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Introduction

B Background

® Numerical computations with floating-point operations suffer from round-off errors,
which impact the accuracy & reproducibility of the final result
® This can be observed not only for ill-conditioned but also for regular problems

B Accuracy
® The accumulation of round-off errors becomes non-negligible in large-scale and
long-time computations
® 64-bit floating-point (double-prec.) may become insufficient in near future
B Reproducibility
® Round-off errors impact reproducibility as well as accuracy because the result of
floating-point operations varies depending on the order of computations

» Factors which may change the order of computations: algorithm, number of
threads/processes, use of atomic operations, and so on
® Loss of reproducibility makes it more difficult to debug a program (e.g. when you

port a program to another environment)
® Scientific experiments should be reproducible by other people



Introduction (cont’d)

B Examples of linear algebra libraries supporting accurate and/or

reproducible computations
® Accurate:
XBLAS [Li et al.]: for CPU, quadruple-precision (double-double)
MBLAS & MLAPACK (MPACK) [Nakata]: for CPU, based on some existing high-
precision arithmetic libraries such as MPFR
® Reproducible:

Conditional Numerical Reproducible (CNR) mode in Intel MKL: for CPU
® Accurate & Reproducible:

ReproBLAS [Demmel et al.]: for CPU, accuracy is tunable
RARE-BLAS [Chohra et al.]: for CPU, correct rounding
EXBLAS [lakymchuk et al.]: for CPU & GPU (OpenCL), correct rounding

B Next generation BLAS (BLAS G2)
® Accurate and reproducible computations have been discussed as new features of

next generation BLAS (at “Workshop on Batched, Reproducible, and Reduced
Precision BLAS” in 2016 & 2017)



Introduction (cont’d)

B The goal of this study
® To develop a high-performance implementation of accurate & reproducible matrix-
multiplication on GPUs and to analyze the performance
® Accurate & reproducible methods: (1) Ozaki scheme and (2) EXBLAS scheme

® Ozaki-scheme: an accurate (and reproducible) matrix-multiplication method based
on DGEMM [Ozaki et al. 2012]

B Motivations

® GEMM:
> Level-3 BLAS, compute-intensive
> A key kernel in scientific computations

> Highly-optimized implementation is needed

® GPU:
> A major architecture widely used in HPC systems

> Huge computational power: suitable for compute-intensive tasks
® Implementation of Ozaki-scheme:

> The first full GPU implementation

> With some optimization techniques for GPUs




Ozaki scheme [Ozaki et al. 2012]

B Overview
® An accurate result is computed as a summation of several multiplications of matrices
which are split not to occur rounding-errors during the multiplications:

C=A4B = (A(l) + A2+ .. +A(S))'(B(1) +B®+ ...+ B(t))
> Matrices are split to be |[A®)(i,j)| 2 |[A@(i,j)|, |B®)i,j)| 2 |BD(i))|,p < g

and fl(4AOB®) = ADBO for any i and j
*11(...): result of floating-point operations

® |If the summation of the multiplications of the split matrices is performed with
correct rounding, the final result achieves correct rounding
> In this study, we used the NearSum algorithm [Rump et al. 2005]
® The multiplications of split matrices can be performed using DGEMM

> This is the most time-consuming portion in this method, and highly optimized
DGEMM is available on most processors including GPUs

® |t consumes a lot of memory
> It can be solved using blocking (discussed later)



Ozaki scheme (cont’d)

C=AB = (AD+ A+ .. + A®)(BO+ B+ ... + B®)

> Matrices are split to be [4€)i,)| 2 |4 ), [BPGij) 2 B, p < q
and fl(4OB0) = AOBG) for any i and j

€© Matrix Multiplications
S{ DGEMMs

.-.
Summation of the

N
computed matrices

Multiplications of the by NearSum
Splitting of input split matrices by DGEMM

matrices A and B




Ozaki scheme — Matrix splitting

C=AB = (AD+ A+ .. + A®)(BO+ B+ ... + B®)

> Matrices are split to be [AP)i,/)| 2 |49/, |BPXGf)| 2 |BDi,j)l, p < q
and fl(4OB0) = AOBG) for any i and j

Ty, Lo, o+, Tp)

Algorithm 1 Split vector »
I: function Split(x)

1 = |
while (norm(x'’, inf)! = 0) do
¢; = ceil((log, u™' + log,(n + 1))/2)
¢y = ceil(log, max(|x;|))
t =27 .2°
o=|[tt -1
: ' =2 = f1((2"" + o) — o)
9: ) = £f1(2' — V)
* Matrices are split not to occur 10: i =1+1
11: end while

rounding-errors during the

multiplications of the split matrices & enc function

* This algorithm is the error-free transformation for vector
* Matrix can be split by applying the algorithm to a matrix towards inner-product direction
* # of splits depends on both the length of the vector and the max value




Ozaki scheme — GPU implementation

B Overview
® Full CUDA implementation

__host__ int exblasExdgemm (

® Interface compatible with cublasDgemm cublasHandle t ch,
> Computes double-precision matrices char tranA, char tranB,
int m, int n, int k,
located on GPU memory double *alpha,

> But currently a & [ are not supported jout;}e

H —_ ou e

(just compute C=AB) e

B Challenges double

® To improve performance

*devA, 1int lda,
*devB, int 1ldb,
*beta,

*dev(C, int ldc) {

® To reduce memory consumption Split (devA, devAsplit);

> GPUs have limited memory space

Split (devB, devBsplit);

B Techniques we applied COPLIEE CdeV’jjSepleiS;’H .
® Blocking (for memory and performance) davCepTie):

® Utilizing batched BLAS (for performance)

NearSum (dev(Csplit, dev(C);




Ozaki scheme — Blocking

© Matrix Multiplications
ST DGEMMss

Memory consumption:

When matrices A and B are n x n square matrices,
the naive implementation consumes

(s+t+st)n?2 extra memory space




Ozaki scheme — Blocking (cont’d)

© Matrix Multiplications
S1t1 DGEMMs

h

N

Memory consumption (with blocking):

When block-size=b, # of splits of mat-A =si=s (1< i < m/b),
and # of splits of mat-B =¢j=¢ (1< j < n/b), the required
memory space decreases from (s+¢+st)n? to (s+t)nb+stb?
*Note: siand tj may vary depending on the max value in each

block, thus there is a possibility to reduce # of splits compared to
the non-blocking case




Ozaki scheme — Blocking (cont’d)

© Matrix Multiplications
S1t1 DGEMMs

h

A negative side-effect:

If the block-size is quite small, the throughput of GEMM
may decrease as problem size becomes too small to

utilize all the cores on a GPU




Ozaki scheme — Batched BLAS

A negative side-effect:

If the block-size is quite small, the throughput of GEMM may
decrease as problem size becomes too small to utilize all the

cores on a GPU

...

A solution: Batched BLAS

* A new BLAS interface that computes multiple
independent BLAS operations as a single task

e cuBLAS (intel MKL as well) provides a batched

DGEMM routine, which computes multiple
small DGEMMs concurrently at a high speed

cublasDgemmBatched (cublasHandle_t handle,
cublasOperation_t transa, cublasOperation_t transb,

int m, int n, int k, const double *alpha,
const double *Aarray[], int Ida,

const double *Barray(], int Idb,

int batchCount)

' const double *beta, double *Carray(], int Idc,




Evaluation

B Evaluation
® Performance (effectiveness of blocking & batched BLAS)
® Demonstrations of accuracy

B Environment
® GPU: NVIDIA Titan V (Volta architecture)
» 7449.6 GFlops on double-precision, 16GB memory
® CUDA 9.1, driver version: 390.67
B Problem setting
® Matrices are square & initialized as (rand(r)-0.5) * exp(¢ * randn(n))
> The larger ¢ is, the wider the range of the absolute values in the matrix becomes
(and thus, # of splits and DGEMMis also increase)

B Theoretical / expected performance
® Cost: the computation by DGEMM is O(n3), the other parts are O(n2)
® \We assume that the expected performance is the performance based on the cost for

st times of non-block & non-batched DGEMM (where # of splits format A& B are s
& t, respectively)
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Accuracy test

Comparison with MPFR-2048bits
(matrix size: 64x64, on TitanV)

Condition number

Our implementation  ©
DGEMM (cublas)  x

Relative error =
max( | Crargel| 1] | - | CMPFR[i]|)

max( | CmPFR[i] |)

e Compared with MPFR (2048bits), ExXDGEMM has no error for any cases
(there is nothing to plot)



Further optimization (future work)

B Blocking towards inner-product direction
® |t may increase the chance to reduce # of splits since
it depends the matrix dimension towards the inner
product direction as well as the max value
® But it increases memory consumption and # of
summations to compute the final result
B Skipping of zero calculations
® Split matrices which have lower digits information
may include many zero elements (sparse matrix)
® Sparse GEMM (SpMM) may be used for those
computations
B Auto-tuning
® For determining the optimal block-size and use/non-
use of batched BLAS
® For block-size, there is a tradeoff between
performance and memory consumption




Conclusion

B Summary
® The first full GPU implementation of accurate (correct rounding) and reproducible
DGEMM with Ozaki scheme
® Implementation techniques
Matrix blocking for reducing memory consumption
Use of batched BLAS for improving performance
® More than 90 % of expected performance can be achieved if the optimal block-size
is used (the performance is DGEMM-performance-bound)
B Future work
® Further optimizations
For small matrices
Automatic determining of optimal block-size
» Blocking has a tradeoff between memory-consumption and performance
® Comparison with other methods (ReproBLAS, EXBLAS scheme, etc.)
® Implementation of Full set BLAS
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ExXBLAS scheme

B Overview

@® A reproducible + accurate method
Reproducibility is achieved by computing with correct-rounding
® Combination of Floating-Point Expansion (FPE) + Super-Accumulator

(SuperAcc)
B Floating-Point Expansion (FPE)
® Based on error free transformations [Dekker and Knuth]
® Used for avoiding (reducing) the access to SuperAcc (it’s heavy)
B Super-Accumulator (SuperAcc)

® A long accumulator which can cover the exponent range of double-precision
@® |t consists of array of 64-bit integer (39 elements)




Further optimization

Splitting of matrix A:

* Determining the number of splitting
(= finding the max number in row-direction)

requires non-sequential memory access

* To avoid the performance degradation, we
transposed the matrix A before splitting

* The computations of split matrices are

performed using batched DGEMM-TN
* The transposition cost is negligibly small

Note: although this approach is actually effective to
improve the performance of splitting of mat A, the
performance of cuBLAS DGEMM-TN is unstable

when the matrix size is large: the total performance
decreases when this approach applies on Titan V
(we didn’t apply this in our current implementation)

Sequential
memory access



Accuracy test

Comparison with MPFR-2048bits
(matrix size: 64x64, on TitanV)
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e Compared with MPFR (2048bits), ExXDGEMM has no error for any cases
(impossible to plot the results with logscale axis)
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Memory consumption
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