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Abstract

Rounding errors present an inherent problem to all computer programs involving
floating-point numbers. They appear nearly in all elementary operations. By accumu-
lation, these errors can affect the accuracy of a computed result possibly leading to
some or total inaccuracy. First in this article, computer arithmetic that uses binary
system and the IEEE standard for floating-point numbers is described together with
some problems introduced by rounding errors. The effects of these rounding errors can
be analyzed and studied by some methods like forward/backward analysis, interval or
stochastic arithmetic that are presented. Finally, it is shown how the accuracy of the
results can be improved by using compensated methods and multiprecision arithmetic.
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1 Introduction

For a long time, human beings are in constant need of making bigger and faster computations.
Over the past four centuries, many machines were created for this purpose and, fifty years
ago, actual electronic computers were developed specifically to perform scientific computa-
tions. The first mechanical calculating machines were Schikard’s machine (1623, Germany),
the Pascaline (1642, France) followed by Leibniz’s machine (1694, Germany). Babbage’s
analytical machine (1833, England) was the first attempt at a mechanical computer and the
first mainframe computer was the Z4 computer of K. Zuse (1938, Germany).

Up until the beginning of the twentieth century, computations were only done on integer
numbers. To perform efficient real numbers computations, it was necessary to wait until the
birth of the famous BIT (BInary digiT) which was introduced by C. Shannon (1937, USA) in
his PhD thesis. Shannon’s work imposed electronics for the building of computers and, then,
the base 2 for coding integer or real numbers, although other bases have been tried. It has
now been established that the base 2 is the most efficient base on computers for numerical
computations, although the base 10 may still be used on pocket calculators.

For coding real numbers, one also has to determine the kind of coding he wants to use.
The decimal fixed-point notation was introduced at the end of the 16th century consecutively
by S. Stévin (1582, France), J. Bürgi (1592, Switzerland) and G. Magini (1592, Italy).
It remains the notation used worldwide today. While it is the most natural notation for
mental calculations, it is not very efficient for automatic computations. In fact, on this
subject, one can say that nothing has changed since J. Napier’s logarithm (1614, Scotland)
and W. Oughtred’s slide rule (1622, England). Logarithms were introduced by J. Napier
to make multiplication easier (using logarithm, multiplication becomes addition). Three
centuries later, the same idea was kept for the coding of real numbers on computers and led
to the floating-point representation (see next section).

But whatever the representation is on computer, it is a finite representation, like for
computations by hand. So, at each operation, because the result needs to be truncated (but
is in general), an error may appear which is called the rounding error. Scientists have been
well aware of this for four centuries. In the 19th century, when numerical computations
were presented in an article, they were systematically followed by errors computations to
justify the validity of the results. In 1950, in his famous article on eigenvalue computation
with his new algorithm, C. Lanczos devoted thirty percent of his paper to error computation.
Unfortunately, this use has completely disappeared since the beginning of the sixties because
of the improvement of computers. When 8 billion floating-point operations are performed in
one second on a processor, it seems impossible to quantify the rounding error even though
neglecting rounding errors may lead to catastrophic consequences.

For instance, for real time applications, the discretization step may be h = 10−1 second.
One can compute the absolute time by performing tabs = tabs + h at each step or performing
icount = icount + 1; tabs = h ∗ icount where icount is correctly initialized at the beginning
of the process. Because the real number representation is finite on computers, only a finite
number of them can be exactly coded. They are called floating-point numbers. The others
are approximated by a floating-point number. Unfortunately, h = 10−1 is not a floating-point
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number. Therefore, each operation tabs = tabs + h generates a small but non-zero error. One
hundred hours later, this error has grown to about 0.34 second. It really happened during
the first Gulf war (1991) in the control programs of Patriot missiles which were to intercept
Scud missiles (report of the General Accounting office, GAO/IMTEC-92-26). At 1600 km/h,
0.34 second corresponds to approximatively 500 meters, the interception failed and twenty-
eight people were killed. With the second formulation, whatever the absolute time is, if no
overflow occurs for icount, the relative rounding error remains below 10−15 using the IEEE
double precision arithmetic. A good knowledge of the floating-point arithmetic should be
required of all computer scientists [13].

The second section is devoted to the description of the computer arithmetic. The third
section presents approaches to study, to bound or to estimate rounding errors. The last
section describes methods to improve the accuracy of computed results. A goal of this
paper is to answer the question in numerical computing “What is the computing error due
to floating-point arithmetic on the results produced by a program?”

2 Computer arithmetic

2.1 Representation of numbers

In a numeral system, numbers are represented by a sequence of symbols. The number
of distinct symbols which can be used is called the radix (or the base). For instance, in
the decimal system, where the radix is 10, the ten symbols used are the digits 0,1,...,9.
In the binary system, which is used on most computers, the radix is 2; hence numbers are
represented with sequences of 0s and 1s.

Several formats exist to represent numbers on a computer. The representation of integer
numbers differs from the one of real numbers. Using a radix b, if unsigned integers are
encoded on n digits, they can range from 0 to bn − 1. Hence an unsigned integer X is
represented by a sequence an−1an−2 ... a1a0 with X =

∑n−1
i=0 aib

i and ai ∈ {0, ..., b− 1}. With
a radix 2 representation, signed integers are usually represented using two’s complement.
With this rule, signed integers range from −bn−1 to bn−1−1 and the sequence an−1an−2 ...a1a0

with ai ∈ {0, ..., b− 1} represents the number X = −an−1b
n−1 +

∑n−2
i=0 aib

i. The opposite of
a number in two’s complement format can be obtained by inverting each bit and adding 1.

In numerical computations, most real numbers are not exactly represented because only a
finite number of digits can be saved in memory. Two representations exist for real numbers:

• the fixed-point format, available on most embedded systems

• the floating-point format, available on classical computers.

In fixed-point arithmetic, a number is represented with a fixed number of digits before
and after the radix point. Using a radix b, a number X which is encoded on m digits for
its magnitude (e.g. its integer part) and f digits for its fractional part is represented by
am−1 ... a0 . a−1 ... a−f , with X =

∑m−1
i=−f aib

i and ai ∈ {0, ..., b− 1}.
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If b = 2, unsigned values range from 0 to 2m − 2−f and signed values, which are usually
represented with the two’s complement format, range from −2m−1 to 2m−1 − 2−f .

In a floating-point arithmetic using the radix b, a number X is represented by:

• its sign εX which is encoded on one digit that equals 0 if εX = 1 and 1 if εX = −1,

• its exponent EX , a k digit integer,

• its mantissa MX , encoded on p digits.

Therefore X = εXMXb
EX with MX =

∑p−1
i=0 aib

−i and ai ∈ {0, ..., b − 1}. The mantissa
MX can be written as MX = a0 . a1 ... ap−1. Floating-point numbers are usually normalized.
In this case, a0 6= 0, MX ∈ [1, b) and the number zero has a special representation. Nor-
malization presents several advantages, such as the uniqueness of the representation (there
is exactly one way to write a number in such a form) and the easiness of comparisons (the
signs, exponents and mantissas of two normalized numbers can be tested separately).

2.2 The IEEE 754 standard

The poor definition of the floating-point arithmetic on most computers created the need for
a unified standard in floating-point numbers. Indeed the bad quality of arithmetic operators
could heavily affect some results. Furthermore simulation programs could provide different
results from one computer to another, because of different floating-point representations.
Indeed different values could be used for the radix, the length of the exponent, the length
of the mantissa, etc. So, in 1985, the IEEE 754 standard [18] was elaborated to define
floating-point formats and rounding modes. It specifies two basic formats, both using the
radix 2.

• With the single precision format, numbers are stored on 32 bits: 1 for the sign, 8 for
the exponent and 23 for the mantissa.

• With the double precision format, numbers are stored on 64 bits: 1 for the sign, 11 for
the exponent and 52 for the mantissa.

Extended floating-point formats also exist; the standard does not specify their exact size,
but gives a minimum number of bits for their storage.

Because of the normalization, the first bit in the mantissa must be 1. As this implicit bit
is not stored, the precision of the mantissa is actually 24 bits in single precision and 53 bits
in double precision.

The exponent E is a k digit signed integer. Let us denote its bounds by Emin and Emax.
The exponent which is actually stored is a biased exponent E∆ such that E∆ = E + ∆,
∆ being the bias. Table 1 specifies how the exponent is encoded.

The number zero is encoded by setting to 0 all the bits of the (biased) exponent and all
the bits of the mantissa. Two representations actually exist for zero: +0 if the sign bit is 0
and −0 if the sign bit is 1. This distinction is consistent with the existence of two infinities.
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precision length bias non-biased biased
k ∆ Emin Emax Emin + ∆ Emax + ∆

single 8 127 -126 127 1 254
double 11 1023 -1022 1023 1 2046

Table 1: Exponent coding in single and double precision

Indeed 1/(+0) = +∞ and 1/(−0) = −∞. These two infinities are encoded by setting to 1 all
the bits of the (biased) exponent and to 0 all the bits from the mantissa. The corresponding
non-biased exponent is therefore Emax + 1.

NaN (Not a Number) is a special value which represents the result of an invalid operation
such as 0/0,

√
−1 or 0×∞. NaN is encoded by setting all the bits of the (biased) exponent

to 1 and the fractional part of the mantissa to any non-zero value.
Denormalized numbers (also called subnormal numbers) represent values close to zero.

Without them, as the integer part of the mantissa is implicitly set to 1, there would be no
representable number between 0 and 2Emin but 2p−1 representable numbers between 2Emin

and 2Emin+1. Denormalized numbers have a biased exponent set to 0. The corresponding
values are: X = εXMX2Emin with εX = ±1, MX =

∑p−1
i=1 ai2

−i and ai ∈ {0, 1}. The mantissa
MX can be written as MX = 0.a1...ap−1. Therefore the lowest positive denormalized number
is u = 2Emin+1−p. Moreover, denormalized numbers and gradual underflow imply the nice
equivalence a = b⇐⇒ a− b = 0.

Let us denote by F the set of all floating-point numbers, i.e. the set of all machine
representable numbers. This set, which depends on the chosen precision, is bounded and
discrete. Let us denote its bounds by Xmin and Xmax. Let x be a real number which is
not machine representable. If x ∈ (Xmin, Xmax), there exists {X−, X+} ⊂ F2 such that
X− < x < X+ and (X−, X+) ∩ F = ∅. A rounding mode is a rule which, from x, provides
X− or X+. This rounding occurs at each assignment and at each arithmetic operation. The
IEEE 754 standard imposes a correct rounding for all arithmetic operations (+, −, ×, /)
and also for the square root. The result must be the same as the one obtained with infinite
precision and then rounded. The IEEE 754 standard defines four rounding modes:

• rounding towards +∞ (or upward rounding), x is represented by X+,

• rounding towards −∞ (or downward rounding), x is represented by X−,

• rounding towards 0, if x is negative, then it is represented by X+, if x is positive, then
it is represented by X−,

• rounding to nearest, x is represented by its nearest machine number. If x is at the
same distance of X− and X+, it is represented by the machine number which has a
mantissa ending with a zero. With this rule, rounding is said to be tie to even.

Let us denote by X the number obtained by applying one of these rounding modes to x.
By definition, an overflow occurs if |X| > max{|Y | : Y ∈ F} and an underflow occurs if
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0 < |X| < min{|Y | : 0 6= Y ∈ F}. Gradual underflow denotes the situation where a number
is not representable as a normalized number, but still as a denormalized one.

2.3 Rounding error formalization

2.3.1 Notion of exact significant digits

In order to correctly quantify the accuracy of a computed result, the notion of exact signifi-
cant digits must be formalized. Let R be a computed result and r the corresponding exact
result. The number CR,r of exact significant decimal digits of R is defined as the number of
significant digits which are in common with r:

CR,r = log10

∣∣∣∣ R + r

2(R− r)

∣∣∣∣ . (2.1)

This mathematical definition is in accordance with the intuitive idea of decimal significant
digits in common between two numbers. Indeed Equation (2.1) is equivalent to

|R− r| =
∣∣∣∣R + r

2

∣∣∣∣ 10−CR,r . (2.2)

If CR,r = 3, the relative error between R and r is of the order of 10−3. R and r have
therefore three common decimal digits.

However the value of CR,r may seem surprising if one considers the decimal notations of
R and r. For example, if R = 2.4599976 and r = 2.4600012, then CR,r ≈ 5.8. The difference
due to the sequences of “0” or “9” is illusive. The significant decimal digits of R and r are
really different from the sixth position.

2.3.2 Rounding error occurring at each operation

A formalization of rounding errors generated by assignments and arithmetic operations is
proposed below. Let X be the representation of a real number x in a floating-point arithmetic
respecting the IEEE 754 standard. This floating-point representation of X may be written
as X = fl(x). Adopting the same notations as in 2.1,

X = εXMX2EX (2.3)

and
X = x− εX2EX−pαX (2.4)

where αX represents the normalized rounding error.

• with rounding to nearest, αX ∈ [−0.5, 0.5)

• with rounding towards zero, αX ∈ [0, 1)

• with rounding towards +∞ or −∞, αX ∈ [−1, 1).

7



Equivalent models for X are given below. The machine epsilon is the distance ε from 1.0
to the next larger floating-point number. Clearly, ε = 21−p, p being the length of the mantissa
including the implicit bit. The relative error on X is no larger than the unit round-off u:

X = x(1 + δ) with |δ| ≤ u (2.5)

where u = ε/2 with rounding to nearest and u = ε with the other rounding modes. The
model associated with Equation (2.5) ignores the possibility of underflow. To take underflow
into account, one must modify it to

X = x(1 + δ) + η with |δ| ≤ u (2.6)

and |η| ≤ u/2 with rounding to nearest and |η| ≤ u with the other rounding modes, u being
the lowest positive denormalized number.

Let X1 (respectively X2) be the floating-point representation of a real number x1 (re-
spectively x2)

Xi = xi − εi2Ei−pαi for i = 1, 2. (2.7)

The errors due to arithmetic operations having X1 and X2 as operands are given below.
For each operation, let us denote by E3 and ε3 the exponent and the sign of the computed
result. α3 represents the rounding error performed on the result. Let us denote by ⊕, 	, ⊗,
� the arithmetic operators on a computer.

X1 ⊕X2 = x1 + x2 − ε12E1−pα1 − ε22E2−pα2 − ε32E3−pα3. (2.8)

Similarly
X1 	X2 = x1 − x2 − ε12E1−pα1 + ε22E2−pα2 − ε32E3−pα3. (2.9)

X1 ⊗X2 = x1x2 − ε12E1−pα1x2 − ε22E2−pα2x1 + ε1ε22E1+E2−2pα1α2 − ε32E3−pα3. (2.10)

By neglecting the fourth term, which is of the second order in 2−p, one obtains

X1 ⊗X2 = x1x2 − ε12E1−pα1x2 − ε22E2−pα2x1 − ε32E3−pα3. (2.11)

By neglecting terms of an order greater than or equal to 2−2p, one obtains

X1 �X2 =
x1

x2

− ε12E1−pα1

x2

+ ε22E2−pα2
x1

x2
2

− ε32E3−pα3. (2.12)

In the case of an addition with operands of the same sign,
E3 = max (E1, E2) + δ with δ = 0 or δ = 1.

The order of magnitude of the two terms resulting from the rounding errors on X1 and X2

is at most 2E3−p. The relative error on X1 ⊕X2 remains of the order of 2−p. This operation
is therefore relatively stable: it does not induce any brutal loss of accuracy.
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The same conclusions are valid in the case of a multiplication, because
E3 = E1 + E2 + δ, with δ = 0 or δ = −1

and in the case of a division, because
E3 = E1 − E2 + δ, with δ = 0 or δ = 1.

In the case of a subtraction with operands of the same sign, E3 = max (E1, E2)−k. If X1

and X2 are very close, k may be large. The order of magnitude of the absolute error remains
2max(E1,E2)−p, but the order of magnitude of the relative error is 2max(E1,E2)−p−E3 = 2−p+k.
In one operation, k exact significant bits have been lost: it is the so-called catastrophic
cancellation.

2.3.3 Rounding error propagation

A numerical program is a sequence of arithmetic operations. The result R provided by a
program after n operations or assignments can be modelled to the first order in 2−p as:

R ≈ r +
n∑
i=1

gi(d)2−pαi (2.13)

where r is the exact result, p is the number of bits in the mantissa, αi are independent
uniformly distributed random variables on [−1, 1] and gi(d) are coefficients depending ex-
clusively on the data and on the code [7]. For instance, in Equation (2.12), gi(d) are 1

x2

and x1

x2
2
.

The number CR,r of exact significant bits of the computed result R is

CR,r = log2

∣∣∣∣ R + r

2(R− r)

∣∣∣∣ . (2.14)

CR,r ≈ − log2

∣∣∣∣R− rr

∣∣∣∣ = p− log2

∣∣∣∣∣
n∑
i=1

gi(d)
αi
r

∣∣∣∣∣ . (2.15)

The last term in Equation (2.15) represents the loss of accuracy in the computation
of R. This term is independent of p. Therefore, assuming that the model at the first order
established in Equation (2.13) is valid, the loss of accuracy in a computation is independent
of the precision used.

2.4 Impact of rounding errors on numerical programs

With floating-point arithmetic, rounding errors occur in numerical programs and lead to
a loss of accuracy which is difficult to estimate. Another consequence of floating-point
arithmetic is the loss of algebraic properties. The floating-point addition and the floating-
point multiplication are commutative, but not associative. Therefore the same formula may
generate different results depending on the order in which arithmetic operations are executed.
For instance, in IEEE single precision arithmetic with rounding to nearest,

(−1020 ⊕ 1020)⊕ 1 = 1 (2.16)
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but
−1020 ⊕ (1020 ⊕ 1) = 0. (2.17)

Equation (2.17) causes a so-called absorption. Indeed an absorption may occur during the
addition of numbers with very different orders of magnitude: the smallest number may be
lost.

Furthermore, with floating-point arithmetic, the multiplication is not distributive with
respect to the addition. Let A, B and C be floating-point numbers, A⊗ (B⊕C) may not be
equal to (A⊗B)⊕ (A⊗C). For instance, in IEEE single precision arithmetic with rounding
to nearest, if A, B and C are respectively assigned to 3.3333333, 12345679 and 1.2345678,
for A⊗ (B ⊕ C) and (A⊗B)⊕ (A⊗ C), one respectively obtains 41152264 and 41152268.

2.4.1 Impact on direct methods

The particularity of a direct method is to provide the solution to a problem in a finite number
of steps. In infinite precision arithmetic, a direct method would compute the exact result.
In finite precision arithmetic, rounding error propagation induces a loss of accuracy and may
cause problems in branching statements. The general form of a branching statement in a
program is

IF condition THEN sequence 1 ELSE sequence 2.
If the condition is satisfied, then a sequence of instructions is executed, else another

sequence is performed. Such a condition can be for instance A ≥ B. In the case when A
and B are intermediate results already affected by rounding errors, the difference between
A and B may have no exact significant digit. The choice of the sequence which is executed
may depend on rounding error propagation. The sequence chosen may be the wrong one: it
may be different from the one that would have been chosen in exact arithmetic.

For instance, depending on the value of the discriminant, a second degree polynomial
has one (double) real root, two real roots or two conjugate complex roots. The discriminant
and the roots of the polynomial 0.3x2 − 2.1x + 3.675 obtained using IEEE single precision
arithmetic with rounding to nearest are D = −5.185604E-07, x = 3.4999998± 1.2001855E-
03 i. Two conjugate complex roots are computed. But the exact values are D = 0, x = 3.5.
The polynomial actually has one double real root. In floating-point arithmetic, rounding
errors occur because of both assignments and arithmetic operations. Indeed the coefficients
of the polynomial are not floating-point numbers. Therefore the computed discriminant has
no exact significant digit and the wrong sequence of instructions is executed.

2.4.2 Impact on iterative methods

The result of an iterative method is defined as the limit L of a first order recurrent sequence:

L = lim
n→∞

Un with Un+1 = F (Un) Rm F−→ Rm. (2.18)

Because of rounding error propagation, the same problems as in a direct method may
occur. But another difficulty is due to the loss of the notion of limit on a computer. Com-
putations are performed until a stopping criterion is satisfied. Such a stopping criterion may
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involve the absolute error:
‖Un − Un−1‖ ≤ ε (2.19)

or the relative error:
‖Un − Un−1‖ ≤ ε ‖Un−1‖ . (2.20)

It may be difficult to choose a suitable value for ε. If ε is too high, computations stop too
early and the result is very approximative. If ε is too low, useless iterations are performed
without improving the accuracy of the result, because of rounding errors. In this case, the
stopping criterion may never be satisfied because the chosen accuracy is illusive. The impact
of ε on the quality of the result is shown in the numerical experiment described below.

Newton’s method is used to compute a root of

f(x) = x4 − 1002x3 + 252001x2 − 501000x + 250000. (2.21)

The following sequence is computed:

xn+1 = xn −
f (xn)

f ′ (xn)
with x0 = 1100. (2.22)

The exact limit is L = 500, a double root of f . The stopping criterion is |xn − xn−1| ≤ ε |xn−1|
and the maximum number of iterations is set to 1000. Table 2 shows for several values of ε
the last value of n and the error |xn − L| computed using IEEE double precision arithmetic
with rounding to nearest.

ε n |xn − L|
10−7 26 3.368976E-05
10−8 29 4.211986E-06
10−9 33 2.525668E-07
10−10 35 1.405326E-07
10−11 127 1.273870E-07
10−12 1000 1.573727E-07
10−13 1000 1.573727E-07

Table 2: Number of iterations and error obtained using Newton’s method in double precision

It appears that the optimal order of magnitude for ε is 10−11. The stopping criterion can
not be satisfied if ε ≤ 10−12: the maximum number of iterations is reached; furthermore the
error is slightly higher than for ε = 10−11.

The difficulty to choose a suitable stopping criterion can also be exemplified by the
dichotomy method applied to a polynomial P . Indeed the stopping criterion |P (x)| ≤ ε may
lead to an infinite loop for unappropriate values of ε. For instance, the value obtained in
IEEE single precision arithmetic using rounding to nearest for

P (x) = x3 − 111x2 + 1100x− 3000 (2.23)
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with x1 = 100.334694 is P (x1) = −0.014937866. The value obtained for x2, the floating-
point successor of x1 with this arithmetic is P (x2) = 0.05393155. Therefore the stopping
criterion cannot be satisfied if ε ≤ 10−2.

2.4.3 Impact on approximation methods

These methods provide an approximation of a limit L = limh→0 L(h). This approximation
is affected by a global error Eg(h) which consists in a truncation error Et(h), inherent to
the method, and a rounding error Er(h). If the step h decreases, the truncation error Et(h)
also decreases, but the rounding error Er(h) usually increases, as shown in Figure 1. It
may therefore seem difficult to choose the optimal step hopt. The rounding error should be
evaluated, because the global error is minimal if the truncation error and the rounding error
have the same order of magnitude.

E

E

hh opt0

E r

t

g

(h)

(h)

(h)

Figure 1: Evolution of the rounding error Er(h), the truncation error Et(h) and the global
error Eg(h) with respect to the step h

The numerical experiment described below [32] shows the impact of the step h on the
quality of the approximation. The second derivative at x = 1 of the following function

f(x) =
4970x− 4923

4970x2 − 9799x+ 4830
(2.24)

is approximated by

L(h) =
f(x− h)− 2f(x) + f(x+ h)

h2
. (2.25)

The exact result is f ′′(1) = 94. Table 3 shows for several steps h the result L(h) and the
absolute error |L(h)− L| computed using IEEE double precision arithmetic with rounding
to nearest.
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h L(h) |L(h)− L|
10−3 -2.250198E+03 2.344198E+03
10−4 7.078819E+01 2.321181E+01
10−5 9.376629E+01 2.337145E-01

4.10−6 9.397453E+01 2.546980E-02
3.10−6 9.397742E+01 2.257732E-02
10−6 9.418052E+01 1.805210E-01
10−7 7.607526E+01 1.792474E+01
10−8 1.720360E+03 1.626360E+03
10−9 -1.700411E+05 1.701351E+05
10−10 4.111295E+05 4.110355E+05

Table 3: Second order approximation of f ′′(1) = 94 computed in double precision

It appears that the optimal order of magnitude for h is 10−6. If h is too low, the rounding
error prevails and invalidates the computed result.

The computation of the derivative at x = 100 of the polynomial P given in Equa-
tion (2.23) also exemplifies the loss of limits in floating-point arithmetic. P ′(100), the exact
value of which is 8900, is defined as

P ′(100) = lim
h→0

P (100 + h)− P (100)

h
. (2.26)

If P ′(100) is computed using Equation (2.26), a null value may be obtained. Indeed, using
IEEE single precision arithmetic with rounding to nearest, if h ≤ 10−6, P (100+h) = P (100).
This equality is also satisfied in double precision if h ≤ 10−8.

3 Methods for rounding error analysis

In this section, different methods of analyzing rounding errors are reviewed.

3.1 Forward/Backward analysis

This subsection is heavily inspired from [16, 23]. Other good references are [6, 33, 39].
Let X be an approximation to a real number x. The two common measures of the

accuracy of X are its absolute error

Ea(X) = |x−X|, (3.27)

and its relative error

Er(X) =
|x−X|
|x|

(3.28)
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(which is undefined if x = 0). When x and X are vectors, the relative error is usually defined
with a norm as ‖x−X‖/‖x‖. This is a normwise relative error. A more widely used relative

error is the componentwise relative error defined by maxi
|xi−Xi|
|xi| . It makes it possible to put

the individual relative errors on an equal footing.

3.1.1 Well-posed problems

Let us consider the following mathematical problem (P )

(P ) : given y, find x such that F (x) = y,

where F is a continuous mapping between two linear spaces (in general Rn or Cn). One will
say that the problem (P ) is well-posed in the sense of Hadamard if the solution x = F−1(y)
exists, is unique and F−1 is continuous in the neighborhood of y. If it is not the case, one
says that the problem is ill-posed. An example of ill-posed problem is the solution of a linear
system Ax = b where A is singular. It is difficult to deal numerically with ill-posed problems
(this is generally done via regularization techniques). That is why we will focus only on
well-posed problems in the sequel.

3.1.2 Conditioning

Given a well-posed problem (P ), one wants now to know how to measure the difficulty
of solving this problem. This will be done via the notion of condition number. Roughly
speaking, the condition number measures the sensitivity of the solution to perturbation in
the data. Since the problem (P ) is well-posed, one can write it as x = G(y) with G = F−1.

The input space (data) and the output space (result) are denoted respectively by D
and R; the norms on these spaces will be denoted ‖ · ‖D and ‖ · ‖R. Given ε > 0 and let
P(ε) ⊂ D be a set of perturbation ∆y of the data y satisfying ‖∆y‖D ≤ ε, the perturbed
problem associated with problem (P ) is defined by

Find ∆x ∈ R such that F (x+ ∆x) = y + ∆y for a given ∆y ∈ P(ε).

x and y are assumed to be non-zero. The condition number of the problem (P ) in the
data y is defined by

cond(P, y) := lim
ε→0

sup
∆y∈P(ε),∆y 6=0

{
‖∆x‖R
‖∆y‖D

}
. (3.29)

Example 3.1 (summation). Let us consider the problem of computing the sum x =
∑n

i=1 yi
assuming that yi 6= 0 for all i. One will take into account the perturbation of the input
data that are the coefficients yi. Let ∆y = (∆y1, . . . ,∆yn) be the perturbation on y =
(y1, . . . , yn). It follows that ∆x =

∑n
i=1 ∆yi. Let us endow D = Rn with the relative norm

‖∆y‖D = maxi=1,...,n |∆yi|/|yi| and R = R with the relative norm ‖∆x‖R = |∆x|/|x|. Since
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|∆x| = |
∑n

i=1 ∆yi| ≤ ‖∆y‖D
∑n

i=1 |yi|1, one has

‖∆x‖R
‖∆y‖D

≤
∑n

i=1 |yi|
|
∑n

i=1 yi|
. (3.30)

This bound is reached for the perturbation ∆y such that ∆yi/yi = sign(yi)‖∆y‖D where sign
is the sign of a real number. As a consequence,

cond

(
n∑
i=1

yi

)
=

∑n
i=1 |yi|

|
∑n

i=1 yi|
. (3.31)

Now one has to interpret this condition number. A problem is considered as ill-conditioned
if it has a large condition number. Otherwise, it is well-conditioned. It is difficult to give a
precise frontier between well-conditioned and ill-conditioned problems. This statement will
be clarified in 3.1.4 thanks to the rule of thumb. The larger the condition number is, the
more a small perturbation on the data can imply a greater error on the result. Nevertheless,
the condition number measures the worst case implied by a small perturbation. As a con-
sequence, it is possible for an ill-conditioned problem that a small perturbation on the data
also implies a small perturbation on the result. Sometimes, such a behavior is even typical.

Remark 1. It is important to note that the condition number is independent of the algorithm
used to solve the problem. It is only a characteristic of the problem.

3.1.3 Stability of an algorithm

Problems are generally solved using an algorithm. This is a set of operations and tests
that one can consider as the function G defined above given the solution of our problem.
Because of the rounding errors, the algorithm is not the function G but rather a function Ĝ.
Therefore, the algorithm does not compute x = G(y) but x̂ = Ĝ(y).

The forward analysis tries to study the execution of the algorithm Ĝ on the data y.
Following the propagation of the rounding errors in each intermediate variables, the forward
analysis tries to estimate or to bound the difference between x and x̂. This difference between
the exact solution x and the computed solution x̂ is called the forward error.

It is easy to see that it is pretty difficult to follow the propagation of all the intermediate
rounding errors. The backward analysis makes it possible to avoid this problem by working
with the function G itself. The idea is to seek for a problem that is actually solved and to
check if this problem is “close to” the initial one. Basically, one tries to put the error on the
result as an error on the data. More theoretically, one seeks for ∆y such that x̂ = G(y+∆y).
∆y is said to be the backward error associated with x̂. A backward error measures the
distance between the problem that is solved and the initial problem. As x̂ and G are known,
it is often possible to obtain a good upper bound for ∆y (generally, it is easier than for the
forward error). Figure 2 sums up the principle of the forward and backward analysis.

1the Cauchy-Schwarz inequality |
n∑

i=1

xiyi| ≤ max
i=1,...,n

|xi| ×
n∑

i=1

|yi| is used
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x̂ = Ĝ(y)

x = G(y)

y + ∆y

y

G

G

Ĝ

Input space D Output space R

Backward error
Forward error

Figure 2: Forward and backward error for the computation of x = G(y).

Sometimes, it is not possible to have x̂ = G(y+ ∆y) for some ∆y but it is often possible
to get ∆x and ∆y such that x̂ + ∆x = G(y + ∆y). Such a relation is called a mixed
forward-backward error.

The stability of an algorithm describes the influence of the computation in finite precision
on the quality of the result. The backward error associated with x̂ = Ĝ(y) is the scalar η(x̂)
defined by, when it exists,

η(x̂) = min
∆y∈D

{‖∆y‖D : x̂ = G(y + ∆y)}. (3.32)

If it does not exist, η(x̂) is set to +∞. An algorithm is said to be backward-stable for the
problem (P ) if the computed solution x̂ has a “small” backward error η(x̂). In general, in
finite precision, “small” means of the order of the rounding unit u.

Example 3.2 (summation). The addition is supposed to satisfy the following property:

ẑ = z(1 + δ) = (a+ b)(1 + δ), with |δ| ≤ u. (3.33)

It should be noticed that this assumption is satisfied by the IEEE arithmetic. The following
algorithm to compute the sum

∑
yi will be used.

Algorithm 3.1. Computation of the sum of floating-point numbers

function res = Sum(y)
s1 = y1

for i = 2 : n
si = si−1 ⊕ yi

res = sn

Thanks to relation (3.33), one can write

si = (si−1 + yi)(1 + δi) with |δi| ≤ u. (3.34)

For convenience, 1 + θj =
∏j

i=1(1 + εi) is written, for |εi| ≤ u and j ∈ N. Iterating the
previous equation yields

res = y1(1 + θn−1) + y2(1 + θn−1) + y3(1 + θn−2) + · · ·+ yn−1(1 + θ2) + yn(1 + θ1). (3.35)
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One can interpret the computed sum as the exact sum of the vector z with zi = yi(1+θn+1−i)
for i = 2 : n and z1 = y1(1 + θn−1).

As |εi| ≤ u for all i and assuming nu < 1, it can be proved that |θi| ≤ iu/(1 − iu) for
all i. Consequently, one can conclude that the backward error satisfies

η(x̂) = |θn−1| . nu. (3.36)

Since the backward error is of the order of u, one concludes that the classic summation
algorithm is backward-stable.

3.1.4 Accuracy of the solution

How is the accuracy of the computed solution estimated? The accuracy of the computed
solution actually depends on the condition number of the problem and on the stability of
the algorithm used. The condition number measures the effect of the perturbation of the
data on the result. The backward error simulates the errors introduced by the algorithm as
errors on the data. As a consequence, at the first order, one has the following rule of thumb:

forward error . condition number × backward error. (3.37)

If the algorithm is backward-stable (that is to say the backward error is of the order of the
rounding unit u) then the rule of thumb can be written as follows

forward error . condition number × u. (3.38)

In general, the condition number is hard to compute (as hard as the problem itself). As a
consequence, there are some estimators that make it possible to compute an approximation
of the condition number with a reasonable complexity.

The rule of thumb makes it possible to be more precise about what was called ill-
conditioned and well-conditioned problems. A problem will be said to be ill-conditioned
if the condition number is greater than 1/u. It means that the relative forward error is
greater than 1 just saying that one has no accuracy at all for the computed solution.

In fact, in some cases, the rule of thumb can be proved. For the summation, if one
denotes by ŝ the computed sum of the vector yi, 1 ≤ i ≤ n and s =

∑n
i=1 yi the real sum,

then (3.35) implies

|ŝ− s|
|s|

≤ γn−1 cond

(
n∑
i=1

yi

)
(3.39)

with γn defined by

γn :=
nu

1− nu
for n ∈ N. (3.40)

Since γn−1 ≈ (n− 1)u, it is almost the rule of thumb with just a small factor n− 1 before u.
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3.1.5 The LAPACK library

The LAPACK library [2] is a collection of subroutines in Fortran 77 designed to solve major
problems in linear algebra: linear systems, least square systems, eigenvalues and singular
values problems.

One of the most important advantages of LAPACK is that it provides error bounds for
all the computed quantities. These error bounds are not rigorous but are mostly reliable. To
do this, LAPACK uses the principles of backward analysis. In general, LAPACK provides
both componentwise and normwise relative error bounds using the rule of thumb (3.37).

In fact, the major part of the algorithms implemented in LAPACK are backward-stable
meaning that the rule of thumb (3.38) is satisfied. As the condition number is generally
very hard to compute, LAPACK uses estimators. It may happen that the estimator is far
from the right condition number. In fact, the estimation can arbitrarily be far from the
true condition number. The error bounds in LAPACK are only qualitative markers of the
accuracy of the computed results.

Linear algebra problems are central in current scientific computing. Getting some good
error bounds is therefore very important and is still a challenge.

3.1.6 The PRECISE toolbox

Let us recall the problem (P ): given y, find x such that F (x) = y. Let us denote by x̂ = Ĝ(y)
the solution computed in finite precision using algorithm G. The principle of PRECISE [6]
is to control the solutions corresponding to the following transformations:

y
bG−→ x̂

F−→ ŷ = F (x̂).

The data z of the problem (P ) is perturbed by ∆z. The PRECISE method makes random
perturbation in the original data and examines the effect on the solution of the problem as
follows

z + ∆z
bG−→ x̂+ ∆x̂

F−→ ŷ + ∆ŷ = y + ∆y

Thanks to sampling, it is possible to compute the following estimators

• Iδ = sup‖∆z‖=δ
‖∆y‖
δ

,

• Kδ = sup‖∆z‖=δ
‖∆bx‖
‖∆by‖ ,

• Lδ = sup‖∆z‖=δ
‖∆bx‖
δ

.

Those estimators can give important informations about the stability of an algorithm.

3.2 Interval arithmetic

Interval arithmetic [1, 21] is not defined on real numbers, but on closed bounded intervals.
The result of an arithmetic operation between two intervals, X = [x, x] and Y = [y, y],
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contains all values that can be obtained by performing this operation on elements from each
interval. The arithmetic operations are defined below.

X + Y = [x+ y, x+ y]. (3.41)

X − Y = [x− y, x− y]. (3.42)

X × Y = [min(x× y, x× y, x× y, x× y), max(x× y, x× y, x× y, x× y)]. (3.43)

X2 = [min(x2, x2), max(x2, x2)] if 0 /∈ [x, x], (3.44)

[0,max(x2, x2)] otherwise.

1/Y = [min(1/y, 1/y), max(1/y, 1/y)] if 0 /∈ [y, y]. (3.45)

X/Y = [x, x]× (1/[y, y]) if 0 /∈ [y, y]. (3.46)

Arithmetic operations can also be applied to interval vectors and interval matrices by
performing scalar interval operations componentwise.

An interval extension of a function f must provide all values that can be obtained by
applying the function to any element of the interval argument X:

∀x ∈ X, f(x) ∈ f(X). (3.47)

For instance, exp[x, x] = [exp x, expx] and sin[π/6, 2π/3] = [1/2, 1].
The interval obtained may depend on the formula chosen for mathematically equivalent

expressions. For instance, let f1(x) = x2 − x + 1. f1([−2, 1]) = [−2, 7]. Let f2(x) =
(x − 1/2)2 + 3/4. The function f2 is mathematically equivalent to f1, but f2([−2, 1]) =
[3/4, 7] 6= f1([−2, 1]). One can notice that f2([−2, 1]) ⊆ f1([−2, 1]). Indeed a power set
evaluation is always contained in the intervals resulting from other mathematically equivalent
formulas.

Interval arithmetic enables one to control rounding errors automatically. On a computer,
a real value which is not machine representable can be approximated to a floating-point
number. It can also be enclosed by two floating-point numbers. Real numbers can therefore
be replaced by intervals with machine representable bounds. An interval operation can be
performed using directed rounding modes, in such a way that the rounding error is taken into
account and the exact result is necessarily contained in the computed interval. For instance,
the computed results, with guaranteed bounds, of the addition and the subtraction between
two intervals X = [x, x] and Y = [y, y] are

X + Y = [∇(x+ y),∆(x+ y)] ⊇ {x+ y|x ∈ X, y ∈ Y } (3.48)

X − Y = [∇(x− y),∆(x− y)] ⊇ {x− y|x ∈ X, y ∈ Y } (3.49)

where ∇ (respectively ∆) denotes the downward (respectively upward) rounding mode.
Interval arithmetic has been implemented in several libraries or softwares. For instance,

a C++ class library, C-XSC2 [17], and a Matlab toolbox, INTLAB3 [15, 36], are freely
available.

2http://www.xsc.de
3http://www.ti3.tu-harburg.de/rump/intlab
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The main advantage of interval arithmetic is its reliability. But the intervals obtained
may be too large. The intervals width regularly increases with respect to the intervals that
would have been obtained in exact arithmetic. With interval arithmetic, rounding error
compensation is not taken into account.

The overestimation of the error can be due to the loss of variable dependency. In interval
arithmetic, several occurrences of the same variable are considered as different variables. For
instance, let X = [1, 2],

∀x ∈ X, x− x = 0, (3.50)

but
X −X = [−1, 1]. (3.51)

Another source of overestimation is the “wrapping effect” due to the enclosure of a non-
interval shape range into an interval. For instance, the image of the square [0,

√
2]× [0,

√
2]

by the function

f(x, y) =

√
2

2
(x+ y, y − x) (3.52)

is the rotated square S1 with corners (0, 0), (1,−1), (2, 0), (1, 1). The square S2 provided by
interval arithmetic operations is: f([0,

√
2], [0,

√
2]) = ([0, 2], [−1, 1]). The area obtained with

interval arithmetic is twice the one of the rotated square S1.
As the classical numerical algorithms can lead to over-pessimistic results in interval

arithmetic, specific algorithms, suited for interval arithmetic, have been proposed. Table 4
presents the results obtained for the determinant of Hilbert matrix H of dimension 8 de-
fined by

Hij =
1

i+ j − 1
for i = 1, ..., 8 and j = 1, ..., 8 (3.53)

computed:

• using the Gaussian elimination in IEEE double precision arithmetic with rounding to
nearest

• using the Gaussian elimination in interval arithmetic

• using a specific interval algorithm for the inclusion of the determinant of a matrix,
which is described in [33], page 214.

Results obtained in interval arithmetic have been computed using the INTLAB toolbox.
The exact value of the determinant is

det(H) =
7∏

k=0

(k!)3

(8 + k)!
. (3.54)

Its 15 first exact significant digits are:

det(H) = 2.73705011379151E-33. (3.55)
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det(H) # exact digits
IEEE double precision 2.737050300217821E-33 7.17
interval Gaussian elimination [2.717163073713011E-33, 1.84

2.756937028322111E-33]
interval specific algorithm [2.737038183754026E-33, 5.06

2.737061910503125E-33]

Table 4: Determinant of the Hilbert matrix H of dimension 8

The number of exact significant decimal digits of each computed result has been reported
in Table 4.

One can verify the main feature of interval arithmetic: the exact value of the determinant
is enclosed in the computed intervals. Table 4 points out the overestimation of the error with
naive implementations of classical numerical algorithms in interval arithmetic. The algorithm
for the inclusion of a determinant which is specific to interval arithmetic leads to a much
thinner interval. Such interval algorithms exist in most areas of numerical analysis.

Taylor models [4, 25, 27] have been proposed to reduce both the dependency problem and
the wrapping effect in interval arithmetic. A Taylor model of a function f on an interval X
consists of the Taylor polynomial pn of order n of f and an interval remainder term In,
which encloses the approximation error |f − pn| on X. In computations that involve f , the
function is replaced by pn + In. The polynomial part is propagated by symbolic calculations
where possible. The interval remainder term is processed according to the rules of interval
arithmetic. All truncation and rounding errors which occur in intermediate computations
are also enclosed into the remainder interval of the final result. Taylor model arithmetic has
been implemented in the COSY Infinity package4 [26].

As a remark, interval analysis can be used not only for reliable numerical simulations but
also for computer assisted proofs (cf., for example, [33]).

3.3 Probabilistic approach

Here, a method for estimating rounding errors is presented without taking into account the
model errors or the discretization errors.

Let us go back to the question “What is the computing error due to floating-point arith-
metic on the results produced by a program?”. From the physical point of view, in large nu-
merical simulations, the final rounding error is the result of billions and billions elementary
rounding errors. In the general case, it is impossible to carefully describe each elementary
error and, then, to compute the right value of the final rounding error. It is usual, in physics,
when a deterministic approach is not possible, to apply a probabilistic model. Of course,
one looses the exact description of the phenomena but one may hope to get some global
information like order of magnitude, frequency, etc. It is exactly what is hoped when using

4http://bt.pa.msu.edu/index_cosy.htm
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a probabilistic model of rounding errors.
For the mathematical model, remember the formula at the first order (2.13). Concretely,

the rounding mode of the computer is replaced by a random rounding mode, i.e. at each
elementary operation, the result is rounded towards −∞ or +∞ with the probability 0.5.
The main interest of this new rounding mode is to run a same binary code with different
rounding error propagations because one generates for different runs different random draws.
If rounding errors affect the result, even slightly, one obtains for N different runs, N different
results on which a statistical test may be applied. This is the basic idea of the CESTAC
method (Contrôle et Estimation STochastique des Arrondis de Calcul). Briefly, the part of
the N mantissas that is common to the N results is assumed to be not affected by rounding
errors, contrary to the part of the N mantissas which is different from one result to an other.

The implementation of the CESTAC method in a code providing a result R consists in:

• executing N times this code with the random rounding mode, which is obtained by
using randomly the rounding mode towards −∞ or +∞; then, an N -sample (Ri) of R
is obtained,

• choosing as the computed result the mean value R of Ri, i = 1, ..., N ,

• estimating the number of exact decimal significant digits of R with

CR = log10

(√
N
∣∣R∣∣

στβ

)
, (3.56)

where

R =
1

N

N∑
i=1

Ri and σ2 =
1

N − 1

N∑
i=1

(
Ri −R

)2
. (3.57)

τβ is the value of Student’s distribution for N − 1 degrees of freedom and a probability
level 1− β.

From equation (2.13), if the first order approximation is valid, one may deduce that:

1. the mean value of the random variable R is the exact result r,

2. under some assumptions, the distribution of R is a quasi-Gaussian distribution.

It has been shown that N = 3 is the optimal value. The estimation with N = 3 is more
reliable than with N = 2 and increasing the size of the sample does not improve the quality
of the estimation. The complete theory can be found in [8, 37].

Equations (2.13) and (3.56) hold if the following assumptions are verified:

1. the round-off errors αi are independent, centered uniformly distributed random vari-
ables,

2. the approximation to the first order in 2−p is legitimate.
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Concerning the first assumption, with the use of the random arithmetic, round-off errors
αi are random variables, however, in practice, they are not rigorously centered and in this
case Student’s test gives a biased estimation of the computed result. It has been proved [10]
that, with a bias of a few σ, the error on the estimation of the number of exact significant
digits of R is less than one decimal digit. Therefore even if the first assumption is not
rigorously satisfied, the reliability of the estimation obtained with equation (3.56) is not
altered if it is considered as exact up to one digit.

Concerning the second assumption, the approximation to the first order only concerns
multiplications and divisions. Indeed the rounding error generated by an addition or a
subtraction does not contain any term of higher order. It has been shown [7, 8] that, if a
computed result becomes non significant, i.e. all its significant digits are affected by rounding
errors, then the first order approximation may be not legitimate. In practice the validation
of the CESTAC method requires a dynamical control of multiplications and divisions, during
the execution of the code.

This leads to the synchronous implementation of the method, i.e. to the parallel com-
putation of the N results Ri. In this approach, a classical floating-point number is replaced
by a 3-sample X = (X1, X2, X3) and an elementary operation Ω ∈ {+,−,×, /} is defined
by XΩY = (X1ωY1, X2ωY2, X3ωY3) where ω represents the corresponding floating-point
operation followed by a random rounding.

A new important concept has also been introduced: the computational zero.

Definition 3.1. During the run of a code using the CESTAC method, an intermediate or a
final result R is a computational zero, denoted by @.0, if one of the two following conditions
holds:

• ∀i, Ri = 0,

• CR ≤ 0.

Any computed result R is a computational zero if either R = 0, R being significant,
or R is non significant. In other words, a computational zero is a value that cannot be
differentiated from the mathematical zero because of its rounding error. From this new
concept of zero, one can deduce new order relationships that take into account the accuracy
of intermediate results. For instance,

Definition 3.2. X is stochastically strictly greater than Y if and only if:

X > Y and X − Y 6= @.0.

or

Definition 3.3. X is stochastically greater than or equal to Y if and only if:

X ≥ Y or X − Y = @.0.
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The joint use of the CESTAC method and these new definitions is called DSA (Discrete
Stochastic Arithmetic) [38]. Elements of the DSA, which are named stochastic numbers, are
N -sets provided by the CESTAC method. DSA enables to estimate the impact of rounding
errors on any result of a scientific code and also to check that no anomaly occurred during the
run, especially in branching statements. The CADNA (Control of Accuracy and Debugging
for Numerical Applications) software5 [19] is a library which implements DSA in any code
written in C++ or in Fortran and allows to use new numerical types: the stochastic types.
The library contains the definition of all arithmetic operations and order relations for the
stochastic types. The control of the accuracy is only performed on variables of stochastic
type. When a stochastic variable is printed, only its exact significant digits appear. For
a computational zero, the symbol @.0 is printed. The CADNA library allows, during the
execution of any code:

• the estimation of the error due to rounding error propagation,

• the detection of numerical instabilities,

• the checking of the sequencing of the program (tests and branchings),

• the estimation of the accuracy of all intermediate computations.

The benefits of DSA in numerical programs are illustrated by the two following examples.
For both examples, at first, results using the standard floating-point arithmetic are presented
and, then, results using the CADNA library.

Example 1: a rational fraction function of two variables

In the following example [35], the rational fraction

F (x, y) = 333.75y6 + x2(11x2y2 − y6 − 121y4 − 2) + 5.5y8 +
x

2y

is computed with x = 77617, y = 33096.
The 15 first digits of the exact result are -0.827396059946821.
Using IEEE double precision arithmetic with rounding to nearest, one obtains:
res = 5.764607523034235E+17
and using CADNA in double precision, one obtains:

-----------------------------------------------------

CADNA software --- University P. et M. Curie --- LIP6

Self-validation detection: ON

Mathematical instabilities detection: ON

Branching instabilities detection: ON

Intrinsic instabilities detection: ON

5http://www.lip6.fr/cadna/
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Cancellation instabilities detection: ON

-----------------------------------------------------

res = @.0

-----------------------------------------------------

CADNA software --- University P. et M. Curie --- LIP6

There is 1 numerical instability

0 UNSTABLE DIVISION(S)

0 UNSTABLE POWER FUNCTION(S)

0 UNSTABLE MULTIPLICATION(S)

0 UNSTABLE BRANCHING(S)

0 UNSTABLE MATHEMATICAL FUNCTION(S)

0 UNSTABLE INTRINSIC FUNCTION(S)

1 UNSTABLE CANCELLATION(S)

CADNA points out the complete loss of accuracy of the result.

Example 2: solving a linear system

In this example, CADNA is able to provide correct results which were impossible to be
obtained with the standard floating-point arithmetic. The following linear system is solved
using Gaussian elimination with partial pivoting.

21 130 0 2.1
13 80 4.74 108 752
0 −0.4 3.9816 108 4.2
0 0 1.7 9 10−9

 . X =


153.1
849.74
7.7816

2.6 10−8


The exact solution is xtsol = (1, 1, 10−8, 1). Using IEEE single precision arithmetic with

rounding to nearest, one obtains:

x_sol(1) = 0.6261988E+02 (exact solution: 0.1000000E+01)

x_sol(2) = -0.8953979E+01 (exact solution: 0.1000000E+01)

x_sol(3) = 0.0000000E+00 (exact solution: 0.1000000E-07)

x_sol(4) = 0.1000000E+01 (exact solution: 0.1000000E+01)

and using CADNA in single precision, one obtains:

CADNA software --- University P. et M. Curie --- LIP6

Self-validation detection: ON

Mathematical instabilities detection: ON

Branching instabilities detection: ON

Intrinsic instabilities detection: ON

Cancellation instabilities detection: ON

-----------------------------------------------------

x_sol(1) = 0.999E+00 (exact solution: 0.1000000E+01)
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x_sol(2) = 0.1000E+01 (exact solution: 0.1000000E+01)

x_sol(3) = 0.999999E-08 (exact solution: 0.9999999E-08)

x_sol(4) = 0.1000000E+01 (exact solution: 0.1000000E+01)

-----------------------------------------------------

CADNA software --- University P. et M. Curie --- LIP6

There are 3 numerical instabilities

0 UNSTABLE DIVISION(S)

0 UNSTABLE POWER FUNCTION(S)

0 UNSTABLE MULTIPLICATION(S)

1 UNSTABLE BRANCHING(S)

0 UNSTABLE MATHEMATICAL FUNCTION(S)

1 UNSTABLE INTRINSIC FUNCTION(S)

1 UNSTABLE CANCELLATION(S)

During the reduction of the third column, the matrix element a(3,3) is equal to 4864.
But the exact value of a(3,3) is zero. The standard floating-point arithmetic cannot detect
that a(3,3) is non-significant. This value is chosen as pivot. That leads to erroneous results.
CADNA detects the non-significant value of a(3,3). This value is eliminated as pivot. That
leads to satisfactory results.

4 Methods for accurate computations

In this section, different methods to increase the accuracy of the computed result of an
algorithm are presented. Far from being exhaustive, two classes of methods will be presented.
The first class is the class of compensated methods. These methods consist in estimating the
rounding error and then adding it to the computed result. The second class are algorithms
using multiprecision arithmetic.

4.1 Compensated methods

Throughout this subsection, one assumes that the floating-point arithmetic adhers to IEEE
754 floating-point standard in rounding to nearest. One also assume that no overflow nor
underflow occurs. The material presented in this section heavily relies on [28].

4.1.1 Error-free transformations (EFT)

One can notice that a ◦ b ∈ R and a } b ∈ F but in general a ◦ b ∈ F does not hold. It
is known that for the basic operations +,−,×, the approximation error of a floating-point
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operation is still a floating-point number:

x = a⊕ b ⇒ a+ b = x+ y with y ∈ F,
x = a	 b ⇒ a− b = x+ y with y ∈ F,
x = a⊗ b ⇒ a× b = x+ y with y ∈ F,
x = a� b ⇒ a = x× b+ y with y ∈ F,
x =
√©(a) ⇒ a = x2 + y with y ∈ F.

(4.58)

These are error-free transformations of the pair (a, b) into the pair (x, y). The floating-
point number x is the result of the floating-point operation whereas y is the rounding term.
Fortunately, the quantities x and y in (4.58) can be computed exactly in floating-point
arithmetic. For the algorithms, Matlab-like notations are used. For addition, one can use
the following algorithm by Knuth.

Algorithm 4.1 (Knuth [20]). Error-free transformation of the sum of two floating-point
numbers

function [x, y] = TwoSum(a, b)
x = a⊕ b
z = x	 a
y = (a	 (x	 z))⊕ (b	 z)

Another algorithm to compute an error-free transformation is the following algorithm
from Dekker. The drawback of this algorithm is that x + y = a + b provided that |a| ≥ |b|.
Generally, on modern computers, a comparison followed by a branching and 3 operations
costs more than 6 operations. As a consequence, TwoSum is generally more efficient than
FastTwoSum plus a branching.

Algorithm 4.2 (Dekker [11]). Error-free transformation of the sum of two floating-point
numbers.

function [x, y] = FastTwoSum(a, b)
x = a⊕ b
y = (a	 x)⊕ b

For the error-free transformation of a product, one first needs to split the input argument
into two parts. Let p be given by u = 2−p and let us define s = dp/2e. For example, if the
working precision is IEEE 754 double precision, then p = 53 and s = 27. The following
algorithm by Dekker splits a floating-point number a ∈ F into two parts x and y such that

a = x+ y with |y| ≤ |x|. (4.59)

Both parts x and y have at most s− 1 non-zero bits.

Algorithm 4.3 (Dekker [11]). Error-free split of a floating-point number into two parts
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function [x, y] = Split(a, b)
factor = 2s ⊕ 1
c = factor⊗ a
x = c	 (c	 a)
y = a	 x

The main point of Split is that both parts can be multiplied in the same precision
without error. With this function, an algorithm attributed to Veltkamp by Dekker enables
to compute an error-free transformation for the product of two floating-point numbers. This
algorithm returns two floating-point numbers x and y such that

a× b = x+ y with x = a⊗ b. (4.60)

Algorithm 4.4 (Veltkamp [11]). Error-free transformation of the product of two floating-
point numbers

function [x, y] = TwoProduct(a, b)
x = a⊗ b
[a1, a2] = Split(a)
[b1, b2] = Split(b)
y = a2 ⊗ b2 	 (((x	 a1 ⊗ b1)	 a2 ⊗ b1)	 a1 ⊗ b2)

The performance of the algorithms is interpreted in terms of floating-point operations
(flops). The following theorem summarizes the properties of algorithms TwoSum and TwoProduct.

Theorem 4.1. Let a, b ∈ F and let x, y ∈ F such that [x, y] = TwoSum(a, b) (Algorithm 4.1).
Then,

a+ b = x+ y, x = a⊕ b, |y| ≤ u|x|, |y| ≤ u|a+ b|. (4.61)

The algorithm TwoSum requires 6 flops.
Let a, b ∈ F and let x, y ∈ F such that [x, y] = TwoProduct(a, b) (Algorithm 4.4). Then,

a× b = x+ y, x = a⊗ b, |y| ≤ u|x|, |y| ≤ u|a× b|. (4.62)

The algorithm TwoProduct requires 17 flops.

The TwoProduct algorithm can be re-written in a very simple way if a Fused-Multiply-
and-Add (FMA) operator is available on the target architecture. Some computers have a
Fused-Multiply-and-Add (FMA) operation that enables a floating-point multiplication followed
by an addition to be performed as a single floating-point operation. The Intel IA-64 archi-
tecture, implemented in the Intel Itanium processor, has an FMA instruction as well as the
IBM RS/6000 and the PowerPC before it. On the Itanium processor, the FMA instruction
enables a multiplication and an addition to be performed in the same number of cycles than
one multiplication or one addition. As a result, it seems to be advantageous for speed as
well as for accuracy.
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Theoretically, this means that for a, b, c ∈ F, the result of FMA(a, b, c) is the nearest
floating-point number of a× b+ c ∈ R. The FMA satisfies

FMA(a, b, c) = (a× b+ c)(1 + ε1) = (a× b+ c)/(1 + ε2) with |εν | ≤ u.

Thanks to the FMA, the TwoProduct algorithm can be re-written as follows which costs only
2 flops.

Algorithm 4.5. Error-free transformation of the product of two floating-point numbers
using an FMA.

function [x, y] = TwoProductFMA(a, b)
x = a⊗ b
y = FMA(a, b,−x)

4.1.2 A compensated summation algorithm

Hereafter, a compensated scheme to evaluate the sum of floating-point numbers is presented,
i.e. the error of individual summation is somehow corrected.

Indeed, with Algorithm 4.1 (TwoSum), one can compute the rounding error. This algo-
rithm can be cascaded and sum up the errors to the ordinary computed summation. For a
summary, see Figure 3 and Algorithm 4.6.

TwoSumTwoSum TwoSum TwoSum· · ·

p1 p2 pn−1 pn

q2 q3 qn−1 qn

π2 πn−1 πnπn−2π3p1

+ +· · ·

+

+ +

Figure 3: Compensated summation algorithm

Algorithm 4.6. Compensated summation algorithm

function res = CompSum(p)
π1 = p1 ; σ1 = 0;
for i = 2 : n

[πi, qi] = TwoSum(πi−1, pi)
σi = σi−1 ⊕ qi

res = πn ⊕ σn
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The following proposition gives a bound on the accuracy of the result. The notation γn
defined by Equation (3.40) will be used. When using γn, nu ≤ 1 is implicitly assumed.

Proposition 4.2 ([28]). Suppose Algorithm CompSum is applied to floating-point numbers
pi ∈ F, 1 ≤ i ≤ n. Let s :=

∑
pi, S :=

∑
|pi| and nu < 1. Then, one has

|res− s| ≤ u|s|+ γ2
n−1S. (4.63)

In fact, the assertions of Proposition 4.2 are also valid in the presence of underflow.
One can interpret Equation (4.63) in terms of the condition number for the summa-

tion (3.31). Since

cond
(∑

pi

)
=

∑
|pi|

|
∑
pi|

=
S

|s|
, (4.64)

inserting this in Equation (4.63) yields

|res− s|
|s|

≤ u+ γ2
n−1 cond

(∑
pi

)
. (4.65)

Basically, the bound for the relative error of the result is essentially (nu)2 times the condition
number plus the rounding u due to the working precision. The second term on the right
hand side reflects the computation in twice the working precision (u2) thanks to the rule of
thumb. The first term reflects the rounding back in the working precision.

The compensated summation on ill-conditioned sum was tested; the condition number
varying from 104 to 1040.

Figure 4 shows the relative accuracy |res − s|/|s| of the computed value by the two
algorithms 3.1 and 4.6. The a priori error estimations (3.39) and (4.65) are also plotted.

As one can see in Figure 4, the compensated summation algorithm exhibits the expected
behavior, that is to say, the compensated rule of thumb (4.65). As long as the condition
number is less than u−1, the compensated summation algorithm produces results with full
precision (forward relative error of the order of u). For condition numbers greater than u−1,
the accuracy decreases and there is no accuracy at all for condition numbers greater than u−2.

Thanks to the TwoProduct algorithm, we have already an error-free transformation of a
product of two floating-point numbers into the sum of two floating-point numbers. Combin-
ing TwoProduct with the compensated algorithm CompSum, we can provide a compensated
algorithm for computing the dot product of two floating-point vectors x, y of length n.

Algorithm 4.7. Compensated dot product algorithm

function res = CompDot(x, y)
for i = 1 : n

[ri, rn+i] = TwoProduct(xi, yi)
end
res = CompSum(r)

We have similar error bounds as (4.65), see [28] for more details. There exists some
improvements for the previous compensated dot product algorithm (see also [28] and the
next paragraph).
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Figure 4: Compensated summation algorithm
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4.1.3 A compensated dot product algorithm

In the previous paragraph, we have transformed a dot product into a sum and then applied
an accurate summation algorithm. In fact, we can do a similar analysis as for the sum. For
each elementary operation (here addition and subtraction), we can compute the rounding
error thanks to error-free transformations. We can then accumulate the errors and add them
to the final result. This is what is done in the following algorithm. We recall that given two
vectors of size n of floating-point numbers, the dot product is defined by

xTy =
n∑
i=1

xiyi.

Algorithm 4.8 ([28]). Dot product in twice the working precision

function res = CompDot2(x, y)
[p, s] = TwoProduct(x1, y1)
for i = 2 : n

[h, r] = TwoProduct(xi, yi)
[p, q] = TwoSum(p, h)
s = fl(s+ (q + r))

end
res = fl(p+ s)

The following theorem gives an a priori error bound on the error.

Proposition 4.3 ([28]). Let floating-point numbers xi, yi ∈ F, 1 ≤ i ≤ n, be given and denote
by res ∈ F the result computed by Algorithm CompDot2. Then

|res− xTy| ≤ u|xTy|+ γ2
n|xT ||y|. (4.66)

One can interpret Equation (4.66) in terms of the condition number for dot product.
Since

cond
(
xTy

)
=
|x|T |y|
|xTy|

, (4.67)

inserting this in Equation (4.66) yields

|res− xTy|
|xTy|

≤ u+ γ2
n cond

(
xTy

)
. (4.68)

As a consequence, we conclude that the result is as accurate as if computed in twice
the working precision and then rounded to the current working precision. This is the same
phenomenon as for the compensated summation algorithm.
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4.1.4 A compensated Horner scheme

We present hereafter a compensated algorithm for Horner scheme. One can find a more
detailed description of the algorithm in [14]. We first recall the classic algorithm for Horner
scheme and give an error bound. We then present the compensated Horner scheme together
with an error bound.

The classical method for evaluating a polynomial

p(x) =
n∑
i=0

aix
i

is the Horner scheme which consists in the following algorithm.

Algorithm 4.9. Polynomial evaluation with Horner scheme

function res = Horner(p, x)
sn = an
for i = n− 1 : −1 : 0
si = si+1 ⊗ x⊕ ai

end
res = s0

A forward error bound for the result of Algorithm 4.9 is (see [16, p.95]):

|p(x)− res| ≤ γ2n

n∑
i=0

|ai||x|i = γ2np̃(|x|)

where p̃(x) =
∑n

i=0 |ai|xi. It is very interesting to express and interpret this result in terms
of the condition number of the polynomial evaluation defined by

cond(p, x) =

∑n
i=0 |ai||x|i

|p(x)|
=
p̃(|x|)
|p(x)|

. (4.69)

Thus we have
|p(x)− res|
|p(x)|

≤ γ2n cond(p, x).

If an FMA instruction is available, then the statement si = si+1⊗x⊕ai in Algorithm 4.9
can be re-written as si = FMA(si+1, x, ai) which slightly improves the error bound. Using an
FMA this way, the computed result now satisfies

|p(x)− res|
|p(x)|

≤ γn cond(p, x).

We can modify the Horner scheme to compute the rounding error at each elementary
operation that is an addition or a multiplication. This is done in Algorithm 4.10.
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Algorithm 4.10. Polynomial evaluation with a compensated Horner scheme

function res = CompHorner(p, x)
sn = an
rn = 0
for i = n− 1 : −1 : 0

[pi, πi] = TwoProduct(si+1, x)
[si, σi] = TwoSum(pi, ai)
ri = ri+1 ⊗ x⊕ (πi ⊕ σi)

end
res = s0 ⊕ r0

If we denote by pπ and pσ the two following polynomials

pπ =
n−1∑
i=0

πix
i, pσ =

n−1∑
i=0

σix
i,

then one can show due to error-free transformations that

p(x) = s0 + pπ(x) + pσ(x).

If one look closely at the previous algorithm, it is then clear that s0 = Horner(p, x). As a
consequence, we can derive a new error-free transformation for polynomial evaluation

p(x) = Horner(p, x) + pπ(x) + pσ(x).

The compensated Horner scheme first computes pπ(x) + pσ(x) which corresponds to the
rounding errors and then add it to the result of the classic Horner scheme Horner(p, x).

We will show that the results computed according to Algorithm 4.10 admit significantly
better error-bounds than those computed with the classical Horner scheme. We argue that
Algorithm 4.10 provides results as if they were computed using twice the working precision.
This is summed up in the following theorem.

Theorem 4.4. Consider a polynomial p of degree n with floating-point coefficients, and x a
floating-point value. The forward error in the compensated Horner algorithm is such that

|CompHorner(p, x)− p(x)| ≤ u|p(x)|+ γ2
2np̃(x). (4.70)

It is interesting to interpret the previous theorem in terms of the condition number of
the polynomial evaluation of p at x. Combining the error bound (4.70) with the condition
number (4.69) for polynomial evaluation gives

|CompHorner(p, x)− p(x)|
|p(x)|

≤ u+ γ2
2n cond(p, x). (4.71)

In other words, the bound for the relative error of the computed result is essentially γ2
2n

times the condition number of the polynomial evaluation, plus the inevitable u term for
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rounding the result to the working precision. In particular, if cond(p, x) < γ−1
2n , then the

relative accuracy of the result is bounded by a constant of the order u. This means that the
compensated Horner algorithm computes an evaluation accurate to the last few bits as long
as the condition number is smaller than γ−1

2n ≈ (2nu)−1. Besides that, (4.71) tells us that
the computed result is as accurate as if computed by the classic Horner algorithm with twice
the working precision, and then rounded to the working precision.

We test the expanded form of the polynomial pn(x) = (x − 1)n. The argument x is
chosen near the unique real root 1 of pn, and with many significant bits so that a lot of
rounding errors occur during the evaluation of pn(x). We increment the degree n from 1
until a sufficiently large range has been covered by the condition number cond(pn, x). Here
we have

cond(pn, x) =
p̂n(x)

|pn(x)|
=

∣∣∣∣1 + x

1− x

∣∣∣∣n ,
and cond(pn, x) grows exponentially with respect to n. In the experiments reported in Fig-
ure 5, cond(pn, x) varies from 102 to 1040 (for x = fl(1.333), that corresponds to the degree
range n = 3, . . . , 42). These huge condition numbers have a sense since here the coefficients
of p and the value x are chosen to be exact floating-point numbers.

We experiment both Horner and CompHorner. For each polynomial pn, the exact value
pn(x) is approximated with a high accuracy. Figure 5 presents the relative accuracy |y −
pn(x)|/|pn(x)| of the evaluation y computed by the two algorithms.

We observe that the compensated algorithm exhibits the expected behavior. The full
precision solution is computed as long as the condition number is smaller than u−1 ≈ 1016.
Then, for condition numbers between u−1 and u−2 ≈ 1032, the relative error degrades to
no accuracy at all. However, when the condition number is beyond u−1, the a priori error
estimate 4.71 is always pessimistic by 2 or 3 orders of magnitude.

4.1.5 The CENA method

We now present an automatic correction method [22]. Assume that one must evaluate a
function f at the data D = (d1, . . . , dn) with an algorithm g using intermediate variables
dn+1, . . . , dN . We assume for simplicity that f and di are scalar quantities. We also assume
that each dk (k > n) is the result of an elementary operation +,−,×, / or a square root.
We denote by δk the rounding error associated to that operation. To the first order, the
computed solution d̂N satisfies

d̂N − f(d1, . . . , dn) =
N∑

k=n+1

∂g

∂dk
(D, δ)δk. (4.72)

The CENA method [22] computes a linearization (4.72) of the rounding error and adds
this quantity to the computed solution. The derivatives are computed with automatic differ-
entiation tools and the elementary rounding errors are computed exactly with the error-free
transformations. For a certain class of algorithms called linear in [22] (classic algorithms
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for summation and dot product as well as the Horner scheme are linear algorithms in the
sense of [22]), the relation (4.72) is exact and the CENA method returns a solution with a
good accuracy (generally as accurate as if computed in twice the working precision and then
rounded to the working precision).

4.1.6 K-fold, faithfully rounded and rounded to nearest results

In the previous sections, we have presented some compensated algorithms that make it
possible to compute a result as accurate as if computed with twice the working precision and
then rounded to the current working precision.

Let us generalize this for a general problem. Let x̂ be the computed solution of a problem
(P ) whose exact solution is x. Suppose that the computations have been done with floating-
point arithmetic with unit round-off u. The computed solution x̂ is as accurate as if computed
with twice the working precision if

|x̂− x|
|x|

≤ u+ Cu2 cond(P ), (4.73)

where C is a moderate constant, | · | is a norm on the space of the solutions and cond(P )
is the condition number of the problem (P ). In the right-hand side of inequality (4.73), the
second term reflects the computation in twice the working precision and the first one the
rounding into the working precision. Relation (4.73) is what we called the compensated rule
of thumb, the classic rule of thumb being [16, p.9]

|x̂− x|
|x|

≤ Cu cond(P ).

We will say that the computed result x̂ is of the same quality as if computed in K-fold
precision and rounded to working precision if

|x̂− x|
|x|

≤ u+ (Cu)K cond(P ).

One can find some K-fold precision algorithms for summation and dot product in [28].
Sometimes, it is needed to get even more accuracy. The floating-point predecessor and

successor of a real number r satisfying min{f : f ∈ R} < r < max{f : f ∈ F} are defined by

pred(r) := max{f ∈ F : f < r} and succ(r) := min{f ∈ F : r < f}.

Definition 4.1. A floating-point number f ∈ F is called a faithful rounding of a real number
r ∈ R if

pred(f) < r < succ(f).

We denote this by f ∈ �(r). For r ∈ F, this implies that f = r.
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Figure 6: Faithful rounding

Faithful rounding means that the computed result is equal to the exact result if the latter
is a floating-point number and otherwise is one of the two floating-point numbers adjacent
to the exact result (see Figure 6).

We can be more accurate requiring the rounded to nearest number. As already defined
in 2.2, a floating-point number f ∈ F is called a rounded to nearest of a real number r ∈ R if

|r − f | = min{|r − f ′| : f ′ ∈ F}.

The tie can be rounded in any way, for exemple to even.
Recently, some new algorithms for summation and dot product have been proposed [30,

31]. They make it possible to compute a faithful rounding or a rounding to nearest.

4.2 Multiple precision arithmetic

Compensated methods are a possible way to improve accuracy, but they force to modify
the algorithms. Another possibility is to increase the working precision. For this purpose,
some multiprecision libraries have been developed. One can divide the libraries into four
categories.

Arbitrary precision libraries using a multiple-digit format

In these libraries a number is expressed as a sequence of digits coupled with a single expo-
nent. Examples of this format are Bailey’s ARPREC6 [3], Brent’s MP7 [5] or MPFR8 [12].
ARPREC and MPFR are briefly described below. MP is obsolescent: very few changes to
the code or documentation have been made since 1981.

The ARPREC library, which is entirely written in C++, supports high-precision real,
integer and complex datatypes. Both C++ and Fortran-90 translation modules modules are
also provided that permit one to convert an existing C++ or Fortran-90 program to use the
library with only minor changes to the source code. In most cases only the type statements
and (in the case of Fortran-90 programs) read/write statements need be changed.

6http://crd.lbl.gov/~dhbailey/mpdist/
7http://web.comlab.ox.ac.uk/oucl/work/richard.brent/pub/pub043.html or http://wwwmaths.

anu.edu.au/~brent/pub/pub043.html
8http://www.mpfr.org/
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The ARPREC package also includes ”The Experimental Mathematician’s Toolkit”, which
is a complete interactive high-precision arithmetic computing environment. One enters
expressions in a Mathematica-style syntax, and the operations are performed using the
ARPREC package, with a level of precision that can be set from 100 to 1000 decimal digit
accuracy. This program supports all basic arithmetic operations, common transcendental
and combinatorial functions, high-precision quadrature, summation of series,...

The MPFR library is written in C language and is based on the GNU MP library (GMP
for short). The internal representation of a floating-point number x by MPFR is

• a mantissa m;

• a sign s;

• a signed exponent e.

If the precision of x is p, then the mantissa m has p significant bits. The mantissa m
is represented by an array of GMP unsigned machine-integer type and is interpreted as
1/2 ≤ m < 1. As a consequence, MPFR does not allow denormalized numbers.

MPFR provides the four IEEE rounding modes as well as some elementary functions
(e.g. exp, log, cos, sin), all correctly rounded. The semantic in MPFR is as follows: for each
instruction a = b + c or a = f(b, c) the variables may have different precisions. In MPFR,
the data b and c are considered with their full precision and a correct rounding to the full
precision of a is computed.

Applications using MPFR inherit the same properties as programs using the IEEE 754
standard (portability, well-defined semantics, possibility to design robust programs and prove
their correctness) with no significant slowdown on average with respect to multiple precision
libraries with ill-defined semantics.

Arbitrary precision libraries using a multiple-component format

In these libraries a number is expressed as unevaluated sums of ordinary floating-point words.
Examples using this format are Priest’s9 and Shewchuk’s10 libraries. Such a format is also
introduced in [34]. An expansion x is then a unevaluated sums of several floating-point
numbers

x = x1 + x2 + · · ·+ xm.

Each xi is called a component of x and is a floating-point number. To impose some structure
on the expansion, the numbers xi are required to be non-overlapping and ordered by magni-
tude (|x1| ≤ |x2| ≤ · · · ≤ |xm|). Priest says that x and y non-overlap (with |x| ≤ |y|) if the
most significant bit of x is lowest than the least significant bit of y. This is the main difference
with Shewchuck’s expansions where x and y non-overlap if the most significant nonzero bit of
x is less than the least significant nonzero bit of y. Note that the number m of floating-point
numbers is not fixed. For exemple if x = x1 + x2 + · · ·+ xm and y = x1 + x2 + · · ·+ xn then
the product xy is a expansion that can have up to nm terms.

9ftp://ftp.icsi.berkeley.edu/pub/theory/priest-thesis.ps.Z
10http://www.cs.cmu.edu/~quake/robust.html
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Fixed precision libraries using a multiple-component format

These libraries use the multiple-component format but with a limited number of components.
Examples of this format are Bailey’s double-double6 (double-double numbers are represented
as an unevaluated sum of a leading double and a trailing double) and quad-double6.

The double-double library will be now presented. For our purpose, it suffices to know
that a double-double number a is the pair (ah, al) of IEEE-754 floating-point numbers with
a = ah + al and |al| ≤ u|ah|. In the sequel, algorithms for

• the addition of a double number to a double-double number;

• the product of a double-double number by a double number;

• the addition of a double-double number to a double-double number

will only be presented. Of course, it is also possible to implement the product of a double-
double by a double-double as well as the division of a double-double by a double, etc.

Algorithm 4.11. Addition of the double number b to the double-double number (ah, al)

function [ch, cl] = add dd d(ah, al, b)
[th, tl] = TwoSum(ah, b)
[ch, cl] = FastTwoSum(th, (tl ⊕ al))

Algorithm 4.12. Product of the double-double number (ah, al) by the double number b

function [ch, cl] = prod dd d(ah, al, b)
[sh, sl] = TwoProduct(ah, b)
[th, tl] = FastTwoSum(sh, (al ⊗ b))
[ch, cl] = FastTwoSum(th, (tl ⊕ sl))

Algorithm 4.13. Addition of the double-double number (ah, al) to the double-double num-
ber (bh, bl)

function [ch, cl] = add dd dd(ah, al, bh, bl)
[sh, sl] = TwoSum(ah, bh)
[th, tl] = TwoSum(al, bl)
[th, sl] = FastTwoSum(sh, (sl ⊕ th))
[ch, cl] = FastTwoSum(th, (tl ⊕ sl))
Algorithms 4.11 to 4.13 use error-free transformations and are very similar to compen-

sated algorithms. The difference lies in the step of renormalization. This step is the last one
in each algorithm and makes it possible to ensure that |cl| ≤ u|ch|.

There are several implementations for the double-double library. The difference is that
the lower-order terms are treated in a different way. If a, b are double-double numbers and
} ∈ {+,×}, then one can show [24] that

fl(a} b) = (1 + δ)(a} b),

with |δ| ≤ 4 · 2−106.
One might also note that, when keeping [πn, σn] as a pair, the first summand u disappears

in (4.65) (see [28]), so this is an example for a double-double result.
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The MPFI library for multiprecision interval arithmetic

MPFI (Multiple Precision Floating-point Interval)11 [29] is intended to be a portable library
written in C for arbitrary precision interval arithmetic with intervals represented using MPFR
reliable floating-point numbers. It is based on the GNU MP library and on the MPFR library.
The purpose of an arbitrary precision interval arithmetic is on the one hand to get guaranteed
results, thanks to interval computation, and on the other hand to obtain accurate results,
thanks to multiple precision arithmetic. The MPFI library is built upon MPFR in order to
benefit from the correct roundings provided by MPFR. Further advantages of using MPFR
are its portability and compliance with the IEEE 754 standard for floating-point arithmetic.
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