
Reproducibility of sparse matrix-vector product and
sparse solvers

Roman Iakymchuk1, Daichi Mukunoki2, Stef Graillat3, Takeshi Ogita2

1KTH Royal Institute of Technology, Sweden
2Tokyo Woman’s Christian University, Japan

3Sorbonne University, France
riakymch@kth.se

June 27th-29th, 2018
Zürich, Switzerland

Roman Iakymchuk (KTH) June 27th-29th, 2018 1 / 35

Motivation (1/2)

FELTOR (Full-F ELectromagnetic code in TORoidal
geometry)

Both a numerical library and a scientific software package

2D and 3D drift- and gyrofluid simulations

Discontinuous Galerkin methods on structured grids

Platform independent code from laptop CPUs to hybrid
CPU+GPU distributed memory systems

Roman Iakymchuk (KTH) June 27th-29th, 2018 2 / 35

Motivation (2/2)

0 4000 8000 12000
t

10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

ε r
el

Accuracy and Reproducibility Issue
Preconditioned Conjugate Gradient (PCG) to invert elliptic
equation
The issue is with computing residual: dot(a,b) and dot(a,b,c)
But also axpby and probably spmv

Roman Iakymchuk (KTH) June 27th-29th, 2018 3 / 35

Outline

1 Computer Arithmetic

2 ExBLAS: Exact BLAS

3 Sparse Matrix-Vector Multiplication

4 Performance Results

5 Discussion and Conclusions

Roman Iakymchuk (KTH) June 27th-29th, 2018 4 / 35

Outline

1 Computer Arithmetic

2 ExBLAS: Exact BLAS

3 Sparse Matrix-Vector Multiplication

4 Performance Results

5 Discussion and Conclusions

Roman Iakymchuk (KTH) June 27th-29th, 2018 5 / 35

Computer Arithmetic

Problems
Floating-point arithmetic suffers from rounding errors

Floating-point operations (+,×) are commutative but
non-associative

(−1 + 1) + 2−53 6= −1 + (1 + 2−53) in double precision

Consequence: results of floating-point computations
depend on the order of computation

Results computed by performance-optimized parallel
floating-point libraries may be often inconsistent: each
run returns a different result

Reproducibility – ability to obtain bit-wise identical
and accurate results from run-to-run on the same input
data on the same or different architectures

Roman Iakymchuk (KTH) June 27th-29th, 2018 6 / 35

Computer Arithmetic

Problems
Floating-point arithmetic suffers from rounding errors

Floating-point operations (+,×) are commutative but
non-associative

2−53 6= 0 in double precision

Consequence: results of floating-point computations
depend on the order of computation

Results computed by performance-optimized parallel
floating-point libraries may be often inconsistent: each
run returns a different result

Reproducibility – ability to obtain bit-wise identical
and accurate results from run-to-run on the same input
data on the same or different architectures

Roman Iakymchuk (KTH) June 27th-29th, 2018 6 / 35

Computer Arithmetic

Problems
Floating-point arithmetic suffers from rounding errors

Floating-point operations (+,×) are commutative but
non-associative

(−1 + 1) + 2−53 6= −1 + (1 + 2−53) in double precision

Consequence: results of floating-point computations
depend on the order of computation

Results computed by performance-optimized parallel
floating-point libraries may be often inconsistent: each
run returns a different result

Reproducibility – ability to obtain bit-wise identical
and accurate results from run-to-run on the same input
data on the same or different architectures

Roman Iakymchuk (KTH) June 27th-29th, 2018 6 / 35

Sources of Non-Reproducibility

Changing Data Layouts:
Data partitioning
Data alignment

Changing Hardware Resources
Number of threads
Fused Multiply-Add support: a · b+ c

Intermediate precision (64 bits, 80 bits, 128 bits, etc)
Data path (SSE, AVX, GPU warp, etc)
Number of processors
Network topology

Roman Iakymchuk (KTH) June 27th-29th, 2018 7 / 35

Outline

1 Computer Arithmetic

2 ExBLAS: Exact BLAS

3 Sparse Matrix-Vector Multiplication

4 Performance Results

5 Discussion and Conclusions

Roman Iakymchuk (KTH) June 27th-29th, 2018 8 / 35

Accurate/ Reproducible Summation
Existing Solutions

Fix the Order of Computations
Sequential mode: intolerably costly at large-scale systems
Fixed reduction trees: substantial communication overhead
Example: Intel Conditional Numerical Reproducibility in MKL
(∼ 2x for datum, no accuracy guarantees)

Eliminate/Reduce the Rounding Errors
Fixed-point arithmetic: limited range of values

Fixed FP expansions with Error-Free Transformations (EFT)
Example: double-double or quad-double (Briggs, Bailey, Hida, Li)
(work well on a set of relatively close numbers)

“Infinite” precision: reproducible independently from the inputs
Example: Kulisch accumulator (considered inefficient)

Libraries
ReproBLAS: Reproducible BLAS (Demmel, Nguyen, Ahrens)
For BLAS-1, GEMV, and GEMM on CPUs
RARE-BLAS: Repr. Accur. Rounded and Eff. BLAS (Chohra,
Langlois, Parello). For BLAS-1 and GEMV on CPUs

Roman Iakymchuk (KTH) June 27th-29th, 2018 9 / 35

Accurate/ Reproducible Summation
Existing Solutions

Fix the Order of Computations
Sequential mode: intolerably costly at large-scale systems
Fixed reduction trees: substantial communication overhead
Example: Intel Conditional Numerical Reproducibility in MKL
(∼ 2x for datum, no accuracy guarantees)

Eliminate/Reduce the Rounding Errors
Fixed-point arithmetic: limited range of values

Fixed FP expansions with Error-Free Transformations (EFT)
Example: double-double or quad-double (Briggs, Bailey, Hida, Li)
(work well on a set of relatively close numbers)

“Infinite” precision: reproducible independently from the inputs
Example: Kulisch accumulator (considered inefficient)

Libraries
ReproBLAS: Reproducible BLAS (Demmel, Nguyen, Ahrens)
For BLAS-1, GEMV, and GEMM on CPUs
RARE-BLAS: Repr. Accur. Rounded and Eff. BLAS (Chohra,
Langlois, Parello). For BLAS-1 and GEMV on CPUs

Roman Iakymchuk (KTH) June 27th-29th, 2018 9 / 35

Accurate/ Reproducible Summation
Existing Solutions

Fix the Order of Computations
Sequential mode: intolerably costly at large-scale systems
Fixed reduction trees: substantial communication overhead
Example: Intel Conditional Numerical Reproducibility in MKL
(∼ 2x for datum, no accuracy guarantees)

Eliminate/Reduce the Rounding Errors
Fixed-point arithmetic: limited range of values

Fixed FP expansions with Error-Free Transformations (EFT)
Example: double-double or quad-double (Briggs, Bailey, Hida, Li)
(work well on a set of relatively close numbers)

“Infinite” precision: reproducible independently from the inputs
Example: Kulisch accumulator (considered inefficient)

Libraries
ReproBLAS: Reproducible BLAS (Demmel, Nguyen, Ahrens)
For BLAS-1, GEMV, and GEMM on CPUs
RARE-BLAS: Repr. Accur. Rounded and Eff. BLAS (Chohra,
Langlois, Parello). For BLAS-1 and GEMV on CPUs

Roman Iakymchuk (KTH) June 27th-29th, 2018 9 / 35

Exact Multi-Level Parallel Reduction
Preliminaries

Fixed FP expansions (FPE) with Error-Free Transformations
→ Example: double-double or quad-double (Briggs, Bailey, Hida, Li)

(work well on a set of relatively close numbers)

Algorithm 1 (Dekker and Knuth)
Function[r, s] = twosum(a, b)

1: r ← a+ b
2: z ← r − a
3: s← (a− (r − z)) + (b− z)

Algorithm 2 (|a| ≥ |b|)
Function[r, s] = twosum(a, b)

1: r ← a+ b
2: z ← r − a
3: s← b− z

“Infinite” precision: reproducible independently from the inputs
→ Example: Kulisch accumulator (=16 FLOPs)

Roman Iakymchuk (KTH) June 27th-29th, 2018 10 / 35

Exact Multi-Level Parallel Reduction
Preliminaries

Fixed FP expansions (FPE) with Error-Free Transformations
→ Example: double-double or quad-double (Briggs, Bailey, Hida, Li)

(work well on a set of relatively close numbers)

Algorithm 1 (Dekker and Knuth)
Function[r, s] = twosum(a, b)

1: r ← a+ b
2: z ← r − a
3: s← (a− (r − z)) + (b− z)

Algorithm 2 (|a| ≥ |b|)
Function[r, s] = twosum(a, b)

1: r ← a+ b
2: z ← r − a
3: s← b− z

“Infinite” precision: reproducible independently from the inputs
→ Example: Kulisch accumulator (=16 FLOPs)

Roman Iakymchuk (KTH) June 27th-29th, 2018 10 / 35

Exact Multi-Level Parallel Reduction
Requirements and Limitations

Requirements
IEEE 754-2008 full or partial compliance (+,−, ∗, /,√)

Architecture support and compliance according to IEEE
754-2008 of rounding-to-nearest with breaking ties to even
(correct rounding). This is a default widely used rounding
mode

Limitations
Support for underflow numbers

Exceptions and exception handling

Roman Iakymchuk (KTH) June 27th-29th, 2018 11 / 35

Exact Multi-Level Parallel Reduction

Parallel algorithm with
5-levels

Suitable for today’s parallel
architectures

Based on FPE with EFT and
Kulisch accumulator

Guarantees “inf” precision
→ bit-wise reproducibility

Roman Iakymchuk (KTH) June 27th-29th, 2018 12 / 35

Level 1: Filtering

Roman Iakymchuk (KTH) June 27th-29th, 2018 13 / 35

Level 2 and 3: Scalar Superaccumulator

Roman Iakymchuk (KTH) June 27th-29th, 2018 14 / 35

Level 4 and 5: Reduction and Rounding

Roman Iakymchuk (KTH) June 27th-29th, 2018 15 / 35

ExBLAS in brief

ExBLAS Status
ExBLAS-1: exsuma, exscal, exdot, exaxpy, ...

ExBLAS-2: exger, exgemv, extrsv, exsyr, ...

ExBLAS-3: exgemm, extrsm, exsyr2k, ...

aRoutines in blue are already in ExBLAS

Roman Iakymchuk (KTH) June 27th-29th, 2018 16 / 35

ExBLAS-1 Highlights

BLAS-1 routines
Some are virtually built upon exsum

→ For instance, exdot = twoprod + 2exsum
→ twoprod(a,b) (= 3 FLOPs):

1: res← a · b,
2: err ← fma(a, b,−res)

exaxpy
y := α · x+ y

fma(α, x[i], y[i])→ correctly rounded and reproducible

exscal
x := α · x→ correctly rounded and reproducible
Within LU: x := 1/α · x→ not correctly rounded
exinvscal: x := x/α→ correctly rounded and reproducible

Roman Iakymchuk (KTH) June 27th-29th, 2018 17 / 35

ExBLAS-1 Highlights

BLAS-1 routines
Some are virtually built upon exsum

→ For instance, exdot = twoprod + 2exsum
→ twoprod(a,b) (= 3 FLOPs):

1: res← a · b,
2: err ← fma(a, b,−res)

exaxpy
y := α · x+ y

fma(α, x[i], y[i])→ correctly rounded and reproducible

exscal
x := α · x→ correctly rounded and reproducible
Within LU: x := 1/α · x→ not correctly rounded
exinvscal: x := x/α→ correctly rounded and reproducible

Roman Iakymchuk (KTH) June 27th-29th, 2018 17 / 35

Outline

1 Computer Arithmetic

2 ExBLAS: Exact BLAS

3 Sparse Matrix-Vector Multiplication

4 Performance Results

5 Discussion and Conclusions

Roman Iakymchuk (KTH) June 27th-29th, 2018 18 / 35

SpMV: CSR format

The CSR representation of A

Listing 1: SpMV kernel for the CSR sparse matrix format (Bell and Garland 2008)

for (int row = 0; row < num_rows; i++) {
double dot = 0.0;

int row_start = ptr[row];
int row_end = ptr[row +1];

for (int j = row_start; j < row_end; j++)
dot += data[j] * x[indeces[j]];

y[row] += dot;
}

Roman Iakymchuk (KTH) June 27th-29th, 2018 19 / 35

SpMV on GPUs (1/2)

CRS-vector (Bell and Garland 2008)
Assigns multiple threads (e.g. 32 threads) to compute a single row of
the matrix A
Memory access to the matrix A is coalesced and thus it suites GPUs

Roman Iakymchuk (KTH) June 27th-29th, 2018 20 / 35

SpMV on GPUs (2/2)

CRS-vector (Reguly and Giles 2012)
Selecting the suitable number of threads (NT) in proportion to the
average number of non-zeros per row
Reduce NT if the number of non-zeros is less than 32

Roman Iakymchuk (KTH) June 27th-29th, 2018 21 / 35

Reproducible and accurate SpMV

exspmv in brief
Combine high performing algorithmic versions with exdot

Invoke auto-tuning and optimization strategies

Optimization
Determining the placement of long accumulators (eg shared
memory)

Using read-only data cache to store the vector x

Avoiding outermost loop on the number of rows

Using shuffle instructions for load/ store

Roman Iakymchuk (KTH) June 27th-29th, 2018 22 / 35

Outline

1 Computer Arithmetic

2 ExBLAS: Exact BLAS

3 Sparse Matrix-Vector Multiplication

4 Performance Results

5 Discussion and Conclusions

Roman Iakymchuk (KTH) June 27th-29th, 2018 23 / 35

Parallel Reduction
Performance Scaling on NVIDIA Tesla K20c

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

G
ac

c/
s

Array size

Parallel FP Sum
Demmel fast

Superacc
FPE2 + Superacc
FPE3 + Superacc
FPE4 + Superacc
FPE8 + Superacc

FPE8EE + Superacc

Roman Iakymchuk (KTH) June 27th-29th, 2018 24 / 35

Parallel Reduction
Data-Dependent Performance on NVIDIA Tesla K20c

n = 67e06

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 1e+20
 1e+40

 1e+60
 1e+80

 1e+100
 1e+120

 1e+140

G
ac

c/
s

Dynamic range

Parallel FP Sum
Demmel fast

Superacc
FPE2 + Superacc
FPE3 + Superacc
FPE4 + Superacc
FPE8 + Superacc

FPE8EE + Superacc

Roman Iakymchuk (KTH) June 27th-29th, 2018 25 / 35

Dot Product
Performance Scaling on NVIDIA Tesla K20c

DDOT: α := xT y =
∑N

i xiyi

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

G
ac

c/
s

Array size

Parallel DDOT
Superaccumulator

Expansion 2
Expansion 3
Expansion 4
Expansion 8

Expansion 4 early-exit
Expansion 6 early-exit
Expansion 8 early-exit

Based on exsum and
twoprod

twoprod(a, b)
1: r ← a ∗ b
2: s← fma(a, b,−r)

Roman Iakymchuk (KTH) June 27th-29th, 2018 26 / 35

SpMV: High performing version

Roman Iakymchuk (KTH) June 27th-29th, 2018 27 / 35

Feltor: axpby

axpby: y := αx+ βy

10-1 100 101 102 103

array size [MB] / # of nodes

100

101

102

103

104

b
a
n
d
w

id
th

 [
G

B
/s

]
/

#
 o

f
n
o
d
e
s

i5

gtx1060

skl

knl

p100

v100

Roman Iakymchuk (KTH) June 27th-29th, 2018 28 / 35

Feltor: dot
dot: α := xT y =

∑N
i xiyi

10-1 100 101 102 103

array size [MB] / # of nodes

100

101

102

103

104

b
a
n
d
w

id
th

 [
G

B
/s

]
/

#
 o

f
n
o
d
e
s

i5

gtx1060

skl

knl

p100

v100

Roman Iakymchuk (KTH) June 27th-29th, 2018 29 / 35

Feltor: Reproducibility and Accuracy

0 20 40 60 80 100 120
x

0.15

0.10

0.05

0.00

0.05

0.10

0.15
〈 u y〉

t= 12000

naive #1
naive #2

repro #1
repro #2

Roman Iakymchuk (KTH) June 27th-29th, 2018 30 / 35

Outline

1 Computer Arithmetic

2 ExBLAS: Exact BLAS

3 Sparse Matrix-Vector Multiplication

4 Performance Results

5 Discussion and Conclusions

Roman Iakymchuk (KTH) June 27th-29th, 2018 31 / 35

Discussion

Feltor: Reproducible PCG
Missing components: spmv and nrm2

But spmv with their specific format

Roman Iakymchuk (KTH) June 27th-29th, 2018 32 / 35

IEEE 754-2018 (revised)

History
1985 was a hardware standard – hoping for hardware adoption

2008 was a meta-standard for programming languages – hardware
adopted, hoping for languages

2018 is a bug fix release – catching up with C and searching for other
languages

Updates
Augmented operations +,−, ∗ (aka twosum and twoprod)

Considered but dropped from 754-2008

Pending hardware implementations encouraged put them back

Importance: extended-precision/ reproducible computations

Roman Iakymchuk (KTH) June 27th-29th, 2018 33 / 35

Conclusions and Future Work
Conclusions

Leveraged a long accumulator and EFTs to design reproducible
and correctly-rounded exsum and exdot

Delivered reproducible and accurate BLAS-1 routines like axpy,
scal, and invscal

Designed high performance algorithmic variants for csrmv
Ensured reproducibility and accuracy of csrmv through exdot

Provided bit-to-bit reproducible results independently from
Data permutation, data assignment, partitioning/blocking
Thread scheduling
Reduction trees

TODO List
Optimization and auto-tuning of csrmv

Reproducible Jacobi and Conjugate Gradient methods

Roman Iakymchuk (KTH) June 27th-29th, 2018 34 / 35

Conclusions and Future Work
Conclusions

Leveraged a long accumulator and EFTs to design reproducible
and correctly-rounded exsum and exdot

Delivered reproducible and accurate BLAS-1 routines like axpy,
scal, and invscal

Designed high performance algorithmic variants for csrmv
Ensured reproducibility and accuracy of csrmv through exdot

Provided bit-to-bit reproducible results independently from
Data permutation, data assignment, partitioning/blocking
Thread scheduling
Reduction trees

TODO List
Optimization and auto-tuning of csrmv

Reproducible Jacobi and Conjugate Gradient methods

Roman Iakymchuk (KTH) June 27th-29th, 2018 34 / 35

Thank you for your attention!

Publications: pdc.kth.se/~riakymch/pubs

Code: https://exblas.lip6.fr

Soon on GitHub

Roman Iakymchuk (KTH) June 27th-29th, 2018 35 / 35

pdc.kth.se/~riakymch/pubs
https://exblas.lip6.fr

	Computer Arithmetic
	ExBLAS: Exact BLAS
	Sparse Matrix-Vector Multiplication
	Performance Results
	Discussion and Conclusions

