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Motivation (1/2)

FELTOR (Full-F ELectromagnetic code in TORoidal
geometry)

Both a numerical library and a scientific software package

2D and 3D drift- and gyrofluid simulations

Discontinuous Galerkin methods on structured grids

Platform independent code from laptop CPUs to hybrid
CPU+GPU distributed memory systems
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Motivation (2/2)
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Accuracy and Reproducibility Issue
Preconditioned Conjugate Gradient (PCG) to invert elliptic
equation
The issue is with computing residual: dot(a,b) and dot(a,b,c)
But also axpby and probably spmv
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Computer Arithmetic

Problems
Floating-point arithmetic suffers from rounding errors

Floating-point operations (+,×) are commutative but
non-associative

(−1 + 1) + 2−53 6= −1 + (1 + 2−53) in double precision

Consequence: results of floating-point computations
depend on the order of computation

Results computed by performance-optimized parallel
floating-point libraries may be often inconsistent: each
run returns a different result

Reproducibility – ability to obtain bit-wise identical
and accurate results from run-to-run on the same input
data on the same or different architectures
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Sources of Non-Reproducibility

Changing Data Layouts:
Data partitioning
Data alignment

Changing Hardware Resources
Number of threads
Fused Multiply-Add support: a · b+ c

Intermediate precision (64 bits, 80 bits, 128 bits, etc)
Data path (SSE, AVX, GPU warp, etc)
Number of processors
Network topology
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Accurate/ Reproducible Summation
Existing Solutions

Fix the Order of Computations
Sequential mode: intolerably costly at large-scale systems
Fixed reduction trees: substantial communication overhead
Example: Intel Conditional Numerical Reproducibility in MKL
(∼ 2x for datum, no accuracy guarantees)

Eliminate/Reduce the Rounding Errors
Fixed-point arithmetic: limited range of values

Fixed FP expansions with Error-Free Transformations (EFT)
Example: double-double or quad-double (Briggs, Bailey, Hida, Li)
(work well on a set of relatively close numbers)

“Infinite” precision: reproducible independently from the inputs
Example: Kulisch accumulator (considered inefficient)

Libraries
ReproBLAS: Reproducible BLAS (Demmel, Nguyen, Ahrens)
For BLAS-1, GEMV, and GEMM on CPUs
RARE-BLAS: Repr. Accur. Rounded and Eff. BLAS (Chohra,
Langlois, Parello). For BLAS-1 and GEMV on CPUs
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Exact Multi-Level Parallel Reduction
Preliminaries

Fixed FP expansions (FPE) with Error-Free Transformations
→ Example: double-double or quad-double (Briggs, Bailey, Hida, Li)

(work well on a set of relatively close numbers)

Algorithm 1 (Dekker and Knuth)
Function[r, s] = twosum(a, b)

1: r ← a+ b
2: z ← r − a
3: s← (a− (r − z)) + (b− z)

Algorithm 2 (|a| ≥ |b|)
Function[r, s] = twosum(a, b)

1: r ← a+ b
2: z ← r − a
3: s← b− z

“Infinite” precision: reproducible independently from the inputs
→ Example: Kulisch accumulator (=16 FLOPs)
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Exact Multi-Level Parallel Reduction
Requirements and Limitations

Requirements
IEEE 754-2008 full or partial compliance (+,−, ∗, /,√)

Architecture support and compliance according to IEEE
754-2008 of rounding-to-nearest with breaking ties to even
(correct rounding). This is a default widely used rounding
mode

Limitations
Support for underflow numbers

Exceptions and exception handling
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Exact Multi-Level Parallel Reduction

Parallel algorithm with
5-levels

Suitable for today’s parallel
architectures

Based on FPE with EFT and
Kulisch accumulator

Guarantees “inf” precision
→ bit-wise reproducibility
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Level 1: Filtering

Roman Iakymchuk (KTH) June 27th-29th, 2018 13 / 35



Level 2 and 3: Scalar Superaccumulator
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Level 4 and 5: Reduction and Rounding
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ExBLAS in brief

ExBLAS Status
ExBLAS-1: exsuma, exscal, exdot, exaxpy, ...

ExBLAS-2: exger, exgemv, extrsv, exsyr, ...

ExBLAS-3: exgemm, extrsm, exsyr2k, ...

aRoutines in blue are already in ExBLAS
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ExBLAS-1 Highlights

BLAS-1 routines
Some are virtually built upon exsum

→ For instance, exdot = twoprod + 2exsum
→ twoprod(a,b) (= 3 FLOPs):

1: res← a · b,
2: err ← fma(a, b,−res)

exaxpy
y := α · x+ y

fma(α, x[i], y[i])→ correctly rounded and reproducible

exscal
x := α · x→ correctly rounded and reproducible
Within LU: x := 1/α · x→ not correctly rounded
exinvscal: x := x/α→ correctly rounded and reproducible
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SpMV: CSR format

The CSR representation of A

Listing 1: SpMV kernel for the CSR sparse matrix format (Bell and Garland 2008)

for (int row = 0; row < num_rows; i++) {
double dot = 0.0;

int row_start = ptr[row];
int row_end = ptr[row +1];

for (int j = row_start; j < row_end; j++)
dot += data[j] * x[indeces[j]];

y[row] += dot;
}
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SpMV on GPUs (1/2)

CRS-vector (Bell and Garland 2008)
Assigns multiple threads (e.g. 32 threads) to compute a single row of
the matrix A
Memory access to the matrix A is coalesced and thus it suites GPUs
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SpMV on GPUs (2/2)

CRS-vector (Reguly and Giles 2012)
Selecting the suitable number of threads (NT) in proportion to the
average number of non-zeros per row
Reduce NT if the number of non-zeros is less than 32
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Reproducible and accurate SpMV

exspmv in brief
Combine high performing algorithmic versions with exdot

Invoke auto-tuning and optimization strategies

Optimization
Determining the placement of long accumulators (eg shared
memory)

Using read-only data cache to store the vector x

Avoiding outermost loop on the number of rows

Using shuffle instructions for load/ store
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Parallel Reduction
Performance Scaling on NVIDIA Tesla K20c
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Parallel Reduction
Data-Dependent Performance on NVIDIA Tesla K20c

n = 67e06
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Dot Product
Performance Scaling on NVIDIA Tesla K20c

DDOT: α := xT y =
∑N

i xiyi
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Based on exsum and
twoprod

twoprod(a, b)
1: r ← a ∗ b
2: s← fma(a, b,−r)
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SpMV: High performing version
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Feltor: axpby

axpby: y := αx+ βy
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Feltor: dot
dot: α := xT y =

∑N
i xiyi
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Feltor: Reproducibility and Accuracy
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Discussion

Feltor: Reproducible PCG
Missing components: spmv and nrm2

But spmv with their specific format
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IEEE 754-2018 (revised)

History
1985 was a hardware standard – hoping for hardware adoption

2008 was a meta-standard for programming languages – hardware
adopted, hoping for languages

2018 is a bug fix release – catching up with C and searching for other
languages

Updates
Augmented operations +,−, ∗ (aka twosum and twoprod)

Considered but dropped from 754-2008

Pending hardware implementations encouraged put them back

Importance: extended-precision/ reproducible computations
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Conclusions and Future Work
Conclusions

Leveraged a long accumulator and EFTs to design reproducible
and correctly-rounded exsum and exdot

Delivered reproducible and accurate BLAS-1 routines like axpy,
scal, and invscal

Designed high performance algorithmic variants for csrmv
Ensured reproducibility and accuracy of csrmv through exdot

Provided bit-to-bit reproducible results independently from
Data permutation, data assignment, partitioning/blocking
Thread scheduling
Reduction trees

TODO List
Optimization and auto-tuning of csrmv

Reproducible Jacobi and Conjugate Gradient methods
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Thank you for your attention!

Publications: pdc.kth.se/~riakymch/pubs

Code: https://exblas.lip6.fr

Soon on GitHub
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