynomials

We define
distd(x,Ry) = inf

α∈R
‖x−αy‖1,d,

distd(x,Ry) =
mini=0:n

yi 6=0
‖x− (xi/yi)y‖1,d if y 6= 0,

‖x‖1,d if y = 0.

and GR(p,z) and GI (p,z) being the real and imaginary parts of

G(p,z) = 1

p(z)
(1,z, . . . ,zn)T , z ∈Cwith p(z) 6= 0.
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Pseudozeros of interval polynomials

Let pm(x) =∑n
i=0 mixi with mi = (ai +bi)/2 et di := (bi −ai)/2.

Solution
The ci exist if and only if either p(z) = 0 or

distd(GR(pm,z),RGI (pm,z)) ≥ 1
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Pseudozeros of interval polynomials

Problem
Given

an ball polynomial p(x) =∑n
i=0([aj;bj]+ i[cj;dj])xj with

aj,bj,cj,dj ∈C, aj ≥ bj, cj ≥ dj and

z ∈C
does there exist αj ∈ [aj;bj] and βj ∈ [cj;dj] such that
pc(z) :=∑n

i=0(αj + iβj)zi = 0

For the moment, no closed formula ! Maybe NP-hard ?
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Thank you for your attention
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