
Stochastic Arithmetic in Multiprecision

Stef Graillat, Fabienne Jézéquel and Yuxiang Zhu

CNRS, UMR 7606, LIP6, University Pierre et Marie Curie, 4 place Jussieu, 75252
Paris cedex 05, France

Stef.Graillat@lip6.fr, Fabienne.Jezequel@lip6.fr, Hareton.Zhu@gmail.com

Abstract. The CADNA library [1] implements a stochastic arithmetic
that makes it possible to estimate the propagation of rounding errors in
scientific codes. Concretely, each variable is replaced by several floating-
point numbers and the rounding mode is chosen randomly. The figures
that differ in these numbers are due to rounding errors. The current ver-
sion of CADNA only deals with single and double precision numbers.
The MPFR library [2] makes it possible to define types of multiprecision
numbers as well as arithmetic functions acting on multiprecision vari-
ables. The MPFR library also provides correctly rounded functions and
operators in multiprecision.
In this paper, we present a library called SAM (Stochastic Arithmetic in
Multiprecision). It is a multiprecision extension of the classic CADNA
library using MPFR. In SAM (as in CADNA), the arithmetic and rela-
tional operators are overloaded in order to be able to deal with stochastic
numbers. As a consequence, the use of SAM in a scientific code needs
only few modifications. This new library SAM makes it possible to dy-
namically control the numerical methods used and more particularly to
determine the optimal number of iterations in an iterative process. We
present some applications of SAM in the numerical validation of chaotic
systems modeled by the logistic map.

1 Introduction

The increasing power of current computers enables one to solve more and more
complex problems. Then it is necessary to perform a high number of floating-
point operations, each one leading to a round-off error. Because of round-off
error propagation, some problems must be solved with a longer floating-point
format. Therefore some versions of scientific software carry out multiprecision
computation. For instance, XBLAS routines consist of a multiprecision version
of basic linear algebra routines (BLAS). Moreover some libraries implement ar-
bitrary precision arithmetic. MPFR [2] is an arbitrary precision library devel-
oped by INRIA in C language. Freely available on various platforms, MPFR
uses very efficient algorithms. Based on MPFR, the MPFI library [3] provides
arbitrary precision interval arithmetic. Several approaches exist to control round-
off error propagation: interval arithmetic [4, 5], stochastic arithmetic [6, 7], ab-
stract interpretation-based static analysis [8]. In this paper, we present the SAM
(Stochastic Arithmetic in Multiprecision) library which is based on MPFR and



extends the features of discrete stochastic arithmetic by enabling arbitrary pre-
cision computation.

In Section 2, we briefly describe Discrete Stochastic Arithmetic and the
CADNA library, its implementation in single and double IEEE precision. In
Section 3, we present the MPFR arbitrary precision library and we briefly de-
scribe the features of the SAM library. In Section 4, we analyse results of the
logistic map obtained using SAM and MPFI. Conclusions and perspectives are
given in Section 5.

2 Discrete Stochastic Arithmetic

Based on a probabilistic approach, the CESTACmethod [7] allows the estimation
of round-off error propagation which occurs with floating-point arithmetic. This
method uses a random rounding mode: at each elementary operation, the result
is rounded towards −∞ or +∞ with the probability 0.5. So one obtains, for N
different runs, N different results on which a statistical test may be applied to
estimate the round-off error on these results. Actually 2 or 3 runs are enough. It
has been shown that N = 3 is the optimal number of runs [6]. With this method,
one can know at any time during the execution of a scientific code the accuracy of
any intermediate result. In any result, the number of exact significant digits, i.e.
the number of significant digits not affected by round-off error, is estimated with
the probability 95 %. From this point of view the concept of a computational
zero introduced by J. Vignes [7] is essential. A computational zero is a computed
result which has no exact significant digit or which is the mathematical zero.
In practice, it is a result that the computer cannot distinguish from the null
value because of round-off error propagation. From this new concept, a new
theoretical arithmetic, called stochastic arithmetic [6, 7], has been developed.
New definitions for order relations and equality relations have been proposed.
All these definitions, unlike those used by the classical floating-point arithmetic,
take into account the accuracy of the operands. For example, two computed
results are stochastically equal if their difference is a computational zero.

Discrete Stochastic Arithmetic (DSA) [6, 9] is the use, on a computer, of
the synchronous CESTAC method associated with the concepts of theoretical
stochastic arithmetic. The CADNA software [6, 1] is a library which implements
DSA in any code written in C++ or in Fortran and allows to use new numerical
types: the stochastic types. The library contains the definition of all arithmetic
operations and order relations for the stochastic types. The control of the accu-
racy is performed only on variables of stochastic type. When a stochastic variable
is printed, only its exact significant digits appear. For a computational zero, the
symbol @.0 is printed.

3 MPFR and SAM

In order to improve the accuracy of numerical results, the working precision can
be increased using extended floating-point formats, multiprecision libraries or



arbitrary precision libraries. In arbitray precision, the precision is only limited
by memory storage, whereas in multiprecision the mantissa length is a fixed
multiple of the mantissa length in IEEE double precision. The MPFR [2] ar-
bitray precision library, written in the ISO C language, is based on the GNU
MP library [10] (GMP for short). The internal representation of a floating-point
number x by MPFR is a mantissa m, a sign s and a signed exponent e. If the
precision of x is p, then the mantissa m has p significant bits. The mantissa m
is represented by an array of GMP unsigned machine-integer type. MPFR pro-
vides the four IEEE rounding modes and correct rounding for all the operations
and mathematical functions it implements. The semantic in MPFR is as follows:
for each instruction a = f(b, c) the variables may have different precisions. In
MPFR, the data b and c are considered with their full precision and a correct
rounding to the full precision of a is computed. Applications using MPFR in-
herit the same properties as programs using the IEEE 754 standard (portability,
well-defined semantics, possibility to design robust programs and prove their
correctness) with no significant slowdown on average with respect to arbitrary
precision libraries with ill-defined semantics.

The SAM library implements in arbitrary precision the features of DSA: the
stochastic types, the concept of computational zero and the stochastic opera-
tors. The particularity of SAM (compared to CADNA) is the arbitrary precision
of stochastic variables. In SAM, the number of exact significant digits of any
stochastic variable is estimated with the prabability 95 %, whatever its preci-
sion. Like in CADNA, the arithmetic and relational operators in SAM take into
account round-off error propagation. All numerical instabilities which occur at
run time are detected. Such instabilities are usually generated by an operation
involving a computational zero. The SAM library is written in C++ and is based
on MPFR. In the SAM library, all operators are overloaded. Consequently for
a program written in C++ to be used with SAM, only a few modifications are
needed: mainly changes in type declarations. Classical variables have to be re-
placed by stochastic variables (consisting of three variables of MPFR type). In
SAM, for each stochastic operation, three MPFR operations are performed using
different rounding modes and the numerical instability that may be generated
is detected.

4 Application of SAM for chaotic dynamical systems

Let us consider the logistic iteration [11] defined by xn+1 = axn(1 − xn) with
a > 0 and 0 < x0 < 1.

– When a < 3, this sequence converges to a unique fixed point, whatever the
initial condition x0 is.

– When 3.0 ≤ a ≤ 3.57 this sequence is periodic, whatever the initial condition
x0 is, the periodicity depending only on a. Furthermore the periodicity is
multiplied by 2 for some values of a called “bifurcations”.

– When 3.57 < a < 4 this sequence is usually chaotic, but there are certain
isolated values of a that appear to show periodic behavior.



– Beyond a = 4, the values eventually leave the interval [0,1] and diverge for
almost all initial values.

The logistic map has been computed with x0 = 0.6 using SAM and MPFI. In
stochastic arithmetic, iterations have been performed until the current iterate is
a computational zero, i.e. all its digits are affected by round-off errors. In interval
arithmetic, iterations have been performed until the two bounds of the interval
have no common significant digit. In Tables 1 and 2, we report the number N
of iterations performed for two ways of computing the logistic map.

In Table 1, we have computed the logistic map using the formula

xn+1 = axn(1− xn) with x0 = 0.6. (1)

During the computation performed using SAM with a = 3.57, no computational
zero has been detected. The program has been stopped after one million iter-
ations. Whereas using MPFI with the same value for a, at a certain iteration
the stopping criterion is satisfied: the bounds of the last interval have no com-
mon digit. If a = 3.575, a = 3.6 or a = 3.7, more iterations are performed with
SAM than with MPFI for the stopping criterion to be satisfied. However it must
be pointed out that SAM is based on an estimation of round-off erros. Results
obtained with MPFI are more pessimistic, but are guaranteed. If a = 10, the
sequence diverges. Similar results are obtained with SAM and MPFI.

In Table 2, we have computed the logistic map using the formula

xn+1 = −a(xn −
1

2
)2 +

a

4
with x0 = 0.6. (2)

Concerning SAM, the results are very similar to those in Table 1 (similar N).
Nevertheless, the results are better with MPFI compared to Table 1. In some
cases, MPFI provides better results than SAM. This can be explained by the
so-called dependency problem which is a major drawback of interval arithmetic.
Indeed, if an interval occurs several times in an expression, each occurrence is
taken independently and then can lead to an unwanted over-estimation of the
resulting interval. This is the case in equation (1) where the variable xn appears
twice whereas xn appears only once in equation (2).

Although SAM has been designed for arbitrary precision, it can be compared
with CADNA if the chosen precision is 24 bits or 53 bits. The results are, in
general, similar with CADNA in double precision (53 bits) and SAM with 53 bits.
It is normal since the operations are correctly rounded with the same precision
in both cases. When there is a difference, it is due to the fact that the exponent
of the floating-point numbers is not limited in SAM, whereas it is limited to 1023
in double precision. The same explanation applies for single precision and SAM
with 24 bits (here the exponent in single precision is limited to 127).



a # bits N

3.57 SAM 24 > 106

SAM 53 > 106

SAM 100 > 106

SAM 200 > 106

SAM 2000 > 106

MPFI 24 10
MPFI 53 26
MPFI 100 52
MPFI 200 107
MPFI 2000 1087

3.575 SAM 24 141
SAM 53 389
SAM 100 801
SAM 200 1541
SAM 2000 15789
MPFI 24 11
MPFI 53 26
MPFI 100 52
MPFI 200 107
MPFI 2000 1086

3.6 SAM 24 63
SAM 53 157
SAM 100 327
SAM 200 731
MPFI 24 11
MPFI 53 26
MPFI 100 52
MPFI 200 106

3.7 SAM 24 40
SAM 53 107
SAM 100 205
SAM 200 388
MPFI 24 10
MPFI 53 26
MPFI 100 51
MPFI 200 104

10 SAM 24 21
SAM 53 28
SAM 100 28
SAM 200 28
MPFI 24 28
MPFI 53 28
MPFI 100 28
MPFI 200 28

Table 1. Logistic map: number N of iterations performed with SAM and MPFI,
xn+1 = axn(1− xn) with x0 = 0.6.



a # bits N

3.57 SAM 24 > 106

SAM 53 > 106

SAM 100 > 106

SAM 200 > 106

SAM 2000 > 106

MPFI 24 372
MPFI 53 1966
MPFI 100 5020
MPFI 200 11292
MPFI 2000 123196

3.575 SAM 24 141
SAM 53 389
SAM 100 801
SAM 200 1581
SAM 2000 15821
MPFI 24 92
MPFI 53 302
MPFI 100 706
MPFI 200 1516
MPFI 2000 15864

3.6 SAM 24 63
SAM 53 157
SAM 100 327
SAM 200 725
MPFI 24 48
MPFI 53 142
MPFI 100 328
MPFI 200 712

3.7 SAM 24 40
SAM 53 107
SAM 100 205
SAM 200 386
MPFI 24 35
MPFI 53 97
MPFI 100 191
MPFI 200 385

10 SAM 24 21
SAM 53 28
SAM 100 28
SAM 200 28
MPFI 24 28
MPFI 53 28
MPFI 100 28
MPFI 200 28

Table 2. Logistic map: number N of iterations performed with SAM and MPFI,
xn+1 = −a(xn − 1

2
)2 + a

4
with x0 = 0.6.



5 Conclusion and future work

In the article, we have demonstrated that SAM can be very useful to study the
behavior of chaotic dynamical system. We have only studied the behavior of the
logistic map. We plan to do a similar work with other systems like the Hénon
map [12] or the Lorenz attractor [13].

In a future work, we will also compare in terms of efficiency and computing
times our SAM library with MPFI. As mentioned previously, SAM and MPFI
do not give the same answer since MPFI leads to a certified answer whereas
SAM gives an answer true within a given probability. Anyway, it is sometimes
sufficient to know the answer only with high probability.

Another perspective is the adaptive refinement of the precision in programs
using SAM when the accuracy of the results is not satisfactory. Such a strategy
would be based on an appropriate threshold for the number of exact significant
digits lost during the computation.

References

1. Université Pierre et Marie Curie, Paris, F.: CADNA: Control of Accuracy and
Debugging for Numerical Applications (2010) http://www.lip6.fr/cadna.

2. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR: A
multiple-precision binary floating-point library with correct rounding. ACM Trans.
Math. Softw. 33(2) (2007) 13 http://www.mpfr.org.

3. Revol, N., Rouillier, F.: MPFI (Multiple Precision Floating-point Interval library).
(2009) Available at http://gforge.inria.fr/projects/mpfi.

4. Moore, R.: Interval analysis. Prentice Hall (1966)
5. Alefeld, G., Herzberger, J.: Introduction to interval analysis. Academic Press

(1983)
6. Chesneaux, J.M.: L’arithmétique stochastique et le logiciel CADNA. Habilitation

à diriger des recherches, Université Pierre et Marie Curie, Paris (1995)
7. Vignes, J.: A stochastic arithmetic for reliable scientific computation. Math.

Comput. Simulation 35 (1993) 233–261
8. Goubault, E., Putot, S., Baufreton, P., Gassino, J.: Static analysis of the accuracy

in control systems: Principles and experiments. In: Proceedings of Formal Methods
in Industrial Critical Systems, LNCS 4916, Springer-Verlag (2007)

9. Vignes, J.: Discrete stochastic arithmetic for validating results of numerical soft-
ware. Num. Algo. 37(1–4) (2004) 377–390

10. Grandlund, T.: GNU MP: The GNU Multiple Precision Arithmetic Library (2010)
http://gmplib.org.

11. Devaney, R.L.: An introduction to chaotic dynamical systems. Second edn.
Addison-Wesley Studies in Nonlinearity. Addison-Wesley Publishing Company Ad-
vanced Book Program, Redwood City, CA (1989)

12. Pichat, M., Vignes, J.: The numerical study of chaotic systems - future and past.
In: 16th IMACS World Congress on Scientific Computation, Applied Mathematics
and Simulation, Lausanne, Switzerland (2000)

13. Yao, L.S.: Computed chaos or numerical errors. Nonlinear Analysis: Modelling
and Control 15(1) (2010) 109–126


