1.2.C: High performance accurate computing | @ CAB G51, 10:15-10:45 (30min.)

High-Performance Implementation of
Reproducible and Accurate

Matrix-Multiplication

(Implementation and evaluation of Ozaki-scheme on GPUs)

June 27, 2018, PMAA 18 @ Zurich

Daichi Mukunoki (Tokyo Woman'’s Christian University)

Roman lakymchuk (KTH Royal Institute of Technology)
Stef Graillat (Sorbonne University)

Takeshi Ogita (Tokyo Woman’s Christian University)

Introduction

B Background

® Numerical computations with floating-point operations suffer from round-off errors,
which impact the accuracy & reproducibility of the final result
® This can be observed not only for ill-conditioned but also for regular problems

B Accuracy
® The accumulation of round-off errors becomes non-negligible in large-scale and
long-time computations
® 64-bit floating-point (double-prec.) may become insufficient in near future
B Reproducibility
® Round-off errors impact reproducibility as well as accuracy because the result of
floating-point operations varies depending on the order of computations

» Factors which may change the order of computations: algorithm, number of
threads/processes, use of atomic operations, and so on
® Loss of reproducibility makes it more difficult to debug a program (e.g. when you

port a program to another environment)
® Scientific experiments should be reproducible by other people

Introduction (cont’d)

B Examples of linear algebra libraries supporting accurate and/or

reproducible computations
® Accurate:
XBLAS [Li et al.]: for CPU, quadruple-precision (double-double)
MBLAS & MLAPACK (MPACK) [Nakata]: for CPU, based on some existing high-
precision arithmetic libraries such as MPFR
® Reproducible:

Conditional Numerical Reproducible (CNR) mode in Intel MKL: for CPU
® Accurate & Reproducible:

ReproBLAS [Demmel et al.]: for CPU, accuracy is tunable
RARE-BLAS [Chohra et al.]: for CPU, correct rounding
EXBLAS [lakymchuk et al.]: for CPU & GPU (OpenCL), correct rounding

B Next generation BLAS (BLAS G2)
® Accurate and reproducible computations have been discussed as new features of

next generation BLAS (at “Workshop on Batched, Reproducible, and Reduced
Precision BLAS” in 2016 & 2017)

Introduction (cont’d)

B The goal of this study
® To develop a high-performance implementation of accurate & reproducible matrix-
multiplication on GPUs and to analyze the performance
® Accurate & reproducible methods: (1) Ozaki scheme and (2) EXBLAS scheme

® Ozaki-scheme: an accurate (and reproducible) matrix-multiplication method based
on DGEMM [Ozaki et al. 2012]

B Motivations

® GEMM:
> Level-3 BLAS, compute-intensive
> A key kernel in scientific computations

> Highly-optimized implementation is needed

® GPU:
> A major architecture widely used in HPC systems

> Huge computational power: suitable for compute-intensive tasks
® Implementation of Ozaki-scheme:

> The first full GPU implementation

> With some optimization techniques for GPUs

Ozaki scheme [Ozaki et al. 2012]

B Overview
® An accurate result is computed as a summation of several multiplications of matrices
which are split not to occur rounding-errors during the multiplications:

C=A4B = (A(l) + A2+ .. +A(S))'(B(1) +B®+ ...+ B(t))
> Matrices are split to be |[A®)(i,j)| 2 |[A@(i,j)|, |B®)i,j)| 2 |BD(i))|,p < g

and fl(4AOB®) = ADBO for any i and j
*11(...): result of floating-point operations

® |If the summation of the multiplications of the split matrices is performed with
correct rounding, the final result achieves correct rounding
> In this study, we used the NearSum algorithm [Rump et al. 2005]
® The multiplications of split matrices can be performed using DGEMM

> This is the most time-consuming portion in this method, and highly optimized
DGEMM is available on most processors including GPUs

® |t consumes a lot of memory
> It can be solved using blocking (discussed later)

Ozaki scheme (cont’d)

C=AB = (AD+ A+ .. + A®)(BO+ B+ ... + B®)

> Matrices are split to be [4€)i,)| 2 |4), [BPGij) 2 B, p < q
and fl(4OB0) = AOBG) for any i and j

€© Matrix Multiplications
S{ DGEMMs

.-.
Summation of the

N
computed matrices

Multiplications of the by NearSum
Splitting of input split matrices by DGEMM

matrices A and B

Ozaki scheme — Matrix splitting

C=AB = (AD+ A+ .. + A®)(BO+ B+ ... + B®)

> Matrices are split to be [AP)i,/)| 2 |49/, |BPXGf)| 2 |BDi,j)l, p < q
and fl(4OB0) = AOBG) for any i and j

Ty, Lo, o+, Tp)

Algorithm 1 Split vector »
I: function Split(x)

1 = |
while (norm(x'’, inf)! = 0) do
¢; = ceil((log, u™' + log,(n + 1))/2)
¢y = ceil(log, max(|x;|))
t =27 .2°
o=|[tt -1
: ' =2 = f1((2"" + o) — o)
9:) = £f1(2' — V)
* Matrices are split not to occur 10: i =1+1
11: end while

rounding-errors during the

multiplications of the split matrices & enc function

* This algorithm is the error-free transformation for vector
* Matrix can be split by applying the algorithm to a matrix towards inner-product direction
* # of splits depends on both the length of the vector and the max value

Ozaki scheme — GPU implementation

B Overview
® Full CUDA implementation

__host__ int exblasExdgemm (

® Interface compatible with cublasDgemm cublasHandle t ch,
> Computes double-precision matrices char tranA, char tranB,
int m, int n, int k,
located on GPU memory double *alpha,

> But currently a & [are not supported jout;}e

H —_ ou e

(just compute C=AB) e

B Challenges double

® To improve performance

*devA, 1int lda,
*devB, int 1ldb,
*beta,

*dev(C, int ldc) {

® To reduce memory consumption Split (devA, devAsplit);

> GPUs have limited memory space

Split (devB, devBsplit);

B Techniques we applied COPLIEE CdeV’jjSepleiS;’H .
® Blocking (for memory and performance) davCepTie):

® Utilizing batched BLAS (for performance)

NearSum (dev(Csplit, dev(C);

Ozaki scheme — Blocking

© Matrix Multiplications
ST DGEMMss

Memory consumption:

When matrices A and B are n x n square matrices,
the naive implementation consumes

(s+t+st)n?2 extra memory space

Ozaki scheme — Blocking (cont’d)

© Matrix Multiplications
S1t1 DGEMMs

h

N

Memory consumption (with blocking):

When block-size=b, # of splits of mat-A =si=s (1< i < m/b),
and # of splits of mat-B =¢j=¢ (1< j < n/b), the required
memory space decreases from (s+¢+st)n? to (s+t)nb+stb?
*Note: siand tj may vary depending on the max value in each

block, thus there is a possibility to reduce # of splits compared to
the non-blocking case

Ozaki scheme — Blocking (cont’d)

© Matrix Multiplications
S1t1 DGEMMs

h

A negative side-effect:

If the block-size is quite small, the throughput of GEMM
may decrease as problem size becomes too small to

utilize all the cores on a GPU

Ozaki scheme — Batched BLAS

A negative side-effect:

If the block-size is quite small, the throughput of GEMM may
decrease as problem size becomes too small to utilize all the

cores on a GPU

...

A solution: Batched BLAS

* A new BLAS interface that computes multiple
independent BLAS operations as a single task

e cuBLAS (intel MKL as well) provides a batched

DGEMM routine, which computes multiple
small DGEMMs concurrently at a high speed

cublasDgemmBatched (cublasHandle_t handle,
cublasOperation_t transa, cublasOperation_t transb,

int m, int n, int k, const double *alpha,
const double *Aarray[], int Ida,

const double *Barray(], int Idb,

int batchCount)

' const double *beta, double *Carray(], int Idc,

Evaluation

B Evaluation
® Performance (effectiveness of blocking & batched BLAS)
® Demonstrations of accuracy

B Environment
® GPU: NVIDIA Titan V (Volta architecture)
» 7449.6 GFlops on double-precision, 16GB memory
® CUDA 9.1, driver version: 390.67
B Problem setting
® Matrices are square & initialized as (rand(r)-0.5) * exp(¢ * randn(n))
> The larger ¢ is, the wider the range of the absolute values in the matrix becomes
(and thus, # of splits and DGEMMis also increase)

B Theoretical / expected performance
® Cost: the computation by DGEMM is O(n3), the other parts are O(n2)
® \We assume that the expected performance is the performance based on the cost for

st times of non-block & non-batched DGEMM (where # of splits format A& B are s
& t, respectively)

Performance (¢=0)

1800

Performance (phi=0, TitanV)

1600
1400
1200
1000
800
600
400
200
0

GFlops (exact—operations)

0

* In this case (¢=0, # of splits = 2), the effectiveness
of batched BLAS is a little (# of batched tasks is

too few)

2000 4000 6000 8000 10000

Problem Size (m=n=k)

Input: (rand(n)-0.5) * exp(¢ * randn(n))

b=1024 -

---e--- * b:block-size

batch,b=1024 —e—

b=2048
batch,b=2048
b=4096
batch,b=4096
b=no
batch,b=no

expected -

P
e —

EEE S

“Expected” performance:
The performance based
on the cost for st times of
non-block & non-batched
DGEMM

* s: # of splits of mat A
*t. # of splits of mat B
In this case, s =2 & t=2:
the expected overhead is

4x of DGEMM

1800
1600
1400
1200
1000
800
600
400
200

GFlops (exact—operations)

Performance (¢=0)

Performance (phi=0, TitanV)

2000 4000 6000 8000 10000
Problem Size (m=n=k)

Input: (rand(n)-0.5) * exp(¢ * randn(n))

b=1024 ------- * b:block-size
batch,b=1024 —e—

b=2048
batch,b=2048
b=4096 ---x---
batch,b=4096 ——<—
atch e L

expected ----+---
Memory Consumption

10000
1000 |-
» 100 E
(O] -
= i
m 5

e [R E S -

batch,b=1024 —e— |

L S batch,b=2048 3

; batch,b=4096 ——«—]

- | batch,b=no ——

0.1 | | | |

0 2000 4000 6000 8000 10000
Problem Size (m=n=Kk)

Performance (¢=0)

Performance (phi=0, TitanV)
1800

1600
1400
1200
1000
800
600
400
200

GFlops (exact—operations)

0 2000 4000 6000 8000 10000
Problem Size (m=n=k)

* “Other” is mainly cost for allocating the
memory for storing split matrices
 This cost can be ignored as you can use the

allocated memory repeatedly in the case you

use the routine multiple times

Input: (rand(n)-0.5) * exp(¢ * randn(n))

b=1024 ------- * b:block-size
batch,b=1024 —e—

b=2048
batch,b=2048

N=4090

batch,b=4096
D=NO0 ---4---
batch,b=n0 ——
expected ----+---

Breakdown
100 b = FEE A T T Split o
b [DGEMM m=—=
80 L , 1l | | |4 Sum wzzzzza
Other ===
60 it Il | 1 | 1 |-
N 77
40FH H H | 1 H | 1 |-
20 N AR
LNNNEN NS
A Gy T S, 6, S B, O
097 076’ 0)@ 0‘96‘ 790 }77 7629 }‘%97 6 %70

Performance (¢=1)

Performance (phi=1, TitanV)
300 ! ! ! !

250

200

150

100

50

GFlops (exact—operations)

0 A R S
0 2000 4000 6000 8000 10000

Problem Size (m=n=k)

Input: (rand(n)-0.5) * exp(¢ * randn(n))

b=512 ---x--- * b:block-size
batch,b=512 —*—

b=1024 ----e---
batch,b=1024 —e—
b=2048
batch,b=2048
b=no ----+---

batch,o=no ——
expected ----+---

“Expected” performance:
The performance based
on the cost for st times of
non-block & non-batched
DGEMM

*s: # of splits of mat A
*t. # of splits of mat B

* In this case (# of splits = 576, # of batch tasks = 25-30), | Inthiscase,s=5& =5

even block-size b=512 can achieve a competitive
performance when batched BLAS is used

and 6 (n > 8192):
the expected overhead is

25-30x of DGEMM

Performance (¢=1)

Performance (phi=1, TitanV)
300 ! ! ! !

250

200

150

100

GFlops (exact—operations)

50

0 2000 4000 6000 8000 10000
Problem Size (m=n=k)

Input: (rand(n)-0.5) * exp(¢ * randn(n))

b=512 ---x--- * b:block-size
batch,b=512 —*—

b=1024 ----e---
batch,b=1024 —e—
b=2048
batch,b=2048
b=no ----+---

batch,o=no ——
expected ----+---

Memory Consumption

10000 ‘
1000 §
» 100 E
e ; i
> B .
2 -
[e e -
b=512 —%—
TeEo b=1024 —e— =
b=2048
b=no ——
0.1 ' '

0 2000 4000 6000 8000 10000
Problem Size (m=n=Kk)

GFlops (exact—operations)

300

250

200

150

100

50

Performance (¢=1)

Input: (rand(n)-0.5) * exp(¢ * randn(n))

Performance (phi=1, TitanV)

0 2000 4000 6000 8000 10000 .

Problem Size (m=n=k)

batch,b=2048
b=no ----+---
batch,b=no ——
expected ----+---

100

80

60 |-

40

20

b=512 ---x--- * b:block-size
batch,b=512 —*—
b=1024 ----e---

Breakdown

=7

_———

Split T
DGEMM /=
Sum zzzzzza
Other =3

GFlops (exact-operations)

Performance (¢p=0~8)

Performance (TitanV)

10000 ¢ 5 10000
1000 | 1000
100 | L 100
10 | 10
] | | | | i
0 2000 4000 6000 8000 10000

Problem Size (m=n=k)

GFlops (double—precision, for cublasDgemm)

Input: (rand(n)-0.5) * exp(¢ * randn(n))

b=4096 (phi=0 * b:block-size

expected (phl_O
b=1024 (phi=

expected (phi=
b=512 (phi=2

) ——
)
1)
)
expected (ph|_2; ek
)
) ——
)

R e
—_——
- .-

—_—

b=512 (phi=4
expected (phi=4

b=512 (phi=8
expected (phi=8) ---»---

cublasDgemm ----+---

observerd / expected [%]

b=4096 (phi=0) —e—
b=1024 (phi=1) —*—
b=512 (phi=2) —— |
b=512 (phi=4) |
| b=512 (phi=8) ——

2000 4000 6000 8000
Problem Size (m=n=k)

10000

GFlops (exact-operations)

Performance (¢p=0~8)

Performance (TitanV)

10000 ¢ 5 10000
1000 | 1000
100 | ; 100
10 | 10
] | | | | i
0 2000 4000 6000 8000 10000

Problem Size (m=n=k)

GFlops (double—precision, for cublasDgemm)

Input: (rand(n)-0.5) * exp(¢ * randn(n))

b=4096 (phi=0 * b:block-size

expected (phl_O
b=1024 (phi=

expected (phi=
b=512 (phi=2

) ——
)
1)
)
expected (ph|_2; ek
)
) ——
)

R e
—_——
- .-

—_—

b=512 (phi=4
expected (phi=4

b=512 (phi=8
expected (phi=8) ---»---

cublasDgemm ----+---

Memory Consumption

2000 4000 6000 8000
Problem Size (m=n=Kk)

10000

Relative error

100 ! ! ! ! ! <7
- 5 5 5 5 X
R S S SR e Lo X
e x
: : : : X
001 R SN E
% % % X
00001 g e 1
1x107° fffffffffffff e e E
i X £ 1
1x1078 S A S E
| < X 1
1x107 10 R x%x ** E
1x10712 R T e R E
[x X
1x1071% - N e s S E
1x10_16 * | | i | |
7 7, 7 7, Ve 7 7
@ + + + +
% o6 0o 0, 0z

Accuracy test

Comparison with MPFR-2048bits
(matrix size: 64x64, on TitanV)

Condition number

Our implementation ©
DGEMM (cublas) x

Relative error =
max(| Crargel| 1] | - | CMPFR[i]|)

max(| CmPFR[i] |)

e Compared with MPFR (2048bits), ExXDGEMM has no error for any cases
(there is nothing to plot)

Further optimization (future work)

B Blocking towards inner-product direction
® |t may increase the chance to reduce # of splits since
it depends the matrix dimension towards the inner
product direction as well as the max value
® But it increases memory consumption and # of
summations to compute the final result
B Skipping of zero calculations
® Split matrices which have lower digits information
may include many zero elements (sparse matrix)
® Sparse GEMM (SpMM) may be used for those
computations
B Auto-tuning
® For determining the optimal block-size and use/non-
use of batched BLAS
® For block-size, there is a tradeoff between
performance and memory consumption

Conclusion

B Summary
® The first full GPU implementation of accurate (correct rounding) and reproducible
DGEMM with Ozaki scheme
® Implementation techniques
Matrix blocking for reducing memory consumption
Use of batched BLAS for improving performance
® More than 90 % of expected performance can be achieved if the optimal block-size
is used (the performance is DGEMM-performance-bound)
B Future work
® Further optimizations
For small matrices
Automatic determining of optimal block-size
» Blocking has a tradeoff between memory-consumption and performance
® Comparison with other methods (ReproBLAS, EXBLAS scheme, etc.)
® Implementation of Full set BLAS

1.2.C: High performance accurate computing | @ CAB G51, 10:15-10:45 (30min.)

High-Performance Implementation of

Reproducible and Accurate
Matrix-Multiplication

June 27, 2018
PMAA 18 @ Zurich

Daichi Mukunoki (Tokyo Woman'’s Christian University)
Roman lakymchuk (KTH Royal Institute of Technology)

Stef Graillat (Sorbonne University)
Takeshi Ogita (Tokyo Woman’s Christian University)

ExXBLAS scheme

B Overview

@® A reproducible + accurate method
Reproducibility is achieved by computing with correct-rounding
® Combination of Floating-Point Expansion (FPE) + Super-Accumulator

(SuperAcc)
B Floating-Point Expansion (FPE)
® Based on error free transformations [Dekker and Knuth]
® Used for avoiding (reducing) the access to SuperAcc (it’s heavy)
B Super-Accumulator (SuperAcc)

® A long accumulator which can cover the exponent range of double-precision
@® |t consists of array of 64-bit integer (39 elements)

Further optimization

Splitting of matrix A:

* Determining the number of splitting
(= finding the max number in row-direction)

requires non-sequential memory access

* To avoid the performance degradation, we
transposed the matrix A before splitting

* The computations of split matrices are

performed using batched DGEMM-TN
* The transposition cost is negligibly small

Note: although this approach is actually effective to
improve the performance of splitting of mat A, the
performance of cuBLAS DGEMM-TN is unstable

when the matrix size is large: the total performance
decreases when this approach applies on Titan V
(we didn’t apply this in our current implementation)

Sequential
memory access

Accuracy test

Comparison with MPFR-2048bits
(matrix size: 64x64, on TitanV)

! ! ! ! X ExDGEMM o
1k o proseeses e e e DGEMM (cublas) x
[i i i ox¥X | WGEMM (double-double) 4
| | | 7T
1x10_5 — S S — TRV D S s ; Number of splits (matrix A)
o 1x1070F X . S
> I X 1 1 1 i
S X ‘ | o | |
o KX | | | | =0 A T epeeee 0@
o 15 | X o o T . , & 3 |
1x10 % | | | 3 A 5 4 00O @ED OOt e s
' ' ' E H H H H H
| | | | 2
1120 [W
| L aa8 % |
7 7, 7, 7 7
Q + + +
00 706‘ 70@ Vs

Condition number

Condition number

e Compared with MPFR (2048bits), ExXDGEMM has no error for any cases
(impossible to plot the results with logscale axis)

Performance (¢=2)

Input: (rand(n)-0.5) * exp(¢ * randn(n))

Performance (phi=2, TitanV)

180

60 Memory Consumption

10000

b=256 * b:block-size
160 batch,b=256
- b=512 ---*---
= b=1024 ----e---
g 120 batch,b=1024 ——
b=no ----4---
o
..l. 100 batCh,b=nO
§ 80 expected ----+---
S
n
o
o
LL
Q)

40 | | | | | I
ol 1000 |
0 | | | | | '
0 2000 4000 6000 8000 10000 g 100
Problem Size (m=n=Kk)) i

e [e .
b=256 |

Te b=512 —*— 7

b=1024 ——

0 2000 4000 6000 8000 10000
Problem Size (m=n=k)

Memory consumption

Input: (rand(n)-0.5) * exp(¢ * randn(n))

* b:block-size

Memory Consumption (b=512) Memory Consumption (b=1024)
10000 ¢ ! ! ! ! 10000 ! ! ! ! g|
1000 1000 |
» 100 » 100
b b
> >
= ' | | 1 £ | | |
LA S phi=0 —e— 7 10 S phi=0 —e— 7
i | | phi=1 ——] X | | phi=1 ——]
phi=2 ——] I | | phi=2 —— 7
phi=4 3 g : s phi=4 jE
phi=8 ——] phi=8 ——«—]
;I)hi=10 | i pl)hi=10 | i
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Problem Size (m=n=k) Problem Size (m=n=k)

