
Parallel Computing 115 (2023) 102996

A
0

Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier.com/locate/parco

Multi-level parallel multi-layer block reproducible summation algorithm✩

Kuan Li a,∗, Kang He b, Stef Graillat c, Hao Jiang d, Tongxiang Gu e, Jie Liu b

a Dongguan University of Technology, No. 1, Daxue Rd., Songshan Lake, Dongguan, 523808, China
b Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, Changsha, 410000, China
c Sorbonne Université, CNRS, LIP6, Paris, F-75005, France
d College of Computer, National University of Defense Technology, Changsha, 410000, China
e Institute of Applied Physics and Computational Mathematics, Beijing, 100094, China

A R T I C L E I N F O

Keywords:
Reproducibility
1-Reduction
Summation
Multi-level parallel
Multi-layer block

A B S T R A C T

Reproducibility means getting the bitwise identical floating point results from multiple runs of the same
program, which plays an essential role in debugging and correctness checking in many codes (Villa et al., 2009).
However, in parallel computing environments, the combination of dynamic scheduling of parallel computing
resources. Moreover, floating point nonassociativity leads to non-reproducible results. Demmel and Nguyen
proposed a floating-point summation algorithm that is reproducible independent of the order of summation
(Demmel and Nguye, 2013; 2015) and accurate by using the 1-Reduction technique. Our work combines their
work with the multi-layer block technology proposed by Castaldo et al. (2009), designs the multi-level parallel
multi-layer block reproducible summation algorithm (MLP_rsum), including SIMD, OpenMP, and MPI based
on each layer of blocks, and then attains reproducible and expected accurate results with high performance.
Numerical experiments show that our algorithm is more efficient than the reproducible summation function in
ReproBLAS (2018). With SIMD optimization, our algorithm is 2.41, 2.85, and 3.44 times faster than ReproBLAS
on the three ARM platforms. With OpenMP optimization, our algorithm obtains linear speedup, showing that
our method applies to multi-core processors. Finally, with reproducible MPI reduction, our algorithm’s parallel
efficiency is 76% at 32 nodes with 4 threads and 32 processes.
1. Introduction

Reproducibility is widely considered to be an essential requirement
of the scientific process [1,2]. The concept of ‘‘numerical Reproducibil-
ity’’ was first proposed by He and Ding of Lawrence Berkeley National
Laboratory in 2001 [3]. They used Kahan’s self-compensated summa-
tion and Bailey’s double-double precision summation to achieve the
reproducibility of large-scale scientific simulations and provided an
MPI operator. They also achieved a good result in climate modeling
on distributed memory parallel computers and encountered severe
difficulty calculating sea surface height in an ocean circulation model.

McNutt stressed the importance of reproducibility in Science in
2014, to demonstrate excellence in transparency [4]. In 2015, Taufer
pointed out the numerical reproducibility challenges on extreme-scale
multi-threading GPUs [5]. Taufer also presented a novel set of Re-
producibility Enhancement Principles (REP) targeting disclosure chal-
lenges involving computation [6].

✩ This research is partly supported by the National Key Research and Development Program of China under Grant 2020YFA0709803, 173 Program under Grant
2020-JCJQ-ZD-029, the Science Challenge Project under Grant TZ2016002. This work was also supported by the NuSCAP (ANR-20-CE48-0014) project of the
French National Agency for Research (ANR).
∗ Corresponding author.
E-mail addresses: likuan@dgut.edu.cn (K. Li), hekang2019@nudt.edu.cn (K. He), stef.graillat@sorbonne-universite.fr (S. Graillat), haojiang@nudt.edu.cn

(H. Jiang), txgu@iapcm.ac.cn (T. Gu), liujie@nudt.edu.cn (J. Liu).

The non-reproducibility of floating-point computation arises be-
cause the associative law is no longer guaranteed in floating-point
arithmetic [7]. However, for large-scale parallel computing, the number
of processors, reduction tree shape, data assignment, and data parti-
tioning have unfavorable effects on reproducibility. Therefore, there
have been numerous recent scientific payoffs at conferences addressing
the need for reproducibility [8–12]. Taufer improved reproducibility
and stability in large-scale molecular dynamic simulations on GPUs and
presented the development of a library of mathematical functions that
use fast and efficient algorithms to fix the error produced by the equiv-
alent operations performed by GPUs [13]. Chapp built containerized
environments for reproducibility and traceability of scientific work-
flows [14]. Intel’s Math Kernel Library (MKL) supports reproducibility
under certain restrictive conditions [15]. NVIDIA’s cuBLAS routines are
reproducible under the same conditions [16].
vailable online 18 January 2023
167-8191/© 2023 Published by Elsevier B.V.

https://doi.org/10.1016/j.parco.2023.102996
Received 21 March 2022; Received in revised form 4 December 2022; Accepted 12
 January 2023

https://www.elsevier.com/locate/parco
http://www.elsevier.com/locate/parco
mailto:likuan@dgut.edu.cn
mailto:hekang2019@nudt.edu.cn
mailto:stef.graillat@sorbonne-universite.fr
mailto:haojiang@nudt.edu.cn
mailto:txgu@iapcm.ac.cn
mailto:liujie@nudt.edu.cn
https://doi.org/10.1016/j.parco.2023.102996
https://doi.org/10.1016/j.parco.2023.102996
http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2023.102996&domain=pdf

Parallel Computing 115 (2023) 102996K. Li et al.

b
o

H
S
2
s
s
i
E
m
d

h
C
c
s

p
s
t
1
a
p
a
d

𝑛

w

W
a

u
s
e
u
r
m

a

2

t
i

𝑀

w
I
u
i
a

E
t
E
b

l
i

o

𝑛

A
r
a
i

a

r
D
W

In 2013, Demmel and Nguyen proposed fast and reproducible se-
quential summation algorithms [8], based on error-free vector trans-
formation technology proposed by Rump [17–19]. They developed the
1-Reduction technique to attain local boundaries, which evaluates the
local maximum absolute value instead of the global maximum absolute
value. Thus one reduction can be removed. The main idea of the
algorithms is to ‘‘pre-round’’ the input floating point numbers in 𝐾
consecutive bins by precomputed boundaries with an interval of 𝑊
its, requires no communication. Subsequently, they proposed a series
f reproducible algorithms [11,12] and the ReproBLAS software [10].

Based on investigating the reproducibility of HPC applications [20],
oefler presented the challenges of reproducibility in HPC at the
C2015 [21]. Iakymchuk et al. developed the ExBLAS software [22–
7], which is fast, accurate, and reproducible BLAS, which does not
upport ARM architecture. Mukunoki proposed DGEMM using ten-
or cores and its accurate and reproducible versions [28]. Chohra
ntroduced the RARE-BLAS (Reproducible, Accurately Rounded, and
fficient BLAS) that benefits from recent accurate and efficient sum-
ation algorithms [29,30], which only provided Level 1 BLAS(asum,
ot, and nrm2) and Level 2 BLAS(gemv) routines.

Most systems in high-performance computing feature a hierarchical
ardware design, such as shared memory nodes with several multi-core
PUs. For some optimizations, it is necessary to block operations into
hunks. Castaldo introduced a new and more general framework named
uperblock in 2009 [31].

We could use a multi-block algorithm to combine the various
arallel designs, including MPI and OpenMP, as well as use intrin-
ic optimization in SIMD. As the parallel scale increases, the uncer-
ainty of computation will also increase. We present and develop a
-Reduction multi-level parallel multi-block reproducible summation
lgorithm, which can compute a rigorously reproducible sum of floating
oints in parallel computing environments. with only basic assumptions
bout the underlying arithmetic. We reproducibly attain results for the
esired accuracy with the lowest absolute error bound

⋅ 2(1−𝐾)⋅𝑊 −1 ⋅max
𝑖

|𝑣𝑖|,

here 𝑣 is the input vector, 𝑛 is the length of 𝑣, 𝐾 is the number of bins,
𝑊 is the width of a bin, and all operations are performed in rounding
to the nearest mode. The error bound is the same as that in ReproBLAS,
even though we add OpenMP and SIMD optimization.

We compare our algorithm with the reproducible summation func-
tion (𝐫𝐞𝐩𝐫𝐨𝐁𝐋𝐀𝐒_𝐝𝐬𝐮𝐦) in ReproBLAS. The numerical tests illustrate
our algorithm is efficient. We have make these codes available online.1

The remainder of this paper is organized in the following way:
Section 2 presents some notation and existing algorithms that will be
used throughout the paper. Section 3 presents our 1-Reduction multi-
level parallel multi-layer block reproducible summation algorithms
and analyses the error bounds. Section 4 contains some numerical
experiments to check the reproducibility and the performance of our
algorithm. Section 5 is the conclusion.

2. Notation and background

2.1. Notation

In this paper, we assume that the floating-point arithmetic in use
complies with the IEEE-754 (2019) standard and only consider that all
operations are performed in rounding to the nearest mode. We use F,Z
to denote the set of floating-point numbers and integers, respectively.

The floating-point number system is a proper subset of the real
number system, a floating-point number 𝑓 can be represented as 𝑓 =
(−1)𝑠 × 𝑚 × 2𝑒 ∈ F, where 𝑠 = ±1 is the sign, 𝑚 is the significand
of 𝑓 , 𝑒 is the exponent and 𝑒𝑚𝑎𝑥 ≥ 𝑒 ≥ 𝑒𝑚𝑖𝑛. 𝑝 denotes the precision.

1 https://github.com/qihaijun/MLP_rsum.git
2

a

𝑚 = 𝑚0.𝑚1𝑚2 ⋯𝑚𝑝−1 is also known as the mantissa, where 𝑚𝑖 ∈ {0, 1}.
e define machine epsilon 𝜖 = 2−𝑝 as the spacing distance between 1

nd the floating point number greater than and closest to 1.
We use f l(⋅) to denote the evaluated result of an expression, and

se ulp(𝑓) to denote the unit in the last place, which is defined as the
pacing between two consecutive floating-point numbers of the same
xponent 𝑒. We denote the unit in the first place by ufp(𝑓) = 2𝑒. The
nit roundoff 𝐮 is the upper limit of the rounding error, it is closely
elated to the ulp(𝑓) function and satisfied 𝐮 = 𝜖 in rounding to nearest
ode. Let 𝑥 ∈ R, denote 𝑥Z = {𝑛⋅𝑥, 𝑛 ∈ Z}, we can deduce the following

lemmas.

Lemma 1. Let 𝑓, 𝑥, 𝑦 ∈ F, where 𝑥, 𝑦 ∈ ulp(𝑓)Z. If |𝑥 + 𝑦| < 𝜖−1 ulp(𝑓)
nd no overflow occurs then 𝑥+ 𝑦 ∈ F, 𝑖.𝑒. 𝑥+ 𝑦 can be computed exactly.

.2. Reproducible summation with 1-reduction technique

First, we introduce the error-free vector transformations ExtractVec-
or3() [9, Algorithm 5], which is the kernel of reproducible algorithms
n this section.

Second, we briefly review the precomputed values

[𝑘] = 0.75 ⋅ 𝜖−1 ⋅ 2𝑘⋅𝑊 , 𝑊 ∈ Z, 𝑊 < log2(𝜖−1), 𝑘 = 1,… , 𝐾,

hich is independent of input data and requires no communication.
nput floating-point numbers will be split according to boundaries
lp(𝑀[𝑘]) = 2𝑘⋅𝑊 . Each processor can use its own local boundary, which
s the largest one to the right of the leading bit of local maximum
bsolute value.

The 1-Reduction technique can be described by means of binning.
ach bin is characterized by an index 𝑖, which means that the bin covers
he bits from position 𝑖𝑊 to position (𝑖+1)𝑊 −1 in the exponent range.
ach input floating-point value will be put in a number of contiguous
ins. The values inside each bin will be summed respectively.

Before summation, it is necessary to adjust the index of bins by the
ocal maximum absolute value. This adjustment is Algorithm 1, which
s part of Algorithm 6 in [9].

Algorithm 1 [9] [𝑆,𝐶] = update(𝑚,𝐾,𝑊 , 𝑆, 𝐶)

Require: 𝑚 is the local maximum absolute value, 𝑊 is the bin width, 𝐾
is the number of bins to be kept. 𝑆,𝐶 ∈ F𝐾 are already initialized.

1: if 𝑚 ≥ 2𝑊 −1 ∗ ulp(𝑆1) then
2: 𝑔 = 1 + ⌊log2(𝑚∕(2𝑊 −1 ∗ ulp(𝑆1)))∕𝑊 ⌋

3: for 𝑘 = 𝐾 down to (𝑔 + 1) do
4: 𝑆𝑘 = 𝑆𝑘−𝑔 , 𝐶𝑘 = 𝐶𝑘−𝑔
5: end for
6: for 𝑘 = 1 to min(𝑔,𝐾) do
7: 𝐶𝑘 = 0, 𝑆𝑘 = 1.5 ∗ 2𝑔∗𝑊 ∗ ufp(𝑆𝑘)
8: end for
9: end if
Ensure: 𝑆,𝐶 is updated by 𝑚.

We need to avoid overflow of bins, which means the maximum
number of floating point numbers 𝑛 that can be summed without
verflow have to satisfies

≤ 2−(𝑘+1)⋅𝑊 −1 ⋅ ufp(0.75 ⋅ 𝜖−1 ⋅ 2𝑘⋅𝑊) = 𝜖−1 ⋅ 2−𝑊 −2.

s for the longer input vector, it is required to adopt the method of
enormalization and capture the carry-bit after every 𝑁𝐵 ≤ 𝜖−1 ⋅2−𝑊 −2

ddition. This process is Algorithm 2, which is part of Algorithm 6
n [9].

The Algorithm 1 and Algorithm 2 are both used in our parallel
lgorithm in Section 3.1.1.

Algorithm 3 is the pseudo-code for sequential K-fold 1-Reduction
eproducible summation, which is a building block for the parallel case.
enote by 𝑣[𝑙∶𝑟] = [𝑣𝑙 ,… , 𝑣𝑟] a block of input vector 𝑣 from index 𝑙 to 𝑟.
e set forth that the vector (𝑆1,… , 𝑆𝑘, 𝐶1,… , 𝐶𝑘) is denoted as (𝑆,𝐶),

nd 𝐶 is stored in the same precision as 𝑆 .
𝑘 𝑘

https://github.com/qihaijun/MLP_rsum.git

Parallel Computing 115 (2023) 102996K. Li et al.

[

Algorithm 2 [9] [𝑆,𝐶] = renormalize(𝐾,𝑆, 𝐶)

Require: 𝐾 is the number of bins to be kept. 𝑆,𝐶 ∈ F𝐾 .
1: for 𝑘 = 1 to 𝐾 do
2: if 𝑆𝑘 ≥ 1.75 ∗ ufp(𝑆𝑘) then
3: 𝑆𝑘 = 𝑆𝑘 − 0.25 ∗ ufp(𝑆𝑘), 𝐶𝑘 = 𝐶𝑘 + 1
4: else if 𝑆𝑘 < 1.25 ∗ ufp(𝑆𝑘) then
5: 𝑆𝑘 = 𝑆𝑘 + 0.5 ∗ ufp(𝑆𝑘), 𝐶𝑘 = 𝐶𝑘 − 2
6: else if 𝑆𝑘 < 1.5 ∗ ufp(𝑆𝑘) then
7: 𝑆𝑘 = 𝑆𝑘 + 0.25 ∗ ufp(𝑆𝑘), 𝐶𝑘 = 𝐶𝑘 − 1
8: end if
9: end for
Ensure: 𝑆𝑘, 𝐶𝑘 are the trailing and leading parts of the aggregation of

values in the 𝑘-th leftmost bins, respectively.

Algorithm 3 [9, Algorithm 6] Sequential Reproducible Summation:
𝑆,𝐶] = rsum(𝑣,𝐾,𝑊)
Require: 𝑣 is a vector of 𝑛 floating-point numbers. 𝑊 is the bin width

satisfies 1 ≤ 𝑊 < − log2 𝜖. 𝑀𝑖 = 0.75 ⋅ 𝜖−1 ⋅ 2𝑖⋅𝑊 , 𝑖𝑚𝑖𝑛 ≤ 𝑖 ≤ 𝑖𝑚𝑎𝑥 are
precomputed. 𝐾 is the number of bins to be kept. 𝑁𝐵 ≤ 𝜖−1 ⋅2−𝑊 −2

is the maximum unit size for renormalization. 𝑆,𝐶 ∈ F𝐾 .
1: for 𝑘 = 1 to 𝐾 do ⊳ Initialization
2: 𝑆𝑘 = 𝑀𝑖𝑚𝑖𝑛+𝐾−𝑘, 𝐶𝑘 = 0
3: end for
4: for 𝑖 = 1 to 𝑛 step 𝑁𝐵 do
5: 𝑙𝑁 = min(𝑖 +𝑁𝐵 − 1, 𝑛)
6: 𝑚 = max(|𝑣[𝑖∶𝑙𝑁]|) ⊳ Local maximum absolute
7: [𝑆,𝐶] = update(𝑚,𝐾,𝑊 , 𝑆, 𝐶)
8: for 𝑘 = 1 to 𝐾 do ⊳ Deposit
9: [𝑆𝑘, 𝑣[𝑖∶𝑙𝑁]] = ExtractVector3(𝑆𝑘, 𝑣[𝑖∶𝑙𝑁])

10: end for
11: [𝑆,𝐶] = renormalize(𝐾,𝑆, 𝐶)
12: end for
Ensure: 𝑆𝑘, 𝐶𝑘 are the trailing and leading parts of the aggregation of

values in the 𝑘-th leftmost bins, respectively.

3. 1-Reduction multi-level parallel multi-layer block reproducible
algorithm

By analyzing Algorithm 3, the portion for computing maximum
absolute value and depositing operator takes the largest proportion of
costs and need to be optimized.

In this section, we will improve Algorithm 3 with optimization and
parallelization, by means of introducing a special reduction operation
RepReduce() [9, Algorithm 7] and designing the multi-level parallel
structure with SIMD, OpenMP, and MPI. RepReduce() could avoid
computing the global maximum absolute value in the parallel case.
Using Algorithm 3 in each block, we can get a pair of arrays (𝑆,𝐶)
as the local result, where 𝑆, 𝐶 ∈ F𝐾 .

3.1. Multi-level parallel algorithm design

In this subsection, we introduce the SIMD, OpenMP, and MPI opti-
mization, which could be used for the multi-layer block algorithm on
the ARM architecture. Different types of multi-core CPUs have a large
number of parallel computing cores and multi-level caches, which could
provide our algorithms with multi-level parallel computing capabilities
such as instruction-level, thread-level, and data-level, respectively.

3.1.1. SIMD optimization
To obtain higher efficiency of program execution and reduce the

workload of the algorithm while maintaining performance, we optimize
Algorithm 3 in terms of the perspective of intrinsic, prefetch operation,
3

and blocking.
Since there has been a version of assembly optimization for Algo-
rithm 3 on the X86 platform, the focus of our SIMD optimization will
be on the ARM platforms. NEON is a SIMD extension structure for the
ARM cortex-A processor, and we use intrinsic (internal functions) as
the means to implement NEON. Intrinsic is simple to use and easy to
maintain, making it suitable for cross-platform optimization.

We vectorize data in bins 𝑣𝑠_0_0, arrays 𝑣𝑥_0, and maximum absolute
value. Then the arrays are added to the bins in batches. In addition,
since accumulation is a memory-intensive calculation, each batch of
array elements involved in the computation is prefetched into the
cache by PRFM instruction to prefetch the data which is used in the
calculation kernel part to effectively hit the cache and improve memory
access efficiency. We test different data prefetch lengths to obtain
the best performance. The algorithm performs best when the prefetch
length is 1024.

The kernel code of SIMD parallel implementation of ExtractVec-
tor3() algorithm, called ExtractVectorSIMD(), is implemented as fol-
lows.

⋯
𝑣𝑠_0_0 = 𝑣𝑑𝑢𝑝𝑞_𝑛_𝑓64(𝑝𝑟𝑖𝑌 [0]);

⋯
𝑣𝑥_0 = 𝑣𝑙𝑑1𝑞_𝑓64(𝑋);

⋯
__𝑎𝑠𝑚__𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑒(‘‘𝑝𝑟𝑓𝑚 𝑃𝐿𝐷𝐿1𝐾𝐸𝐸𝑃 , [𝑋, #1024]’’);

⋯
𝑣𝑞_0 = 𝑣𝑠_0_0;
𝑣𝑠_0_0 = 𝑣𝑎𝑑𝑑𝑞_𝑓64(𝑣𝑠_0_0,

𝑣𝑟𝑒𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑞_𝑓64_𝑢64(𝑣𝑜𝑟𝑟𝑞_𝑢64(
𝑣𝑟𝑒𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑞_𝑢64_𝑓64(𝑣𝑥_0), 𝑏𝑚𝑡)));

𝑣𝑞_0 = 𝑣𝑠𝑢𝑏𝑞_𝑓64(𝑣𝑞_0, 𝑣𝑠_0_0);
𝑣𝑥_0 = 𝑣𝑎𝑑𝑑𝑞_𝑓64(𝑣𝑥_0, 𝑣𝑞_0);

⋯
Finally, only one of 𝑣𝑠_0_0 is returned after SIMD computation by

converting 𝑣𝑠_0_0 back to a scalar, called SIMD_reduction, shown as
follows.

⋯
𝑓𝑙𝑜𝑎𝑡64𝑥2_𝑡 𝑠_𝑡𝑚𝑝 = 𝑣𝑑𝑢𝑝𝑞_𝑛_𝑓64(𝑝𝑟𝑖𝑌 [0]);
𝑠_𝑡𝑚𝑝 = 𝑣𝑠𝑒𝑡𝑞_𝑙𝑎𝑛𝑒_𝑓64(0, 𝑠_𝑡𝑚𝑝, 1);
𝑣𝑠_0_0 = 𝑣𝑠𝑢𝑏𝑞_𝑓64(𝑣𝑠_0_0, 𝑠_𝑡𝑚𝑝);
𝑝𝑟𝑖𝑌 [0] = 𝑣𝑔𝑒𝑡𝑞_𝑙𝑎𝑛𝑒_𝑓64(𝑣𝑠_0_0, 0)

+ 𝑣𝑔𝑒𝑡𝑞_𝑙𝑎𝑛𝑒_𝑓64(𝑣𝑠_0_0, 1);
⋯

Consequently, Algorithm 4 is the pseudo-code for reproducible sum-
mation algorithm with SIMD parallel design.

3.1.2. OpenMP optimization
OpenMP [32] is a multi-thread programming scheme for shared

memory parallel systems, provides a high-level abstract syntax ex-
pressing parallelism. OpenMP is suitable for parallel programming on
multi-core CPU machines. Application requirements or system restric-
tions may limit the number of MPI processes that can be used. In
this case, using OpenMP in addition to MPI can increase the amount
of parallelism. Some applications show an unbalanced workload at
the MPI level that might be hard to overcome. In this case, OpenMP
provides a convenient way to address the imbalance by exploiting extra
parallelism on a finer granularity and by assigning a different number
of threads to different MPI processes, depending on the workload.
Programmers specify their intentions by adding special pragma to the
source code so that the compiler can automatically parallelize the
program.

In this section, we design a multi-thread reproducible summation al-

gorithm based on OpenMP. OpenMP uses the fork-join mode, i.e., only

Parallel Computing 115 (2023) 102996K. Li et al.

w
g

𝑏

e

𝑐

Algorithm 4 Sequential Reproducible Summation: [𝑆,𝐶] =
rsumSIMD(𝑣,𝐾,𝑊)
Require: 𝑣 is a vector of 𝑛 floating-point numbers. 𝑊 is the bin width

satisfies 1 ≤ 𝑊 < − log2 𝜖. 𝑀𝑖 = 0.75 ⋅ 𝜖−1 ⋅ 2𝑖⋅𝑊 , 𝑖𝑚𝑖𝑛 ≤ 𝑖 ≤ 𝑖𝑚𝑎𝑥 are
precomputed. 𝐾 is the number of bins to be kept. 𝑁𝐵 ≤ 𝜖−1 ⋅2−𝑊 −2

is the maximum unit size for renormalization. 𝑉 𝑆, 𝑉 𝐶 ∈ F𝑏⋅𝐾 where
𝑏 is the number of blocking. 𝑆,𝐶 ∈ F𝐾 .

1: for 𝑘 = 1 to 𝐾 do ⊳ Initialization
2: 𝑆𝑘 = 𝑀𝑖𝑚𝑖𝑛+𝐾−𝑘, 𝐶𝑘 = 0
3: end for
4: for 𝑖 = 1 to 𝑛 step 𝑁𝐵 do
5: 𝑙𝑁 = min(𝑖 + 2 ∗ 𝑁𝐵 − 1, 𝑛)
6: 𝑚 = max(|𝑣[𝑖∶𝑙𝑁]|)
7: ⊳ Vectorize maximum absolute value
8: [𝑆,𝐶] = update(𝑚,𝐾,𝑊 , 𝑆, 𝐶)
9: for 𝑗 = 𝑖 to 𝑙𝑁 step 𝑏 do ⊳ Vectorize Deposit

10: for 𝑘 = 1 to 𝐾 do
11: [𝑉𝑘, 𝑣[𝑗∶𝑗+𝑏]] = ExtractVectorSIMD(𝑉𝑘, 𝑣[𝑗∶𝑗+𝑏])
12: end for
13: 𝑆 = SIMD_reduction(𝑉) ⊳ SIMD Reduce
14: end for
15: [𝑆,𝐶] = renormalize(𝐾,𝑆, 𝐶)
16: end for
Ensure: 𝑆𝑘, 𝐶𝑘 are the trailing and leading parts of the aggregation of

values in the 𝑘-th leftmost bins, respectively.

one master thread at the beginning. When parallel computation is
needed, several child threads are forked to perform parallel tasks. Each
thread takes data from a different location on the same segment of
memory, then computes its local maximum absolute value and uses
Algorithm 4 to attain a local result. When the threads finish their work,
the child threads will join and hand over control to the master thread,
i.e., synchronize and terminate, leaving only the master thread, which
is achieved by RepReduce() to aggregate all threads, gets only one
pair of mantissa 𝑆 and carries 𝐶 reproducibility in the master thread.
Therefore, we obtain the data according to the ID of threads, then use
the following pragma instruction to parallelize the algorithm:

#𝑝𝑟𝑎𝑔𝑚𝑎 𝑜𝑚𝑝 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
{

[𝑠, 𝑐] = rsumSIMD(𝑣,𝐾,𝑊)
}
[𝑆,𝐶] = RepReduce(𝑆,𝐶, 𝑠, 𝑐)
∕ ∗ 𝑜𝑛 𝑚𝑎𝑠𝑡𝑒𝑟 𝑡ℎ𝑟𝑒𝑎𝑑 𝑜𝑛𝑙𝑦 ∗ ∕

3.1.3. MPI optimization
After we get the pairs from each thread, we need to aggregate all

pairs into one final pair by RepReduce(). Then, we compute 𝐹 𝑖𝑛𝑎𝑙_𝑠𝑢𝑚
in a certain order in Algorithm 5.11 in [11] to guarantee reproducibil-
ity. We denote the whole action above as MPI_RepReduce().

3.2. MLP_rsum

Castaldo proposed a 𝑡-layer block algorithm for dot product named
SuperBlock [31]: Given 𝑡 temporaries, we could accumulate a sum
in 𝑡 levels, which permits a practitioner to make trade-offs between
computational performance, memory usage, and error behavior. We
combine the 𝑡-layer block technology with the 1-Reduction technique
to implement a parallel reproducible summation algorithm.

We perform a parallel design, including SIMD instruction-level
parallelization, OpenMP thread-level parallelization, and MPI data-
level parallelization, to obtain a 1-Reduction multi-level parallelization
multi-layer block algorithm, that is Algorithm 5, with user-defined
number of processes 𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑐𝑜𝑢𝑛𝑡 and of threads 𝑡ℎ𝑟𝑒𝑎𝑑_𝑐𝑜𝑢𝑛𝑡.
4

Algorithm 5 1-Reduction Multi-level Parallel Multi-layer Block
Reproducible Summation Algorithm
Require: 𝑣 is a vector of 𝑛 floating-point numbers. 𝑊 is the bin width

satisfies 1 ≤ 𝑊 < − log2 𝜖. 𝐾 is the number of bins to be kept. 𝑆,𝐶 ∈
F𝐾 . 𝑡ℎ𝑟𝑒𝑎𝑑_𝑐𝑜𝑢𝑛𝑡 and 𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑐𝑜𝑢𝑛𝑡 are the numbers of available
threads and nodes separately.

1: 𝑚𝑝𝑖𝑛 = 𝑛∕𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑐𝑜𝑢𝑛𝑡
2: for 𝑓 = 1 to 𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑐𝑜𝑢𝑛𝑡 do ⊳ MPI parallel
3: if 𝑓 ! = 𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑐𝑜𝑢𝑛𝑡 then 𝑝 = 𝑚𝑝𝑖𝑛
4: else 𝑝 = 𝑛 − 𝑚𝑝𝑖𝑛 ∗ (𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑐𝑜𝑢𝑛𝑡 − 1)
5: end if
6: 𝑜𝑚𝑝𝑛 = 𝑝∕𝑡ℎ𝑟𝑒𝑎𝑑_𝑐𝑜𝑢𝑛𝑡
7: #𝑝𝑟𝑎𝑔𝑚𝑎 𝑜𝑚𝑝 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
8: for 𝑖 = 1 to 𝑡ℎ𝑟𝑒𝑎𝑑_𝑐𝑜𝑢𝑛𝑡 do ⊳ OpenMP parallel
9: if 𝑖! = 𝑡ℎ𝑟𝑒𝑎𝑑_𝑐𝑜𝑢𝑛𝑡 then 𝑡 = 𝑜𝑚𝑝𝑛

10: else 𝑡 = 𝑝 − 𝑜𝑚𝑝𝑛 ∗ (𝑡ℎ𝑟𝑒𝑎𝑑_𝑐𝑜𝑢𝑛𝑡 − 1)
11: end if
12: ⊳ SIMD parallel
13: 𝑙 = 𝑚𝑝𝑖𝑛 ∗ (𝑓 − 1) + 𝑜𝑚𝑝𝑛 ∗ (𝑖 − 1)
14: [𝑠, 𝑐] = rsumSIMD(𝑣[𝑙∶𝑙+𝑡], 𝐾,𝑊)
15: [𝑆[𝑓], 𝐶[𝑓]] = RepReduce(𝑆[𝑓], 𝐶[𝑓], 𝑠, 𝑐)
16: end for
17: end for
18: 𝐹 𝑖𝑛𝑎𝑙_𝑠𝑢𝑚 = MPI_RepReduce(𝑆,𝐶)
Ensure: 𝐹 𝑖𝑛𝑎𝑙_𝑠𝑢𝑚 is the reproducible summation of vector 𝑣.

Note that Algorithm 5 uses only one reduction for aggregating all
the partial sums. Although RepReduce for OpenMP and MPI_RepReduce
are slightly different, they still are treated as the same reduction
operation in the whole algorithm.

Therefore, Algorithm 5 could make full use of multiple parallel com-
puting cores and multi-level caches of modern processors, combining
the features of the processor architecture with the multi-level parallel
design, which is well suited to highly parallel environments.

3.3. Accuracy

For Algorithm 5, the error is produced by pre-rounding for each
input data and executing the ‘‘Update’’ portion, (other portions are
performed exactly). Suppose the gap between two consecutive pre-
computed boundaries is 𝑊 bits, 𝐾 is given, usually 𝑊 = 40, 𝐾 =
3.

𝑠, 𝑆[𝑓], 𝑆 ∈ F𝐾 . The size of each process and thread are denoted by

𝑝 = [𝑚𝑝𝑖𝑛,… , 𝑚𝑝𝑖𝑛, 𝑛 − 𝑚𝑝𝑖𝑛 ∗ (𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑐𝑜𝑢𝑛𝑡 − 1)],

𝑡 = [𝑜𝑚𝑝𝑛,… , 𝑜𝑚𝑝𝑛, 𝑝 − 𝑜𝑚𝑝𝑛 ∗ (𝑡ℎ𝑟𝑒𝑎𝑑_𝑐𝑜𝑢𝑛𝑡 − 1)].

Size of 𝑝 is 𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑐𝑜𝑢𝑛𝑡, Size of 𝑡 is 𝑡ℎ𝑟𝑒𝑎𝑑_𝑐𝑜𝑢𝑛𝑡.
According to Lemma 1, we could deduce the error from different

level of parallelism.
At the SIMD level, the error generated by summation in 𝑖th thread

is

𝑎𝑖 ≤ 𝑡𝑖 ⋅
1
2
ulp(𝑠𝐾) ,

here 𝑠𝐾 is from the local result (𝑠, 𝑐). At the OpenMP level, the error
enerated by aggregating all threads in 𝑓 th process is

𝑓 ≤
𝑡ℎ𝑟𝑒𝑎𝑑_𝑐𝑜𝑢𝑛𝑡

∑

𝑖=1
𝑎𝑖 ≤ 𝑝𝑓 ⋅

1
2
ulp(𝑆[𝑓]𝐾) .

where 𝑆[𝑓]𝐾 is from the local result (𝑆[𝑓], 𝐶[𝑓]). At the MPI level, the
rror generated by aggregating all processes is

≤
𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑐𝑜𝑢𝑛𝑡

∑

𝑏𝑓 ≤ 𝑛 ⋅ 1
2
ulp(𝑆𝐾) ,
𝑓=1

Parallel Computing 115 (2023) 102996K. Li et al.
Table 1
Non-reproducibility of conventional summation using different compilers and optimization options on ARM platforms.

Compiler Optimization FT2000+ Kunpeng920 ThunderX2

(1) (2)

gcc
-fno-fast-math -O0 −7.74515613378954650e−11 −7.74515613378954650e−11 −7.74515613378954650e−11

-Ofast −7.74515613378954650e−11 −7.74515613378954650e−11 −7.74515613378954650e−11

-ffast-math -OX −7.74515613378954650e−11 −1.64574758883120149e−10 −7.74515613378954650e−11
-Ofast −1.64574758883120149e−10 −1.64574758883120149e−10 −1.64574758883120149e−10

clang
-fno-fast-math -O0 −7.74515613378954650e−11 −7.74515613378954650e−11 −7.74515613378954650e−11

-Ofast −2.22971173884867961e−11 4.71949378195161322e−12 4.71949378195161322e−12

-ffast-math -OX −7.74515613378954650e−11 −7.74515613378954650e−11 −7.74515613378954650e−11
-Ofast −2.22971173884867961e−11 4.71949378195161322e−12 4.71949378195161322e−12

Remark: -OX in Optimization(2) is -O0/-O1/-O2/-O3/-Os/-Og, and the result is the same as the control group in both compilers.
h
a

4

T
e
o

4

t
a
s
l
r
a
o
o

4

s
o
i
i

t
e
a
t
o
f

where 𝑆𝐾 is from pair the final result (𝑆, 𝐶). Therefore, the error
bound of the K-fold 1-Reduction multi-level parallel multi-layer block
reproducible summation algorithm can be estimated to be:

𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒_𝑒𝑟𝑟𝑜𝑟 ≤ 𝑛 ⋅ 1
2
ulp(𝑆1) ⋅ 2(1−𝐾)⋅𝑊

≤ 𝑛 ⋅ 2(1−𝐾)⋅𝑊 −1 ⋅max
𝑖

|𝑣𝑖|. (1)

The error bound is the same as that in ReproBLAS, even though we
add OpenMP and SIMD optimization. Based on the above analysis, we
can get the following conclusion: when the input vector is given, then
the accuracy of Algorithm 5 is tuned by choosing big enough 𝐾 to attain
the accuracy required in each application.

4. Experimental results

In this section, we execute different algorithms on some ARM
platforms and X86 platforms. Firstly, we compare some experimental
results of conventional summation algorithms and our algorithm on dif-
ferent compilers and optimization options to check the reproducibility.
Secondly, the accuracy is shown by computing absolute errors. Last but
not least, we compare the performance of the proposed reproducible
summation method with ReproBLAS in double precision.

4.1. Reproducibility experiment

The experiments in Table 1 and Table 2 respectively show the
results of conventional summation, using different compilers and op-
timization options on three ARM platforms (including FT2000+, Kun-
peng920, and ThunderX2) and three X86 platforms (including Hy-
gon C86 7185, Intel(R) Xeon(R) CPU E5-2620, and Intel(R)Xeon(R)
Platinum 8180M). We used the function in ReproBLAS [9]:

sin

(

2𝜋 ⋅

(

𝑖
𝑛
− 1

2

))

(2)

to generate vector 𝑣 of size 𝑛 = 106, and 𝑖 = 1,… , 𝑛. We could see 18
different results, account for non-reproducible.

For example, the results in Hygon are different from the results of
the other five platforms with the same compiler and the same option.
On Intel E5-2620, there are 9 different results with three kinds of
compiler and serval options. On Intel 8180M, there are 5 different
results with the icc compiler and five kinds of options.

However, we used function (2) to generate vectors with random
size 𝑛, and shuffle the vector randomly inside the vectors. Then we
calculated them by Algorithm 5 using different compilers and optimiza-
tion options on different platforms, which are the same as those in
Tables 1 and 2. We test 5 vectors, and the results are listed in Table 3.
Experimental results show that our algorithms are not affected by the
computation order and other factors, obtaining the same results by bit
for the same data set, satisfying the reproducibility.
5

4.2. Accuracy experiment

We use the results calculated by MPFR [33] as accurate results. They
were compared with the results computed by Algorithm 5 to obtain
absolute errors to verify the accuracy. The results are listed in Table 4.

The condition number ∑𝑖 |𝑣𝑖|∕|
∑

𝑖 𝑣𝑖| of vectors in our experiment is
uge. The results in Table 4 can verify the correctness of our numerical
nalysis (1).

.3. Performance experiment

The testing platforms include three ARM processors, as shown in
able 5. This subsection includes a single-core SIMD optimization
xperiment, single-chip multi-core experiment and large-scale node
ptimization experiment, showing the performance of Algorithm 5.

.3.1. Single-core SIMD optimization experiment
ReproBLAS does not support SIMD optimization on ARM architec-

ure. We adopt the intrinsic function supporting NEON to parallelize the
lgorithm and enhance prefetch instructions. Then, the reproducibility
ummative with SIMD optimization, i.e., Algorithm 4, is realized. The
ength of arrays that we choose is 5 × 107, and the average value of 20
esults is taken as the final result. In Fig. 1, Algorithm 4 runs 2.41, 2.85
nd 3,44 times faster than Algorithm 3(Algorithm 6 in [9]), respectively
n three platforms. The experiment verifies the efficiency of our SIMD
ptimization in Section 3.1.1.

.3.2. Single-chip multi-core parallel optimization experiment
Due to page limitation, only one ARM platform(ThunderX2) is

elected to demonstrate the actual effect of Algorithm 5. The length
f arrays that we choose is 5 × 107, and the average value of 30 results
s taken as the final result. Then the speedup is calculated and shown
n Table 6.

As shown in Table 6, when the number of processes (nP) is 1, and
he number of threads (nT) is less than 16, Algorithm 5 is scalable. The
ffect of OpenMP parallel optimization in Section 3.1.2 is illustrated. In
ddition, we find that the speedup of nT = 8 and nP = 1 is better than
hat of nT = 1 and nP = 8, indicating the necessity of OpenMP parallel
ptimization under multi-core architecture. We find the Algorithm runs
astest when nT = 4, nP = 16 and nT = 16, nP = 4 on ThunderX2 with

64 cores. According to Table 5, ThunderX2 has a shared L3 Cache of 32
MB. Therefore setting nT*nP = 16 ∗ 4 is better. According to the NUMA
feature, since it has 16 memory channels, each of which corresponds
to 4 processor cores, setting nT*nP = 4 ∗ 16 is a good option.

4.3.3. Large-scale node optimization experiment
The experimental platform is the latest cluster of National Su-

percomputing Center in ChangSha, China. The results are shown in
Table 7.

Each compute node is FT2000+(16 cores), with 8 channels of
memory and 64 GB in total. In large-scale experiments, Algorithm 5

has good parallel scalability in both multi-process and multi-thread. We

Parallel Computing 115 (2023) 102996K. Li et al.
Table 2
Non-reproducibility of conventional summation using different compilers and optimization options on X86 platforms.

Compiler Optimization Hygon C86 7185 Intel(R) Xeon(R) Intel(R)Xeon(R)

(1) (2) CPU E5–2620 Platinum 8180M

gcc
-fno-fast-math -O0 −1.74665353909333272e−10 −7.74515613378954650e−11 −7.74515613378954650e−11

-Ofast −7.74515613378954650e−11 −7.74515613378954650e−11 −7.74515613378954650e−11

-ffast-math -OX −1.74665353909333272e−10 −7.74515613378954650e−11 −7.74515613378954650e−11
-Ofast −1.74665353909333272e−10 −1.74665353909333272e−10 −1.01892451682742931e−10

Remark: -OX in Optimization(2) is -O0/-O1/-O2/-O3/-Os/-Og, and the result is the same as the control group.

icc

– – −7.74515613378954650e−11 −7.74515613378954650e−11 −7.74515613378954650e−11
-fp-model – 1.91049215829550893e−10 1.76497300601184042e−10 1.76497300601184042e−10extended
– -O2/-O3 −7.68340646995938981e−12 −7.68340646995938981e−12 5.31814340608711402e−12
– -Os −3.92753789001343235e−12 −3.92753789001343235e−12 −3.92753789001343235e−12
– -Ofast 6.18194683997926519e−12 6.18194683997926519e−12 2.54780171764405565e−11

Remark: When the Optimization(1) is -fp-model fast=1/-fp-model 2/-fp-model precise/-fp-model strict/-fp-model source
/-fp-model double, fast=or Optimization(2) is -O0/-O1, and the result is the same as the control group.

icx

– – −7.74515613378954650e−11 −7.74515613378954650e−11 −7.74515613378954650e−11
– -O1 −8.87225454838900542e−11 −8.87225454838900542e−11 −8.87225454838900542e−11
– -O2/-O3 3.52986972732165553e−11 3.16607185000061602e−11 3.16607185000061602e−11
– -Os −1.73673255207761718e−10 −1.73673255153551610e−10 −1.73673255153551610e−10
– -Ofast 3.52986972732165553e−11 3.16607185000061602e−11 3.16607185000061602e−11

Remark: When the Optimization(1) is -fp-model fast/-fp-model fast/-fp-model precise/-fp-model strict, or Optimization(2) is -O0,
and the result is the same as the control group.
Table 3
Reproducibility of Algorithm 5 using different compilers and optimization options on different platforms.

Size 𝑛 MLP_rsum MLP_rsum after shuffle error

36101600 8.89003676494079E−15 8.89003676494079E−15 0
15414000 6.64174217604646E−14 6.64174217604646E−14 0
10779808 7.36835249154126E−14 7.36835249154126E−14 0
37772000 4.51502674927232E−14 4.51502674927232E−14 0
55527408 1.35797156754243E−13 1.35797156754243E−13 0
Table 4
Accuracy of Algorithm 5 using different compilers and optimization options on different platforms.

Size 𝑛 MLP_rsum MPRF Theoretical error(1) Experiment error

43162624 1.493127180107219e−17 1.785164287985800e−17 1.6694E−15 1.9722E−31
31782624 5.34832577991188E−14 5.34832577991188E−14 1.3145e−17 6.3109E−30
35504224 −3.05667390488188E−14 −3.05667390488188E−14 1.4684e−17 6.3109E−30
78838528 5.49285697840650E−14 5.49285697840650E−14 3.2607e−17 6.3109E−30
47467200 9.47310100821296E−14 9.47310100821295E−14 1.9632e−17 1.2622E−29
Table 5
Parameters of platforms.

FT2000+ Kunpeng920 ThunderX2

Clock Frequency 2.2 GHz 2.6 GHz 2.5 GHz

Number of Core 64(1CPU) 64(1CPU) 32(2CPU)

Cache

L1I 48 KB 64 KB 32 KB
L1D 32 KB 64 KB 32 KB
L2 32 MB 512 KB 256 KB
L3 – 64 MB 32 MB

Size of Memory 16*8 GB 16*32 GB 16*32 GB

Channel of Memory DDR4 2400 MHz DDR4 2933 MHz DDR4 2666 MHz
Table 6
Speedup of MLP_rsum on ThunderX2 platform.

nT nP

1 4 8 12 16 32 64

1 1.0000 3.8407 6.6930 9.2094 12.4398 19.4527 11.7829
2 1.9995 7.2414 12.8435 13.1553 14.8194 30.0535 7.5110
4 3.9534 13.8712 13.9892 18.8877 32.2438 22.7265 5.0684
8 7.6936 22.8247 21.2572 25.3891 19.0683 15.1905 3.8574
12 11.1447 25.5128 24.1698 15.6007 19.9494 12.0491 3.5295
16 14.3464 33.0389 17.5050 17.7051 12.5788 7.7170 3.2625
32 19.9920 21.1391 11.3428 11.7331 7.6456 5.1237 2.0058
64 12.4437 12.8403 6.3675 5.9216 4.4646 3.2423 0.9915
6

Parallel Computing 115 (2023) 102996K. Li et al.
Fig. 1. Performance with SIMD optimization.
Table 7
Parallel efficiency of MLP_rsum in large-scale test.

nT nP

1 8 16 32 64 128

1 1.0000 0.8483 0.8529 0.9579 0.7827 0.7595
2 0.9855 0.7941 0.7034 0.8406 0.6843 0.5854
4 0.9832 0.6196 0.8387 0.7608 0.5921 0.5138
8 0.7973 0.3725 0.5652 0.3127 0.2983 0.2171
test the strong scalability of the algorithm. When nT < 4, we find that
the scalability of multi-thread is good, and the parallel efficiency does
not change significantly. Since Algorithm 5 is bandwidth limited, when
nT > 4, the competition of bandwidth is obvious, and the scalability
is inconspicuous. The parallel efficiency is 51% at 128 nodes, which
shows the effectiveness of the multi-level parallel design. As we know,
in the existing literature, our experiment is the first one that runs a
reproducible algorithm on a multi-node cluster.

5. Conclusions

In this paper, we propose a multi-level parallel multi-layer block re-
producible summation algorithm, which is the extension of RepeoBLAS.
Firstly, we adopt the intrinsic function supporting NEON to parallelize
Demmel’s algorithm on three ARM platforms, and enhance the spatial
locality of data by embedding prefetch instructions. The experimental
results testify that our algorithm is 2.41, 2.85, and 3.44 times faster
than RepeoBLAS on the three platforms, respectively. Secondly, we
achieve OpenMP parallel optimization under multi-core architecture.
Specifically, we add special pragma to the source code so that the
compiler can automatically parallelize the program. Single-chip multi-
core parallel optimization experiment verifies the efficiency and linear
speedup of our algorithm. As for multi-process parallel optimization, we
use MPI for reduction and implement a large-scale node optimization
experiment, which indicates that the parallel efficiency is 51% at 128
nodes. To sum up, the multi-level parallel design based on a multi-layer
block structure is beneficial.

Declaration of competing interest

No author associated with this paper has disclosed any potential or
pertinent conflicts which may be perceived to have impending conflict
with this work. For full disclosure statements refer to https://doi.org/
10.1016/j.parco.2023.102996.
7

Data availability

No data was used for the research described in the article.

References

[1] Roger D. Peng, Reproducible research in computational science, Science 334
(6060) (2011) 1226–1227.

[2] P. Ivie, T. Douglas, Reproducibility in scientific computing, ACM Comput. Surv.
51 (3) (2018) 1–36.

[3] Y. He, C.H.Q. Ding, Using accurate arithmetics to improve numerical repro-
ducibility and stability in parallel applications, J. Supercomput. 18 (3) (2001)
259–277.

[4] M. McNutt, Reproducibility, Science 343 (6168) (2014) 229.
[5] D. Chapp, T. Johnston, M. Becchi, M. Taufer, Numerical reproducibility

challenges on extreme multi-threading gpus.
[6] V. Stodden, M. McNutt, D.H. Bailey, E. Deelman, Y. Gil, B. Hanson, M.A.

Heroux, J.P.A. Ioannidis, M. Taufer, Enhancing reproducibility for computational
methods, Science 354 (6317) (2016) 1240–1241.

[7] O. Villa, D. Chavarria-Miranda, V. Gurumoorthi, A. Márquez, S. Krishnamoorthy,
Effects of floating-point non-associativity on numerical computations on mas-
sively multithreaded systems, in: Proceedings of Cray User Group Meeting, CUG,
2009, p. 3.

[8] J. Demmel, H.D. Nguyen, Fast reproducible floating-point summation, in: 2013
IEEE 21st Symposium on Computer Arithmetic, IEEE, 2013.

[9] J. Demmel, H.D. Nguyen, Parallel reproducible summation, IEEE Trans. Comput.
64 (7) (2015) 2060–2070.

[10] ReproBLAS: reproducible BLAS, 2018, [Online]. Available: http://bebop.cs.
berkeley.edu/reproblas/.

[11] P. Ahrens, J. Demmel, H.D. Nguyen, Algorithms for efficient reproducible
floating-point summation, ACM Trans. Math. Software 46 (2020) 49, 3 (2020)
Article 22.

[12] J. Demmel, G. Gopalakrishnan, M. Heroux, W. Keyrouz, K. Sato, Reproducibility
of high-performance codes and simulations: Tools, techniques, debugging, in:
Proceedings of the SC 2015 Birds of a Feather Sessions, 2015.

[13] M. Taufer, O. Padron, P. Saponaro, S. Patel, Improving numerical reproducibility
and stability in large-scale numerical simulations on GPUs, in: IEEE International
Symposium on Parallel & Distributed Processing, IPDPS, 2010, pp. 1–9.

[14] D. Chapp, V. Stodden, M. Taufer, Building a vision for reproducibility in
the cyberinfrastructure ecosystem: Leveraging community efforts, Supercomput.
Front. Innov. 7 (1) (2020) 112–129.

https://doi.org/10.1016/j.parco.2023.102996
https://doi.org/10.1016/j.parco.2023.102996
https://doi.org/10.1016/j.parco.2023.102996
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb1
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb1
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb1
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb2
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb2
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb2
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb3
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb3
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb3
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb3
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb3
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb4
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb6
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb6
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb6
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb6
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb6
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb7
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb7
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb7
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb7
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb7
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb7
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb7
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb8
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb8
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb8
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb9
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb9
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb9
http://bebop.cs.berkeley.edu/reproblas/
http://bebop.cs.berkeley.edu/reproblas/
http://bebop.cs.berkeley.edu/reproblas/
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb11
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb11
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb11
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb11
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb11
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb12
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb12
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb12
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb12
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb12
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb13
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb13
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb13
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb13
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb13
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb14
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb14
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb14
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb14
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb14

Parallel Computing 115 (2023) 102996K. Li et al.
[15] Intel, Intel oneAPI Math Kernel Library reference manual, 2020, [On-
line]. Available: https://software.intel.com/content/www/us/en/develop/tools/
oneapi/components/onemkl.html.

[16] NVIDIA, NVIDIA cuBLAS, 2021, [Online]. Available:https://developer.nvidia.
com/cublas.

[17] T. Ogita, S.M. Rump, S. Oishi, Accurate sum and dot product, SIAM J. Sci.
Comput. 26 (6) (2005) 1955–1988.

[18] S.M. Rump, Ultimately fast accurate summation, SIAM J. Sci. Comput. 31 (5)
(2009) 3466–3502.

[19] S.M. Rump, T. Ogita, S. Oishi, Fast high precision summation, Nonlinear Theory
Appl. IEICE 1 (1) (2010) 2–24.

[20] A. Arteaga, O. Fuhrer, T. Hoefler, Designing bit-reproducible portable high-
performance applications, in: 2014 IEEE 28th International Parallel and
Distributed Processing Symposium, IEEE, 2014.

[21] T. Hoefler, Performance reproducibility in HPC - challenges and state-of-the-art,
Invited talk, SC, 2015.

[22] ExBLAS. http://exblas.lib6.fr/index.php.
[23] R. Iakymchuk, S. Collange, D. Defour, S. Graillat, ExBLAS: Reproducible and

accurate BLAS library, in: Proceedings of the SC 2015 Numerical Reproducibility
at Exascale Workshops, NRE’15, 2015.

[24] R. Iakymchuk, S. Collange, D. Defour, S. Graillat, Reproducible and accurate
matrix multiplication, in: Proceedings of the Conference on Scientific Computing,
Computer Arithmetic, and Validated Numerics, SCAN’15, Springer, Cham, 2015,
pp. 126–137.

[25] R. Iakymchuk, S. Collange, D. Defour, S. Graillat, Reproducible triangular solvers
for high-performance computing, in: Proceedings of the International Conference
on Information Technology - New Generations, ITNG’15, 2015, pp. 353–358.
8

[26] S. Collange, D. Defour, S. Graillat, R. Iakymchuk, Numerical reproducibility for
the parallel reduction on multi-and many-core architectures, Parallel Comput. 49
(Nov. 2015) (2015) 83–97.

[27] S. Collange, D. Defour, S. Graillat, R. Iakymchuk, A reproducible accurate
summation algorithm for high-performance computing, in: Proceedings of the
SIAM Workshop on Exascale Applied Mathematics Challenges and Opportunities
(EX14) held as part of the 2014 SIAM Annual Meeting. Chicago, Il, USA, July
6–11, 2014.

[28] D. Mukunoki, K. Ozaki, T. Ogita, T. Imamura, DGEMM using tensor cores, and
its accurate and reproducible versions, in: P. Sadayappan, B.L. Chamberlain, G.
Juckeland, H. Ltaief (Eds.), High Performance Computing - 35th International
Conference, ISC 2020, Proceedings, in: Lecture Notes in Computer Science,
Springer, 2020, pp. 230–248.

[29] C. Chohra, P. Langlois, D. Parello, Efficiency of reproducible level 1 BLAS, in:
Proceedings of the Conference on Scientific Computing, Computer Arithmetic,
and Validated Numerics, SCAN’15, Springer, Cham, 2015, pp. 99–108.

[30] C. Chohra, P. Langlois, D. Parello, Reproducible, accurately rounded and efficient
BLAS, in: Proceedings of the Euro-Par Parallel Processing Workshops, Springer,
Cham, 2016, pp. 609–620.

[31] A.M. Castaldo, R.C. Whaley, A.T. Chronopoulos, Reducing floating point error in
dot product using the superblock family of algorithms, SIAM J. Sci. Comput. 31
(2) (2009) 1156–1174.

[32] L. Dagum, R. Menon, OpenMP: an industry standard API for shared-memory
programming, IEEE Comput. Sci. Eng. 5 (1) (1998) 46–55.

[33] P. Zimmermann, Reliable computing with GNU MPFR, in: Mathematical Software
–ICMS 2010, Springer Berlin Heidelberg, 2010, pp. 42–45.

https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cublas
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb17
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb17
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb17
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb18
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb18
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb18
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb19
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb19
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb19
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb20
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb20
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb20
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb20
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb20
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb21
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb21
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb21
http://exblas.lib6.fr/index.php
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb23
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb23
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb23
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb23
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb23
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb24
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb24
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb24
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb24
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb24
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb24
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb24
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb25
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb25
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb25
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb25
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb25
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb26
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb26
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb26
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb26
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb26
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb27
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb27
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb27
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb27
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb27
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb27
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb27
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb27
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb27
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb28
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb28
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb28
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb28
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb28
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb28
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb28
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb28
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb28
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb29
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb29
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb29
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb29
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb29
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb30
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb30
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb30
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb30
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb30
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb31
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb31
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb31
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb31
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb31
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb32
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb32
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb32
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb33
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb33
http://refhub.elsevier.com/S0167-8191(23)00002-9/sb33

	Multi-level parallel multi-layer block reproducible summation algorithm
	Introduction
	Notation and background
	Notation
	Reproducible Summation with 1-Reduction Technique

	1-Reduction Multi-level Parallel Multi-layer Block Reproducible Algorithm
	Multi-level Parallel Algorithm Design
	SIMD Optimization
	OpenMP Optimization
	MPI Optimization

	MLP_rsum
	Accuracy

	Experimental Results
	Reproducibility Experiment
	Accuracy Experiment
	Performance Experiment
	Single-core SIMD Optimization Experiment
	Single-Chip Multi-core Parallel Optimization Experiment
	Large-scale Node Optimization Experiment

	Conclusions
	Declaration of Competing Interest
	Data availability
	References

