## Reproducibility of sparse matrix-vector product and sparse solvers

Roman lakymchuk ${ }^{1}$, Daichi Mukunoki² ${ }^{2}$, Stef Graillat ${ }^{3}$, Takeshi Ogita ${ }^{2}$

${ }^{1}$ KTH Royal Institute of Technology, Sweden
${ }^{2}$ Tokyo Woman's Christian University, Japan
${ }^{3}$ Sorbonne University, France
riakymch@kth.se

June 27th-29th, 2018
Zürich, Switzerland

FELTOR (Full-F ELectromagnetic code in TORoidal geometry)


- Both a numerical library and a scientific software package
- 2D and 3D drift- and gyrofluid simulations
- Discontinuous Galerkin methods on structured grids
- Platform independent code from laptop CPUs to hybrid CPU+GPU distributed memory systems



## Accuracy and Reproducibility Issue

- Preconditioned Conjugate Gradient (PCG) to invert elliptic equation
- The issue is with computing residual: $\operatorname{dot}(\mathrm{a}, \mathrm{b})$ and $\operatorname{dot}(\mathrm{a}, \mathrm{b}, \mathrm{c})$
- But also axpby and probably spmv


## Outline

(9) Computer Arithmetic
(2) ExBLAS: Exact BLAS

3 Sparse Matrix-Vector Multiplication
4. Performance Results
(5) Discussion and Conclusions

## Outline

(9) Computer Arithmetic
(2) ExBLAS: Exact BLAS
(3) Sparse Matrix-Vector Multiplication
(4) Performance Results
(5) Discussion and Conclusions

## Computer Arithmetic

## Problems

- Floating-point arithmetic suffers from rounding errors
- Floating-point operations (+, $\times$ ) are commutative but non-associative

$$
(-1+1)+2^{-53} \neq-1+\left(1+2^{-53}\right) \quad \text { in double precision }
$$

## Computer Arithmetic

## Problems

- Floating-point arithmetic suffers from rounding errors
- Floating-point operations $(+, \times)$ are commutative but non-associative
$2^{-53} \neq 0 \quad$ in double precision


## Computer Arithmetic

## Problems

- Floating-point arithmetic suffers from rounding errors
- Floating-point operations $(+, \times)$ are commutative but non-associative
$(-1+1)+2^{-53} \neq-1+\left(1+2^{-53}\right) \quad$ in double precision
- Consequence: results of floating-point computations depend on the order of computation
- Results computed by performance-optimized parallel floating-point libraries may be often inconsistent: each run returns a different result
- Reproducibility - ability to obtain bit-wise identical and accurate results from run-to-run on the same input data on the same or different architectures


## Sources of Non-Reproducibility

- Changing Data Layouts:
- Data partitioning
- Data alignment
- Changing Hardware Resources
- Number of threads
- Fused Multiply-Add support: $a \cdot b+c$
- Intermediate precision (64 bits, 80 bits, 128 bits, etc)
- Data path (SSE, AVX, GPU warp, etc)
- Number of processors
- Network topology


## Outline

(1) Computer Arithmetic
(2) ExBLAS: Exact BLAS
(3) Sparse Matrix-Vector Multiplication

4 Performance Results
(5) Discussion and Conclusions

## Accurate/ Reproducible Summation

## Existing Solutions

- Fix the Order of Computations
- Sequential mode: intolerably costly at large-scale systems
- Fixed reduction trees: substantial communication overhead Example: Intel Conditional Numerical Reproducibility in MKL ( $\sim 2 x$ for datum, no accuracy guarantees)


## Accurate/ Reproducible Summation

## Existing Solutions

- Fix the Order of Computations
- Sequential mode: intolerably costly at large-scale systems
- Fixed reduction trees: substantial communication overhead Example: Intel Conditional Numerical Reproducibility in MKL ( $\sim 2 x$ for datum, no accuracy guarantees)
- Eliminate/Reduce the Rounding Errors
- Fixed-point arithmetic: limited range of values
- Fixed FP expansions with Error-Free Transformations (EFT) Example: double-double or quad-double (Briggs, Bailey, Hida, Li) (work well on a set of relatively close numbers)
- "Infinite" precision: reproducible independently from the inputs Example: Kulisch accumulator (considered inefficient)


## Accurate/ Reproducible Summation

## Existing Solutions

- Fix the Order of Computations
- Sequential mode: intolerably costly at large-scale systems
- Fixed reduction trees: substantial communication overhead Example: Intel Conditional Numerical Reproducibility in MKL ( $\sim 2 x$ for datum, no accuracy guarantees)
- Eliminate/Reduce the Rounding Errors
- Fixed-point arithmetic: limited range of values
- Fixed FP expansions with Error-Free Transformations (EFT) Example: double-double or quad-double (Briggs, Bailey, Hida, Li) (work well on a set of relatively close numbers)
- "Infinite" precision: reproducible independently from the inputs Example: Kulisch accumulator (considered inefficient)
- Libraries
- ReproBLAS: Reproducible BLAS (Demmel, Nguyen, Ahrens) For BLAS-1, GEMV, and GEMM on CPUs
- RARE-BLAS: Repr. Accur. Rounded and Eff. BLAS (Chohra, Langlois, Parello). For BLAS-1 and GEMV on CPUs


## Exact Multi-Level Parallel Reduction

## Preliminaries

- Fixed FP expansions (FPE) with Error-Free Transformations
$\rightarrow$ Example: double-double or quad-double (Briggs, Bailey, Hida, Li) (work well on a set of relatively close numbers)

| Algorithm 1 (Dekker and Knuth) |  | Algorithm $2(\|a\| \geq\|b\|)$ |
| :--- | :--- | :--- |
| Function $[r, s]=\operatorname{twosum}(a, b)$ |  | Function $[r, s]=\operatorname{twosum}(a, b)$ |
| 1: $r \leftarrow a+b$ | 2: $z \leftarrow a+b$ |  |
| 2: $z \leftarrow r-a$ | 3: $s \leftarrow b-a$ |  |
| 3: $s \leftarrow(a-(r-z))+(b-z)$ |  |  |

## Exact Multi-Level Parallel Reduction

## Preliminaries

- Fixed FP expansions (FPE) with Error-Free Transformations
$\rightarrow$ Example: double-double or quad-double (Briggs, Bailey, Hida, Li) (work well on a set of relatively close numbers)

```
Algorithm 1 (Dekker and Knuth)
Function \([r, s]=\) twosum \((a, b)\)
1: \(r \leftarrow a+b\)
2: \(z \leftarrow r-a\)
3: \(s \leftarrow(a-(r-z))+(b-z)\)
Algorithm \(2(|a| \geq|b|)\)
Function \([r, s]=\operatorname{twosum}(a, b)\)
1: \(r \leftarrow a+b\)
2: \(z \leftarrow r-a\)
3: \(s \leftarrow b-z\)
```

- "Infinite" precision: reproducible independently from the inputs
$\rightarrow$ Example: Kulisch accumulator (=16 FLOPs)



## Exact Multi-Level Parallel Reduction

## Requirements and Limitations

## Requirements

- IEEE 754-2008 full or partial compliance $(+,-, *, /, \sqrt{ })$
- Architecture support and compliance according to IEEE 754-2008 of rounding-to-nearest with breaking ties to even (correct rounding). This is a default widely used rounding mode


## Limitations

- Support for underflow numbers
- Exceptions and exception handling


## Exact Multi-Level Parallel Reduction



- Parallel algorithm with 5-levels
- Suitable for today's parallel architectures
- Based on FPE with EFT and Kulisch accumulator
- Guarantees "inf" precision
$\rightarrow$ bit-wise reproducibility


## Level 1: Filtering



## Level 2 and 3: Scalar Superaccumulator



## Level 4 and 5: Reduction and Rounding



## ExBLAS in brief

## ExBLAS Status

- ExBLAS-1: exsum ${ }^{\text {a }}$, exscal, exdot, exaxpy, ...
- ExBLAS-2: exger, exgemv, extrsv, exsyr, ...
- ExBLAS-3: exgemm, extrsm, exsyr2k, ...
${ }^{\text {a }}$ Routines in blue are already in ExBLAS


## ExBLAS-1 Highlights

## BLAS-1 routines

- Some are virtually built upon exsum
$\rightarrow$ For instance, exdot = twoprod +2 exsum
$\rightarrow$ twoprod(a,b) (= 3 FLOPs):
1: res $\leftarrow a \cdot b$,
2: err $\leftarrow \mathrm{fma}(a, b,-r e s)$


## ExBLAS-1 Highlights

## BLAS-1 routines

- Some are virtually built upon exsum
$\rightarrow$ For instance, exdot = twoprod +2 exsum
$\rightarrow$ twoprod(a,b) (= 3 FLOPs):
1: res $\leftarrow a \cdot b$,
2: $e r r \leftarrow \mathrm{fma}(a, b,-r e s)$


## exaxpy

- $y:=\alpha \cdot x+y$
- fma $(\alpha, x[i], y[i]) \rightarrow$ correctly rounded and reproducible


## exscal

- $x:=\alpha \cdot x \rightarrow$ correctly rounded and reproducible
- Within LU: $x:=1 / \alpha \cdot x \rightarrow$ not correctly rounded
- exinvscal: $x:=x / \alpha \rightarrow$ correctly rounded and reproducible


## Outline

(1) Computer Arithmetic
(2) ExBLAS: Exact BLAS
(3) Sparse Matrix-Vector Multiplication
4. Performance Results
(5) Discussion and Conclusions

## SpMV: CSR format

$$
\left.\begin{array}{rl}
\mathrm{A} & =\left[\begin{array}{llll}
1 & 7 & 0 & 0 \\
0 & 2 & 8 & 0 \\
5 & 0 & 3 & 9 \\
0 & 6 & 0 & 4
\end{array}\right] \\
\operatorname{ptr} & =\left[\begin{array}{lllll}
0 & 2 & 4 & 7 & 9
\end{array}\right] \\
\text { indices } & =\left[\begin{array}{lllllll}
0 & 1 & 1 & 2 & 0 & 2 & 3
\end{array} 1\right. \\
\text { data } & =\left[\begin{array}{llllllll}
1 & 7 & 2 & 8 & 5 & 3 & 9 & 6
\end{array}\right]
\end{array}\right] .
$$

The CSR representation of $A$

Listing 1: SpMV kernel for the CSR sparse matrix format (Bell and Garland 2008)

```
for (int row = 0; row < num_rows; i++) {
    double dot = 0.0;
    int row_start = ptr[row];
    int row_end = ptr[row+1];
    for (int j = row_start; j < row_end; j++)
        dot += data[j] * x[indeces[j]];
    y[row] += dot;
}
```


## SpMV on GPUs (1/2)

## CRS-vector (Bell and Garland 2008)

- Assigns multiple threads (e.g. 32 threads) to compute a single row of the matrix A
- Memory access to the matrix A is coalesced and thus it suites GPUs

CRS-vector (2 threads) coalesced access $y_{3}=8 x_{1}+2 x_{2}+4 x_{3}+9 x_{4}$


## SpMV on GPUs (2/2)

## CRS-vector (Reguly and Giles 2012)

- Selecting the suitable number of threads (NT) in proportion to the average number of non-zeros per row
- Reduce NT if the number of non-zeros is less than 32

| 5 | 0 | 3 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 4 | 0 | 2 |
| 0 | 2 | 0 | 9 |
| 4 | 0 | 7 | 6 |

Nonzeros $=9$
Rows = 4
Avg nonzeros / row

$$
=9 / 4=2.25
$$

> Optimal NT $=2$

$>$ Optimal NT $=4$ thread:
val:


## Reproducible and accurate SpMV

## exspmv in brief

- Combine high performing algorithmic versions with exdot
- Invoke auto-tuning and optimization strategies


## Optimization

- Determining the placement of long accumulators (eg shared memory)
- Using read-only data cache to store the vector $x$
- Avoiding outermost loop on the number of rows
- Using shuffle instructions for load/ store


## Outline

(1) Computer Arithmetic
(2) ExBLAS: Exact BLAS
(3) Sparse Matrix-Vector Multiplication

4 Performance Results
(5) Discussion and Conclusions

## Parallel Reduction

## Performance Scaling on NVIDIA Tesla K20c



## Parallel Reduction

## Data-Dependent Performance on NVIDIA Tesla K20c

$$
n=67 e 06
$$



Dynamic range

## Dot Product

## Performance Scaling on NVIDIA Tesla K20c

DDOT: $\alpha:=x^{T} y=\sum_{i}^{N} x_{i} y_{i}$


## SpMV: High performing version



Feltor: axpby

$$
\text { axpby: } y:=\alpha x+\beta y
$$



## Feltor: dot

$$
\operatorname{dot}: \alpha:=x^{T} y=\sum_{i}^{N} x_{i} y_{i}
$$




## Outline

(1) Computer Arithmetic
(2) ExBLAS: Exact BLAS
(3) Sparse Matrix-Vector Multiplication
(4) Performance Results
(5) Discussion and Conclusions

## Discussion

| S1: Compute the preconditioner $A \rightarrow M \approx L U$ |  |
| :--- | :--- |
| S: Initialize $x_{0}, r_{0}, z_{0}, d_{0}, \beta_{0}, \tau_{0}$ |  |
| S: $k:=0$ | Iterative PCG solve |
| S4: while $\left(\tau_{k}>\tau_{\max }\right)$ | (SPMV) |
| S5: $\quad w_{k}:=A d_{k}$ | (DOT product) |
| S6: $\quad \rho_{k}:=\beta_{k} / d_{k}^{T} w_{k}$ | (AXPY) |
| S7: $\quad x_{k+1}:=x_{k}+\rho_{k} d_{k}$ | (AxPY) |
| S8: $\quad r_{k+1}:=r_{k}-\rho_{k} w_{k}$ | Apply preconditioner |
| S9: $\quad z_{k+1}:=M^{-1} r_{k+1} \approx U^{-1} L^{-1} r_{k+1}$ | (DOT product) |
| S10: $\quad \beta_{k+1}:=r_{k+1}^{T} z_{k+1}$ | (AXPY-like) |
| S11: $\quad \alpha_{k}:=\beta_{k+1} / \beta_{k}$ | (2-norm) |
| S12: $\quad d_{k+1}:=z_{k+1}+\alpha_{k} d_{k}$ |  |
| S13: $\quad \tau_{k+1}:=\left\\|r_{k+1}\right\\|_{2}$ |  |
| S14: $\quad k:=k+1$ |  |
| S15: endwhile |  |

## Feltor: Reproducible PCG

- Missing components: spmv and nrm2
- But spmv with their specific format


## History

1985 was a hardware standard - hoping for hardware adoption
2008 was a meta-standard for programming languages - hardware adopted, hoping for languages

2018 is a bug fix release - catching up with C and searching for other languages

## Updates

- Augmented operations,+- , * (aka twosum and twoprod)
- Considered but dropped from 754-2008
- Pending hardware implementations encouraged put them back
- Importance: extended-precision/ reproducible computations


## Conclusions and Future Work

## Conclusions

- Leveraged a long accumulator and EFTs to design reproducible and correctly-rounded exsum and exdot
- Delivered reproducible and accurate BLAS-1 routines like axpy, scal, and invscal
- Designed high performance algorithmic variants for csrmv
- Ensured reproducibility and accuracy of csrmv through exdot
- Provided bit-to-bit reproducible results independently from
- Data permutation, data assignment, partitioning/blocking
- Thread scheduling
- Reduction trees


## Conclusions and Future Work

## Conclusions

- Leveraged a long accumulator and EFTs to design reproducible and correctly-rounded exsum and exdot
- Delivered reproducible and accurate BLAS-1 routines like axpy, scal, and invscal
- Designed high performance algorithmic variants for csrmv
- Ensured reproducibility and accuracy of csrmv through exdot
- Provided bit-to-bit reproducible results independently from
- Data permutation, data assignment, partitioning/blocking
- Thread scheduling
- Reduction trees


## TODO List

- Optimization and auto-tuning of csrmv
- Reproducible Jacobi and Conjugate Gradient methods


## Thank you for your attention!

Publications: pdc.kth.se/~riakymch/pubs
Code: https://exblas.lip6.fr Soon on GitHub

