Accurate dot products with FMA

S. Graillat, Ph. Langlois and N. Louvet
(graillat, langlois, nicolas.louvet)@univ-perp.fr
DALI-LP2A Laboratory, University of Perpignan, France

Accuracy of Classic Dot Product

We consider dot products without FMA:

- Classic dot product
 \[\text{function } r = \text{Dot}(x,y) \text{ for } n \in \mathbb{N} \]
 \[x \in \mathbb{R}_n, y \in \mathbb{R}_n \]

 - The condition number for dot product computation is
 \[\text{cond}(x,y) = \frac{\|x\| \cdot \|y\|}{\|\text{Dot}(x,y)\|} = \frac{\|x\| \cdot \|y\|}{\|x \cdot y\|} \]

 - Worst case accuracy: FMA does not improve the accuracy of computed dot product since Dot and DotFMA both verify:
 \[\text{cond}(x,y) = \frac{\|x\| \cdot \|y\|}{\|\text{Dot}(x,y)\|} \]

 - Practical accuracy: FMA only slightly improves the actual accuracy.

 \[\text{accuracy (computed) vs (actual)} \]

Compensated Dot Products

- More accuracy can be achieved thanks to double-double computations (see Algorithms DotXBLAS below).
- or with compensated algorithms: the forward error in the floating point evaluation of \(r' \) is
 \[\varepsilon = r' - \text{computed}(x,y) \]

 - The main idea is to compute an approximate \(r \) of the global error \(\varepsilon \) thanks to Error Free Transformations (EFT). Then a compensated result \(r^c \) is provided correcting the computed \(r' \) as follows.
 \[r^c = r + \varepsilon = r' + \text{corrected}(x,y) \]

 - From Dot and DotFMA, we derive two compensated algorithms using EFT (259u: 2ProdFMA and 3ProdFMA are presented in the EFT paper below).
 - CompDigit: correcting \(r \) and \(x \in \text{Dot} \) with 259u and 2ProdFMA (see [1]).
 - CompDigitFMA: correcting FMA in DotFMA with 3FMA.

Error Free Transformations (EFT)

- Error Free Transformations are properties and algorithms to compute the generated rounding errors at the working precision \(u \). The following table sums up the EFT for \(\gamma \) and FMA.

 | \(x \), \(y \), \(z \) and \(k \) belongs in \(\mathbb{R}_n \) if \(n \) is in \(\mathbb{N} \) |
|-----------------|-----------------|
| 1 < \(\gamma \) < 2 | 2 < \(k \) < 5 |
| 2 < \(k \) < 5 | 5 < \(k \) < 10 |
| 5 < \(k \) < 10 | \(k \) belongs in \(\mathbb{R}_n \) |

Remark: \(x \), \(y \), \(z \) and \(k \) belong to \(\mathbb{R} \) when \(n \) and \(k \) are in \(\mathbb{N} \).

Conclusions

- XBLAS Dot Product
 - BLAS – Bailey’s double-double – x16 rounded and mixed precision BLAS [3]
 - A double-double number \(\text{unrounded} \) sum of two IEEE-754 double precision numbers \(\gamma \) at least 138 significant bits.
 - DotXBLAS – Classic dot product \(\text{Dot} \) – double-double.
 - DotXBLAS also benefits from the availability of FMA.

- XBLAS with FMA – Bailey’s double-double – x16 rounded and mixed precision BLAS [5]
 - A double-double number \(\text{unrounded} \) sum of two IEEE-754 double precision numbers \(\gamma \) at least 138 significant bits.

- CompDigitFMA is about 8 times faster than XBLAS algorithms.

References
