Reproducibility of sparse matrix-vector product and

sparse solvers

Roman lakymchuk®, Daichi Mukunoki?, Stef Graillat®, Takeshi Ogita?

LKTH Royal Institute of Technology, Sweden
2Tokyo Woman'’s Christian University, Japan
3Sorbonne University, France
riakymch@kth.se

June 27th-29th, 2018
Zurich, Switzerland

Roman lakymchuk (KTH) June 27th-29th, 2018 1/35

Motivation (1/2)

FELTOR (Full-F ELectromagnetic code in TORoidal
geometry)
l " ,;‘M;,, ‘_ ﬁ . wé: _ ‘

@ Both a numerical library and a scientific software package
@ 2D and 3D drift- and gyrofluid simulations
@ Discontinuous Galerkin methods on structured grids

@ Platform independent code from laptop CPUs to hybrid
CPU+GPU distributed memory systems

Roman lakymchuk (KTH) June 27th-29th, 2018 2/35

Motivation (2/2)

10°
10}
102}
1073}
107}
107}
10}

107}
8,

9

€rel

0 4000 8000 12000

Accuracy and Reproducibility Issue

@ Preconditioned Conjugate Gradient (PCG) to invert elliptic
equation

@ The issue is with computing residual: dot(a,b) and dot(a,b,c)
@ But also axpby and probably spmv

Roman lakymchuk (KTH) June 27th-29th, 2018 3/35

o Computer Arithmetic
@ ExBLAS: Exact BLAS
e Sparse Matrix-Vector Multiplication
e Performance Results

e Discussion and Conclusions

Roman lakymchuk (KTH) June 27th-29th, 2018 4/35

0 Computer Arithmetic

Roman lakymchuk (KTH) June 27th-29th, 2018 5/35

Computer Arithmetic

@ Floating-point arithmetic suffers from rounding errors

@ Floating-point operations (+,x) are commutative but
non-associative

(=14+1)+275 £ -1+ (1+27%) in double precision

Roman lakymchuk (KTH) June 27th-29th, 2018 6/35

Computer Arithmetic

@ Floating-point arithmetic suffers from rounding errors

@ Floating-point operations (+,x) are commutative but
non-associative

279 £ 0 in double precision

Roman lakymchuk (KTH) June 27th-29th, 2018 6/35

Computer Arithmetic

@ Floating-point arithmetic suffers from rounding errors

@ Floating-point operations (+,x) are commutative but
non-associative

(=14+1)+275 £ -1+ (1+27%) in double precision
@ Consequence: results of floating-point computations
depend on the order of computation

@ Results computed by performance-optimized parallel
floating-point libraries may be often inconsistent: each
run returns a different result

@ Reproducibility — ability to obtain bit-wise identical
and accurate results from run-to-run on the same input
data on the same or different architectures

Roman lakymchuk (KTH) June 27th-29th, 2018 6/35

Sources of Non-Reproducibility

@ Changing Data Layouts:
e Data partitioning
e Data alignment

@ Changing Hardware Resources
o Number of threads
Fused Multiply-Add support: a - b+ ¢
Intermediate precision (64 bits, 80 bits, 128 bits, etc)
Data path (SSE, AVX, GPU warp, etc)
Number of processors
Network topology

Roman lakymchuk (KTH) June 27th-29th, 2018 7135

@ ExBLAS: Exact BLAS

Roman lakymchuk (KTH) June 27th-29th, 2018 8/35

Accurate/ Reproducible Summation

Existing Solutions

@ Fix the Order of Computations
@ Sequential mode: intolerably costly at large-scale systems

o Fixed reduction trees: substantial communication overhead
Example: Intel Conditional Numerical Reproducibility in MKL
(~ 2z for datum, no accuracy guarantees)

v
Roman lakymchuk (KTH) June 27th-29th, 2018 9/35

Accurate/ Reproducible Summation

Existing Solutions

@ Fix the Order of Computations
e Sequential mode: intolerably costly at large-scale systems

o Fixed reduction trees: substantial communication overhead
Example: Intel Conditional Numerical Reproducibility in MKL
(~ 22 for datum, no accuracy guarantees)

@ Eliminate/Reduce the Rounding Errors
e Fixed-point arithmetic: limited range of values
o Fixed FP expansions with Error-Free Transformations (EFT)

Example: double-double or quad-double (Briggs, Bailey, Hida, Li)
(work well on a set of relatively close numbers)

@ ‘“Infinite” precision: reproducible independently from the inputs
Example: Kulisch accumulator (considered inefficient)

Roman lakymchuk (KTH) June 27th-29th, 2018 9/35

Accurate/ Reproducible Summation

Existing Solutions

@ Fix the Order of Computations
e Sequential mode: intolerably costly at large-scale systems
o Fixed reduction trees: substantial communication overhead
Example: Intel Conditional Numerical Reproducibility in MKL
(~ 22 for datum, no accuracy guarantees)

@ Eliminate/Reduce the Rounding Errors
e Fixed-point arithmetic: limited range of values
o Fixed FP expansions with Error-Free Transformations (EFT)

Example: double-double or quad-double (Briggs, Bailey, Hida, Li)
(work well on a set of relatively close numbers)

@ ‘“Infinite” precision: reproducible independently from the inputs
Example: Kulisch accumulator (considered inefficient)

@ Libraries
o ReproBLAS: Reproducible BLAS (Demmel, Nguyen, Ahrens)
For BLAS-1, GEMV, and GEMM on CPUs
o RARE-BLAS: Repr. Accur. Rounded and Eff. BLAS (Chohra,
Langlois, Parello). For BLAS-1 and GEMV on CPUs

Roman lakymchuk (KTH) June 27th-29th, 2018 9/35

Exact Multi-Level Parallel Reduction

Preliminaries
@ Fixed FP expansions (FPE) with Error-Free Transformations
— Example: double-double or quad-double (Briggs, Bailey, Hida, Li)
(work well on a set of relatively close numbers)

Algorithm 1 (Dekker and Knuth) Algorithm 2 (|a| > |b])

Function[r, s] = twosum(a, b) Function[r, s] = twosum(a, b)
1:r<a+b 1:r<a+b
2.z« 1—a 2.z 1r—a
s (a—(r—z)+(b-2) 3 s+b—2z

Roman lakymchuk (KTH) June 27th-29th, 2018 10/35

Exact Multi-Level Parallel Reduction

Preliminaries
@ Fixed FP expansions (FPE) with Error-Free Transformations
— Example: double-double or quad-double (Briggs, Bailey, Hida, Li)
(work well on a set of relatively close numbers)

Algorithm 1 (Dekker and Knuth) Algorithm 2 (|a| > |b])

Function[r, s] = twosum(a, b) Function[r, s] = twosum(a, b)
1:r<a+b 1:r<a+b
2.z« 1—a 2.z 1r—a
s (a—(r—z)+(b-2) 3 s+b—2z

@ “Infinite” precision: reproducible independently from the inputs
— Example: Kulisch accumulator (=16 FLOPS)

significand 1

significand 2

A

LI []
0 0

Zemax . 2el’T‘III“I

integral part fractional part

Roman lakymchuk (KTH) June 27th-29th, 2018 10/35

Exact Multi-Level Parallel Reduction

Requirements and Limitations

@ |IEEE 754-2008 full or partial compliance (+, —, *, /, \/)

@ Architecture support and compliance according to IEEE
754-2008 of rounding-to-nearest with breaking ties to even
(correct rounding). This is a default widely used rounding
mode

v

@ Support for underflow numbers

@ Exceptions and exception handling

Roman lakymchuk (KTH) June 27th-29th, 2018 11/35

Exact Multi-Level Parallel Reduction

@ Parallel algorithm with
— 5-levels

@ Suitable for today’s parallel
architectures

@ Based on FPE with EFT and
Kulisch accumulator

o i o i @ Guarantees “inf” precision

| — bit-wise reproducibility

Level 5 (Rounding)

Roman lakymchuk (KTH) June 27th-29th, 2018 12/35

Level 1: Filtering

menmees - 1 O - OO0 - O oo - 0O

Thread 1 Thread 2

Thread n

#P Expar) i PP Expan) i FP Expanfion
i tregisteq

(register} 1 (register,
Gaa-SEaE
Input numbers D D D D D D

Underflow? Underflow?
Thread 2
...................................... '

Private
SuperAccumulator

o H e R
T
[— N

FP Expanpion
register,
(registerg,

]

(register{'

'
'
H
+ FP Expanpion
'
'
'
'

Level 1 (Filtering)
Level 2 (Private SuperAccumulation) — e — - — - —— et - e - mme] - e e e b e e

Level 3

Level 5 (Rounding)

lakymchuk (KTH)

13/35

Level 2 and 3: Scalar Superaccumulator

A 2 A 2
wanmees - 1 0+ OO0 = O O | Underflow? | | Underflow? |
~—
Y rhreay Y messz |
; il
=
{regiren gy E Private
[d [d] SuperAccumulator
Level 1 (Fittering)

Underflow? Underflow? | | | | | |

S . | I I I | I l___)
0O o |J (-
s =
1 1 D [
i R | - L] | L[]
o s o | [| [|

Level 2 (Private SuperAccumulation)

- Level 2 (Private SuperAccumulation)

Level 3 (Scalar

Level 4 (Parallel Reduction)

Level 3 (Scalar SuperAccumulation) g

Roman lakymchuk (KTH) June 27th-29th, 2018 14/35

Level 4 and 5: Reduction and Rounding

munmees (1 00 - OO0 - O oo - 0O

[ncetens

|

Level 3 (Scalar SuperAccumulation) #

Level 2 (Priva

Level 5 (Rounding)

Roman lakymchuk (KTH) June 27th-29th, 2018 15/35

ExBLAS in brief

ExBLAS Status

@ ExBLAS-1: exsum?, exscal, exdot, exaxpy,
@ ExXBLAS-2: exger, exgemv, extrsv, exsyr,

@ ExBLAS-3: exgemm, extrsm, exsyr2k,

4Routines in blue are already in ExBLAS

Roman lakymchuk (KTH) June 27th-29th, 2018 16/35

ExBLAS-1 Highlights

@ Some are virtually built upon exsum
— For instance, exdot = twoprod + 2exsum
— twoprod(a,b) (= 3 FLOPs):

1: res < a - b,
2: err < fma(a, b, —res)

Roman lakymchuk (KTH) June 27th-29th, 2018 17/35

ExBLAS-1 Highlights

@ Some are virtually built upon exsum
— For instance, exdot = twoprod + 2exsum
— twoprod(a,b) (= 3 FLOPs):

1: res < a - b,
2: err < fma(a, b, —res)

v

exaxpy
Qy=a-r+ty
@ fma(a, z[i],y[i]) — correctly rounded and reproducible

v

exscal
@ z := « - x — correctly rounded and reproducible
@ Within LU: z := 1/a - — not correctly rounded
@ exinvscal: z := z/a — correctly rounded and reproducible

v

Roman lakymchuk (KTH) June 27th-29th, 2018 17/35

e Sparse Matrix-Vector Multiplication

Roman lakymchuk (KTH) June 27th-29th, 2018 18/35

SpMV: CSR format

o vto —
[SE=NIEN]
o wowo

ptr:[[) 2 47 ‘J}
indices:[[) 1

1
data=[1 7 2 8 5 3 9 6 4

The CSR representation of A

Listing 1: SpMV kernel for the CSR sparse matrix format (Bell and Garland 2008)

for (int row = 0; row < num_rows; i++) {
double dot = 0.0;

int row_start = ptr[rowl;
int row_end = ptrlrow+1];
for (int j = row_start; j < row_end; j++)

dot += datalj] * x[indeces[jl];

ylrow] += dot;

Roman lakymchuk (KTH) June 27th-29th, 2018 19/35

SpMV on GPUs (1/2)

CRS-vector (Bell and Garland 2008)

@ Assigns multiple threads (e.g. 32 threads) to compute a single row of
the matrix A

@ Memory access to the matrix A is coalesced and thus it suites GPUs

CRS-vector (2 threads) coalesced access j —gx +2x,+4x,+9x,
n th=5 th=6
— th=5 > #,=8x,
thread: JEHE th=6 > 7,=2x,
th=1,2 E th=5 th=6
ikl ﬂ th=5 > ts+=dx,
slald G3li
e & th=5 th=6
2 threads matrix 4 th=586 — y =t +1,
reduction with 2 threads ‘

Roman lakymchuk (KTH) June 27th-29th, 2018 20/35

SpMV on GPUs (2/2)

CRS-vector (Reguly and Giles 2012)

@ Selecting the suitable number of threads (NT) in proportion to the
average number of non-zeros per row

@ Reduce NT if the number of non-zeros is less than 32

5/0/3|0| Nonzeros=9 > Optimal NT = 2

o @ o 2 Rows = 4 thread: 1 2 3 4 5 6 7 8
ol2lolo] Avgronzercsiron v STATG ATIE]
5/7|3|1| Nonzeros=14 > Optimal NT =4

O SENENER Rows=4 thread: 1 2 3 4 56 7 8 9 -
8/2|0|9| Avgnonzeros /row R R A)
9]3[7]6 =14/4=35 vai: [s]7[3]1)[a]5]2] (8]

Roman lakymchuk (KTH) June 27th-29th, 2018 21/35

Reproducible and accurate SpMV

exspmv in brief

@ Combine high performing algorithmic versions with exdot

@ Invoke auto-tuning and optimization strategies

Optimization

@ Determining the placement of long accumulators (eg shared
memory)

@ Using read-only data cache to store the vector «

@ Avoiding outermost loop on the number of rows

@ Using shuffle instructions for load/ store

Roman lakymchuk (KTH) June 27th-29th, 2018 22/35

e Performance Results

Roman lakymchuk (KTH) June 27th-29th, 2018 23/35

Parallel Reduction
Performance Scaling on NVIDIA Tesla K20c

18 : ‘
Parallel FP Sum -
16 1 Demmel fast -~~~ |
Superacc —
14 FPE2 + Superacc - : ,
12 b FPE3 + Superacc ‘ |
FPE4 + Superacc
2 10 + FPES8 + Superacc - I/ B |
§ FPESEE + Superacc -
@) 8 r T |
6 I -
4 I -
2 I -
1000 10000 100000 1e+06 1le+07 1e+08 1e+09

Array size

Roman lakymchuk (KTH) June 27th-29th, 2018 24/35

Parallel Reduction
Data-Dependent Performance on NVIDIA Tesla K20c

18
Parallel FP Sum -
16 === Demmel fast
Superacc —
14 : FPE2 + Superacc -~ -]
12 F FPE3 + Superacc
1 FPE4 + Superacc
% 10 ", FPE8 + SuperaCC |
g o FPESEE + superaCC
&) 8 : |
6
4
2 I]
0

leq 20 1 €+40 1 €+60 1 €+80 leq]001 €+J 201 €+] 40

Dynamic range

Roman lakymchuk (KTH) June 27th-29th, 2018 25/35

Dot Product

Performance Scaling on NVIDIA Tesla K20c

DDOT: o := 2Ty = ZN T;iYi

K2

20 ‘ ;
Parallel DDOT
18 Superaccumulator — 1
16 - Expansion2 -~ ' |
Expansion 3 P
14 Expansion 4 g
12 Esspauision & coo 7 | o Based on exsum and

Expansion 4 early-exit -- -~
10 | Expansion 6 early-exit -
| Expansion 8 early-exit -

twoprod

Gacc/s

8 {1 @ twoprod(a,b)

6 ~ 1:r<axb

4t 1 2: s < fma(a,b,—r)
2 r]

0 s . . ‘

1000 10000 100000 1le+06 1e+07 1e+08 1e+09

Array size

Roman lakymchuk (KTH) June 27th-29th, 2018 26/35

c
o
o
S
o
p
(@)}
£
£
-
O
T
]
o
<
jo)
I

SpMV

Performance of CSRMV on Tesla P100-PCIE-16GB (CUDA 9.0)

(Awiso@se|gnu “s'A) peaylanQ

Yo} o w o

~N N — ~ Te) o
Zlewlayy e W34
Liyos|queg

L4

£ o
Llewssyy ae N34
aJayds saqnog
€26 elw3

—— 00

L~ mjipne
OZH
ceaooqnQ
= 7 NDIND
= OCHOLSY0LED
= INOUID €D
—_———— 9/H/899
| 8|edsoal4
= OHSVED
—— C/HIVSVI7ED
= 180)[q 829/2 Az
ZYHBLSV6LED
— $001 OISV
= $02€ OISV
— MUBIY 6L0¥S A2
== ZIHESVERD
—: Blj9l ¥868¢ AE
— e yCPU
= pAsyshkgeyd
. diyonnd

matrix (from Florida Matrix Collection)

overhead(vs.mublasDcsrmv)

mublasEXDcsrmv

B cublasDesrmv ™= mublasDcsrmv

27/35

June 27th-29th, 2018

Roman lakymchuk (KTH)

Feltor: axpby

‘apry: y:i=ar+ 5y‘

104 . . :

bandwidth [GB/s] / # of nodes

102

@)

%e2 6 ®@e0 © @eo 0 @ o

10t .

@ i5 ® knl

@ gtx1060 @® ploo

@ skl @ V100
100 T o] i

10! 10° 10t 107 103

array size [MB] / # of nodes

Roman lakymchuk (KTH) June 27th-29th, 2018 28/35

Feltor: dot

dot: o := 2Ty = va TiYi

10* . . .
O i5 @ knl
@ gtx1060 @ pl0o
@ skl @ v100

103 .

102

10t |

bandwidth [GB/s] / # of nodes

100 L L L
1071 10° 10! 102 103

array size [MB] / # of nodes

Roman lakymchuk (KTH) June 27th-29th, 2018 29/35

néive #1‘

vomt
IIIIIIIIIII
(L.
-
-
.,

.....
—

IIIII
.......
o

pd
Niml
llllllllllllllllll
~-
.
~i—
o -
‘.‘.‘—
EN B
O ammmT
[l \' -~
s RIL I EN.
5 G,
fud ?
- -
=
1 o
1 Ve
S ——
-
- -~
'.'.l
‘_‘_
-
-
o~ S
-
~
() S
3 <
> .’.l
‘~
= -~ .
C *
-
_‘.‘
‘_‘_
-

60 80 100 120

20 40

0.15

>
(&)
©
S
>
3
Q
<<
ye
=
©
>
=
o
o
)
S
o
.
o)
@
o
&
o
=
@
i

0.10
0.05
0.00;
—0.05
—0.10

|t=12000

0

-0.1

30/35

June 27th-29th, 2018

Roman lakymchuk (KTH)

e Discussion and Conclusions

Roman lakymchuk (KTH) June 27th-29th, 2018 31/35

Discussion

s1: Compute the preconditioner A — M ~ LU
s2: Initialize o, 70, 20, do, o, 70

S3: k:=0

s4: while (74 > Tmax)

S5: wy = Ady,

S6: pr = Br/dF wy

S7: Tht1 1= Xk + prdi

S8: Tkl i= Tk — PeWk

590 zpp1 =M e R UL e
S10:0 fg1 i= Tha1Zk1

S11: o = ﬂk+1/ﬂk

S12: dip+1 1= Zk41 + ody

S13: Tkt :=| Tkt |2

S14: k=k+1
s15: endwhile

Iterative PCG solve
(spmv)

(pOT product)

(AxPY)

(AxPY)

Apply preconditioner
(poT product)

(Axpy-like)
(2-norm)

Feltor: Reproducible PCG

@ Missing components: spmv and nrm2
@ But spmv with their specific format

Roman lakymchuk (KTH)

June 27th-29th, 2018

32/35

IEEE 754-2018 (revised)

1985 was a hardware standard — hoping for hardware adoption

2008 was a meta-standard for programming languages — hardware
adopted, hoping for languages

2018 is a bug fix release — catching up with C and searching for other
languages

Updates

@ Augmented operations +, —, * (aka twosum and twoprod)
o Considered but dropped from 754-2008

e Pending hardware implementations encouraged put them back

@ Importance: extended-precision/ reproducible computations

Roman lakymchuk (KTH) June 27th-29th, 2018 33/35

Conclusions and Future Work

Conclusions

@ Leveraged a long accumulator and EFTs to design reproducible
and correctly-rounded exsum and exdot

@ Delivered reproducible and accurate BLAS-1 routines like axpy,
scal, and invscal

@ Designed high performance algorithmic variants for csrmv
@ Ensured reproducibility and accuracy of csrmv through exdot

@ Provided bit-to-bit reproducible results independently from
e Data permutation, data assignment, partitioning/blocking
e Thread scheduling
e Reduction trees

Roman lakymchuk (KTH) June 27th-29th, 2018

34/35

Conclusions and Future Work

Conclusions

@ Leveraged a long accumulator and EFTs to design reproducible
and correctly-rounded exsum and exdot

@ Delivered reproducible and accurate BLAS-1 routines like axpy,
scal, and invscal

@ Designed high performance algorithmic variants for csrmv
@ Ensured reproducibility and accuracy of csrmv through exdot

@ Provided bit-to-bit reproducible results independently from
e Data permutation, data assignment, partitioning/blocking
e Thread scheduling
e Reduction trees

@ Optimization and auto-tuning of csrmv

@ Reproducible Jacobi and Conjugate Gradient methods

Roman lakymchuk (KTH) June 27th-29th, 2018 34/35

Thank you for your attention!

Publications: pdc.kth.se/ riakymch/pubs

Code: https://exblas.lip6.fr
Soon on GitHub

Roman lakymchuk (KTH) June 27th-29th, 2018 35/35

pdc.kth.se/~riakymch/pubs
https://exblas.lip6.fr

	Computer Arithmetic
	ExBLAS: Exact BLAS
	Sparse Matrix-Vector Multiplication
	Performance Results
	Discussion and Conclusions

