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Motivation (1/2)

FELTOR (Full-F ELectromagnetic code in TORoidal
geometry)
l " ,;‘M;,, ‘_ ﬁ . wé: _ ‘

@ Both a numerical library and a scientific software package
@ 2D and 3D drift- and gyrofluid simulations
@ Discontinuous Galerkin methods on structured grids

@ Platform independent code from laptop CPUs to hybrid
CPU+GPU distributed memory systems
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Motivation (2/2)
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Accuracy and Reproducibility Issue

@ Preconditioned Conjugate Gradient (PCG) to invert elliptic
equation

@ The issue is with computing residual: dot(a,b) and dot(a,b,c)
@ But also axpby and probably spmv
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o Computer Arithmetic
@ ExBLAS: Exact BLAS
e Sparse Matrix-Vector Multiplication
e Performance Results

e Discussion and Conclusions
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0 Computer Arithmetic
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Computer Arithmetic

@ Floating-point arithmetic suffers from rounding errors

@ Floating-point operations (+,x) are commutative but
non-associative

(=14+1)+275 £ -1+ (1+27%) in double precision
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Computer Arithmetic

@ Floating-point arithmetic suffers from rounding errors

@ Floating-point operations (+,x) are commutative but
non-associative

(=14+1)+275 £ -1+ (1+27%) in double precision
@ Consequence: results of floating-point computations
depend on the order of computation

@ Results computed by performance-optimized parallel
floating-point libraries may be often inconsistent: each
run returns a different result

@ Reproducibility — ability to obtain bit-wise identical
and accurate results from run-to-run on the same input
data on the same or different architectures
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Sources of Non-Reproducibility

@ Changing Data Layouts:
e Data partitioning
e Data alignment

@ Changing Hardware Resources
o Number of threads
Fused Multiply-Add support: a - b+ ¢
Intermediate precision (64 bits, 80 bits, 128 bits, etc)
Data path (SSE, AVX, GPU warp, etc)
Number of processors
Network topology
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@ ExBLAS: Exact BLAS
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Accurate/ Reproducible Summation

Existing Solutions

@ Fix the Order of Computations
@ Sequential mode: intolerably costly at large-scale systems

o Fixed reduction trees: substantial communication overhead
Example: Intel Conditional Numerical Reproducibility in MKL
(~ 2z for datum, no accuracy guarantees)

v
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@ Fix the Order of Computations
e Sequential mode: intolerably costly at large-scale systems

o Fixed reduction trees: substantial communication overhead
Example: Intel Conditional Numerical Reproducibility in MKL
(~ 22 for datum, no accuracy guarantees)

@ Eliminate/Reduce the Rounding Errors
e Fixed-point arithmetic: limited range of values
o Fixed FP expansions with Error-Free Transformations (EFT)

Example: double-double or quad-double (Briggs, Bailey, Hida, Li)
(work well on a set of relatively close numbers)

@ ‘“Infinite” precision: reproducible independently from the inputs
Example: Kulisch accumulator (considered inefficient)
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@ Eliminate/Reduce the Rounding Errors
e Fixed-point arithmetic: limited range of values
o Fixed FP expansions with Error-Free Transformations (EFT)

Example: double-double or quad-double (Briggs, Bailey, Hida, Li)
(work well on a set of relatively close numbers)

@ ‘“Infinite” precision: reproducible independently from the inputs
Example: Kulisch accumulator (considered inefficient)

@ Libraries
o ReproBLAS: Reproducible BLAS (Demmel, Nguyen, Ahrens)
For BLAS-1, GEMV, and GEMM on CPUs
o RARE-BLAS: Repr. Accur. Rounded and Eff. BLAS (Chohra,
Langlois, Parello). For BLAS-1 and GEMV on CPUs
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Exact Multi-Level Parallel Reduction

Preliminaries
@ Fixed FP expansions (FPE) with Error-Free Transformations
— Example: double-double or quad-double (Briggs, Bailey, Hida, Li)
(work well on a set of relatively close numbers)

Algorithm 1 (Dekker and Knuth) Algorithm 2 (|a| > |b])

Function[r, s] = twosum(a, b) Function[r, s] = twosum(a, b)
1:r<a+b 1:r<a+b
2.z« 1—a 2.z 1r—a
s (a—(r—z)+(b-2) 3 s+b—2z
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Exact Multi-Level Parallel Reduction

Preliminaries
@ Fixed FP expansions (FPE) with Error-Free Transformations
— Example: double-double or quad-double (Briggs, Bailey, Hida, Li)
(work well on a set of relatively close numbers)

Algorithm 1 (Dekker and Knuth) Algorithm 2 (|a| > |b])

Function[r, s] = twosum(a, b) Function[r, s] = twosum(a, b)
1:r<a+b 1:r<a+b
2.z« 1—a 2.z 1r—a
s (a—(r—z)+(b-2) 3 s+b—2z

@ “Infinite” precision: reproducible independently from the inputs
— Example: Kulisch accumulator (=16 FLOPS)

significand 1

significand 2
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Exact Multi-Level Parallel Reduction

Requirements and Limitations

@ |IEEE 754-2008 full or partial compliance (+, —, *, /, \/)

@ Architecture support and compliance according to IEEE
754-2008 of rounding-to-nearest with breaking ties to even
(correct rounding). This is a default widely used rounding
mode

v

@ Support for underflow numbers

@ Exceptions and exception handling
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Exact Multi-Level Parallel Reduction

@ Parallel algorithm with
— 5-levels

@ Suitable for today’s parallel
architectures

@ Based on FPE with EFT and
Kulisch accumulator

o i o i @ Guarantees “inf” precision

| — bit-wise reproducibility

Level 5 (Rounding)
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Level 1: Filtering
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Level 2 and 3: Scalar Superaccumulator
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Level 4 and 5: Reduction and Rounding
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ExBLAS in brief

ExBLAS Status

@ ExBLAS-1: exsum?, exscal, exdot, exaxpy,
@ ExXBLAS-2: exger, exgemv, extrsv, exsyr,

@ ExBLAS-3: exgemm, extrsm, exsyr2k,

4Routines in blue are already in ExBLAS
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ExBLAS-1 Highlights

@ Some are virtually built upon exsum
— For instance, exdot = twoprod + 2exsum
— twoprod(a,b) (= 3 FLOPs):

1: res < a - b,
2: err < fma(a, b, —res)
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— For instance, exdot = twoprod + 2exsum
— twoprod(a,b) (= 3 FLOPs):

1: res < a - b,
2: err < fma(a, b, —res)

v

exaxpy
Qy=a-r+ty
@ fma(a, z[i],y[i]) — correctly rounded and reproducible

v

exscal
@ z := « - x — correctly rounded and reproducible
@ Within LU: z := 1/a -  — not correctly rounded
@ exinvscal: z := z/a — correctly rounded and reproducible

v
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e Sparse Matrix-Vector Multiplication
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SpMV: CSR format

o vto —
[SE=NIEN]
o wowo

ptr:[[) 2 47 ‘J}
indices:[[) 1

1
data=[1 7 2 8 5 3 9 6 4

The CSR representation of A

Listing 1: SpMV kernel for the CSR sparse matrix format (Bell and Garland 2008)

for (int row = 0; row < num_rows; i++) {
double dot = 0.0;

int row_start = ptr[rowl;
int row_end = ptrlrow+1];
for (int j = row_start; j < row_end; j++)

dot += datalj] * x[indeces[jl];

ylrow] += dot;
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SpMV on GPUs (1/2)

CRS-vector (Bell and Garland 2008)

@ Assigns multiple threads (e.g. 32 threads) to compute a single row of
the matrix A

@ Memory access to the matrix A is coalesced and thus it suites GPUs

CRS-vector (2 threads) coalesced access j —gx +2x,+4x,+9x,
n th=5 th=6
— th=5 > #,=8x,
thread: JEHE th=6 > 7,=2x,
th=1,2 E th=5 th=6
ikl ﬂ th=5 > ts+=dx,
slald  G3li
e & th=5 th=6
2 threads matrix 4 th=586 — y =t +1,
reduction with 2 threads ‘
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SpMV on GPUs (2/2)

CRS-vector (Reguly and Giles 2012)

@ Selecting the suitable number of threads (NT) in proportion to the
average number of non-zeros per row

@ Reduce NT if the number of non-zeros is less than 32

5/0/3|0| Nonzeros=9 > Optimal NT = 2

o @ o 2 Rows = 4 thread: 1 2 3 4 5 6 7 8
ol2lolo] Avgronzercsiron v STATG ATIE]
5/7|3|1| Nonzeros=14 > Optimal NT =4

O SENENER Rows=4 thread: 1 2 3 4 56 7 8 9 -
8/2|0|9| Avgnonzeros /row R R A )
9]3[7]6 =14/4=35 vai: [s]7[3]1)[a]5]2] (8]
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Reproducible and accurate SpMV

exspmv in brief

@ Combine high performing algorithmic versions with exdot

@ Invoke auto-tuning and optimization strategies

Optimization

@ Determining the placement of long accumulators (eg shared
memory)

@ Using read-only data cache to store the vector «

@ Avoiding outermost loop on the number of rows

@ Using shuffle instructions for load/ store
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e Performance Results
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Parallel Reduction
Performance Scaling on NVIDIA Tesla K20c
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Parallel Reduction
Data-Dependent Performance on NVIDIA Tesla K20c
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Dot Product

Performance Scaling on NVIDIA Tesla K20c

DDOT: o := 2Ty = ZN T;iYi
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Feltor: axpby

‘apry: y:i=ar+ 5y‘
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Feltor: dot

dot: o := 2Ty = va TiYi
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e Discussion and Conclusions
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Discussion

s1: Compute the preconditioner A — M ~ LU
s2: Initialize o, 70, 20, do, o, 70

S3: k:=0

s4: while (74 > Tmax)

S5: wy = Ady,

S6: pr = Br/dF wy

S7: Tht1 1= Xk + prdi

S8: Tkl i= Tk — PeWk

590 zpp1 =M e R UL e
S10:0 fg1 i= Tha1Zk1

S11: o = ﬂk+1/ﬂk

S12: dip+1 1= Zk41 + ody

S13: Tkt :=| Tkt |2

S14: k=k+1
s15: endwhile

Iterative PCG solve
(spmv)

(pOT product)

(AxPY)

(AxPY)

Apply preconditioner
(poT product)

(Axpy-like)
(2-norm)

Feltor: Reproducible PCG

@ Missing components: spmv and nrm2
@ But spmv with their specific format
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IEEE 754-2018 (revised)

1985 was a hardware standard — hoping for hardware adoption

2008 was a meta-standard for programming languages — hardware
adopted, hoping for languages

2018 is a bug fix release — catching up with C and searching for other
languages

Updates

@ Augmented operations +, —, * (aka twosum and twoprod)
o Considered but dropped from 754-2008

e Pending hardware implementations encouraged put them back

@ Importance: extended-precision/ reproducible computations
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Conclusions and Future Work

Conclusions

@ Leveraged a long accumulator and EFTs to design reproducible
and correctly-rounded exsum and exdot

@ Delivered reproducible and accurate BLAS-1 routines like axpy,
scal, and invscal

@ Designed high performance algorithmic variants for csrmv
@ Ensured reproducibility and accuracy of csrmv through exdot

@ Provided bit-to-bit reproducible results independently from
e Data permutation, data assignment, partitioning/blocking
e Thread scheduling
e Reduction trees
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Conclusions and Future Work

Conclusions

@ Leveraged a long accumulator and EFTs to design reproducible
and correctly-rounded exsum and exdot

@ Delivered reproducible and accurate BLAS-1 routines like axpy,
scal, and invscal

@ Designed high performance algorithmic variants for csrmv
@ Ensured reproducibility and accuracy of csrmv through exdot

@ Provided bit-to-bit reproducible results independently from
e Data permutation, data assignment, partitioning/blocking
e Thread scheduling
e Reduction trees

@ Optimization and auto-tuning of csrmv

@ Reproducible Jacobi and Conjugate Gradient methods
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Thank you for your attention!

Publications: pdc.kth.se/ riakymch/pubs

Code: https://exblas.lip6.fr
Soon on GitHub
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