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ABSTRACT
Krylov subspace algorithms are important methods for solving
linear systems. In order to efficiently solve large-scale linear sys-
tems, parallelism techniques are often applied. However, parallelism
often enlarge the non-associativity of floating-point operations,
which can lead to non-reproducibility of the computations. This
paper compares the performance of the parallel preconditioned
BiCGSTAB algorithm implemented with two different libraries
(ExBLAS and ReproBLAS) that can ensure the reproducibility of
computations. To address the effect of the compiler, we explicitly uti-
lize the FMA instructions. Finally, numerical experiments show that
based on two BLAS implementations, the BiCGSTAB algorithms
are reproducible. By contrast, the BiCGSTAB algorithm based on
ExBLAS is more accurate but more time-consuming than the one
based on ReproBLAS.
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1 INTRODUCTION
Inmany scientific and engineering calculation fields, such as nuclear
reactor simulation, radiation (magneto) hydrodynamics, radiation
diffusion problems, oil and gas resource exploration, numerical
weather prediction, etc. [10, 18, 32], differential equations are of-
ten used as mathematical models to describe problems. In order to
simulate on a computer, it is necessary to discretize the differential
equations to obtain a set of linear equations. Therefore, efficiently
solving linear equations is the key to numerical simulation. For
large-scale sparse matrices generated in actual problems, iterative
methods based on Krylov subspace [25] are more advantageous
because of the high computational complexity of direct solvers.
However, the direct use of iterative methods may not converge or
convergence can be very slow. The usual remedy is to use precon-
ditioning techniques.

When the matrix is symmetric and positive definite, the Conju-
gate Gradient (CG) method [11] is one of the most effective Krylov
subspace methods. When the matrix is unsymmetric, the BiConju-
gate Gradient Stabilized (BiCGSTAB) [28] and Generalized Mini-
mal Residual (GMRES) methods [26] are the preferred Krylov sub-
space methods. GMRES is based on long recurrences, the amount
of computation and storage increases linearly with the number
of iterations. However, BiCGSTAB is based on short recurrences,
the amount of computation remains the same for each iteration.
Therefore, we take BiCGSTAB as an example to study.

When solving linear equations, numerical reproducibility fail-
ures may be risen in parallel computation. That is to say that the
computing result for the same input data may vary from one run
to another or even from one parallel machine to another. The non-
reproducible behavior causes validation and debugging issues, and
may even lead to deadlocks [22]. Moreover, this behavior will get
worse on heterogeneous architectures, which combine together
different programming environments that may follow different
floating-point models and offer different intermediate precision
or different operators [6, 7, 31]. The essence of the problem is
that massively data instructions used in parallel environments
do not guarantee the same execution order of floating-point op-
erations. In order to guarantee numerical reproducibility, recent
works [6, 7, 22, 29, 31] have tried to tackle the problem. For the
above reasons, we may expect that the results of the sequential
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and parallel implementations of Preconditioned BiCGSTAB (abbre-
viated as PBiCGSTAB) are identical, for instance, in the number
of iterations, the intermediate and final residuals, as well as the
output vector. However, this is often not the case in practice, due to
different reduction trees - the Message Passing Interface (MPI) [13]
provides 14 different implementations, data alignment, instructions
used, order of the input data, etc. Each of these factors impacts
the order of floating-point operations especially additions that are
commutative but not associative. This can lead to non-reproducible
results. Therefore, our aim is to implement reproducible parallel
Preconditioned BiCGSTAB algorithm that can achieve the same
result using the different number of processes on the same platform.
For that, we implemented the reproducible parallel precondition
BiCGSTAB solver using the two main BLAS libraries that can en-
sure reproducibility for basic operations; these are the ExBLAS and
the ReproBLAS libraries, respectively.

The rest of the paper is organized as follows. Section 2 introduces
the ExBLAS method and the ReproBLAS method. Section 3 intro-
duces the PBiCGSTAB algorithms and describes in detail its MPI
implementation. We present strategies for ensuring reproducibility
of PBiCGSTAB in Section 4 and evaluate corresponding implemen-
tations in Section 5. Section 6 introduces some related work. Finally,
Section 7 draws conclusions and proposes future work.

2 METHODOLOGY
2.1 ExBLAS
The ExBLAS project [15] is an attempt to derive fast, accurate, and
reproducible BLAS library by constructing a multi-level approach
for these operations that are tailored for various modern architec-
tures with their complex multilevel memory structures. ExBLAS
combines together long accumulator and floating-point expansion
(FPE) into algorithmic solutions. It has two features. On one side,
this method aims to save each bit of information before finally
rounding to the desired format. It is accurate and correctly rounded
, so it is reproducible. On the other side, it is effectively tuned
and implemented on various architectures, including conventional
CPUs, Nvidia and AMD GPUs, and Intel Xeon Phi co-processors.

The corner stone of ExBLAS is reproducible parallel reduction.
The ExBLAS parallel reduction relies upon FPEs with the TwoSum
error-free transformation (EFT) [19] and long accumulators. In
practice, the latter is invoked only once per overall summation
that results in the little overhead (less than 8%) on accumulating
large vectors. For details of the algorithm, please refer to [5]. In this
article, we are concerned with the distributed dot product of two
vectors. The dot product problem can be transformed into a sum-
mation problem using the TwoProd EFT [24]. The ExBLAS library
also contains other routines, such as matrix vector multiplication,
triangular solver and matrix matrix multiplication. The library is
available at https://github.com/riakymch/exblas.

2.2 ReproBLAS
ReproBLAS aims at providing users with a set of (Parallel and
Sequential) Basic Linear Algebra Subprograms that guarantee re-
producibility regardless of the number of processors, of the data
partitioning, of the way reductions are scheduled, and more gener-
ally of the order in which the sums are computed. ReproBLAS has

three assumptions: (1) Floating-point numbers are binary and cor-
respond to the IEEE 754-2008 Floating-Point Standard. (2) Floating-
point operations are performed in round-to-nearest mode (ties may
be broken arbitrarily). (3) Underflow occurs gradually (subnormal
numbers must be supported) [22].

The corner stone of ReproBLAS [1] is reproducible summation,
which is independent of the summation order. The reproducible
summation algorithm can be found in [8, 9]. It is communication-
optimal, in the sense that it does just one pass over the data in the
sequential case, or one reduction operation in the parallel case, re-
quiring an “accumulator” represented by just 6 floating-point words
(more can be used if higher precision is desired). The arithmetic
cost with a 6-word accumulator is 7𝑛 floating-point additions to
sum 𝑛 words, and (in IEEE double precision) the final error bound
can be up to 10−8 times smaller than the error bound for conven-
tional summation. Let us denote 𝑇 =

∑𝑛−1
𝑗=0 𝑥 𝑗 , and 𝑇 the floating-

point approximation to the summation obtained with ReproBLAS.
The absolute error of the reproducible summation algorithm is
|𝑇−𝑇 | ≤ 𝑛2𝑊 (1−𝐾 ) max |𝑥 𝑗 |+7𝑢 |

∑𝑛−1
𝑗=0 𝑥 𝑗 |, where𝑊 is thewidth of

the bins,𝐾 is the number of accumulators,𝑢 is the unit roundoff, the
default configuration under double precision is𝑊 = 40, 𝐾 = 3 [1].
The library is available at https://bebop.cs.berkeley.edu/reproblas/.

3 ALGORITHM(S)
3.1 Preconditioned BiCGSTAB
The BiCGSTAB algorithm was developed to solve nonsymmetric
linear systems. The algorithmic description of the classical iterative
PBiCGSTAB is presented in Algorithm 1 [2]. The loop body consists
of sparse matrix-vector products (SpMV), dot products, AXPY (-
like) operations, the preconditioner application, and a few scalar
operations. For simplicity, in our implementation of the PBiCGSTAB
method, we integrate the Jacobi preconditioner, which is composed
of the diagonal elements of the matrix. As a consequence, the use of
Jacobi preconditioner requires two vectors to be multiplied element
by element.

3.2 Message-Passing Parallel PBiCGSTAB
In our parallel Preconditioned BiCGSTAB algorithm, we use 𝐿
processes. The matrix 𝐴 is partitioned into 𝐿 blocks of rows
(𝐴1, 𝐴2, . . . , 𝐴𝑖 , . . . , 𝐴𝐿), where each process stores one row-block.
Vectors are partitioned and distributed in the same way as with the
block-row distribution of 𝐴. In lines 13 and 18 of Algorithm 1, it
needs a SpMV operation, where we call𝑀𝑃𝐼_𝐴𝑙𝑙𝑔𝑎𝑡ℎ𝑒𝑟𝑣 () to syn-
thesize the local vector of each process into a full operand vector. At
lines 4, 14, 16, 19, and 22 of Algorithm 1, the distributed dot product
needs to be computed, for non-reproducible parallel Preconditioned
BiCGSTAB, we call𝑀𝑃𝐼_𝐴𝑙𝑙𝑟𝑒𝑑𝑢𝑐𝑒 . We have implemented a repro-
ducible distributed dot product, see Listing 1, which is different
from the ordinary dot product. This is also the main difference be-
tween the reproducible parallel Preconditioned BiCGSTAB and the
non-reproducible parallel Preconditioned BiCGSTAB. For details
on reproducible distributed dot products, please see Section 4.
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Algorithm 1: The Preconditioned BiConjugate Gradient
Stabilized Method (PBiCGSTAB) [2].
Input: Coefficient matrix 𝐴, right-hand side vector 𝑏, initial

guess 𝑥 (0) , convergence threshold 𝜖
Output: Approximate solution 𝑥 (𝑖 )

1 Compute 𝑟 (0) = 𝑏 −𝐴𝑥 (0) for some initial guess 𝑥 (0)

2 Choose 𝑟 (for example, 𝑟 = 𝑟 (0) )
3 for 𝑖 = 1, 2, . . .
4 𝜌𝑖−1 = 𝑟𝑇 𝑟 (𝑖−1)

5 if 𝜌𝑖−1 = 0 method fails

6 if 𝑖 = 1
7 𝑝 (𝑖 ) = 𝑟 (𝑖−1)

8 else

9 𝛽𝑖−1 = (𝜌𝑖−1/𝜌𝑖−2) (𝛼𝑖−1/𝜔𝑖−1)
10 𝑝 (𝑖 ) = 𝑟 (𝑖−1) + 𝛽𝑖−1 (𝑝 (𝑖−1) − 𝜔𝑖−1𝑣 (𝑖−1) )
11 endif

12 solve𝑀𝑝 = 𝑝 (𝑖 )

13 𝑣 (𝑖 ) = 𝐴𝑝
14 𝛼𝑖 = 𝜌𝑖−1/𝑟𝑇 𝑣 (𝑖 )

15 𝑠 = 𝑟 (𝑖−1) − 𝛼𝑖𝑣 (𝑖 )

16 if ∥𝑠 ∥2 ≤ 𝜖 : set 𝑥 (𝑖 ) = 𝑣 (𝑖−1) + 𝛼𝑖𝑝 and stop
17 solve𝑀𝑠 = 𝑠

18 𝑡 = 𝐴𝑠

19 𝜔 (𝑖 ) = 𝑡𝑇 𝑠/𝑡𝑇 𝑡
20 𝑥 (𝑖 ) = 𝑥 (𝑖−1) + 𝛼𝑖𝑝 + 𝜔 (𝑖 )𝑠
21 𝑟 (𝑖 ) = 𝑠 − 𝜔 (𝑖 )𝑡
22 if ∥𝑟 (𝑖 ) ∥2 ≤ 𝜖 : break
23 for continuation it is necessary that 𝜔 (𝑖 ) ≠ 0
24 end

4 STRATEGIES FOR REPRODUCIBILITY
In [16], the article implements a reproducible parallel Precondi-
tioned BiCGSTAB algorithm based on ExBLAS, also implemented
with its lighter FPE-based version. In this paper, we implement a
reproducible parallel Preconditioned BiCGSTAB algorithm based
on ReproBLAS, and compare the performance of the solvers based
on ExBLAS and ReproBLAS. In this section, we state our repro-
ducible strategy for the parallel Preconditioned BiCGSTAB algo-
rithm. We show the sources of non-deterministic computations in
the PBiCGSTAB solver, and present our mitigation strategies.

Dot products: The main issue of non-determinism emerges
from dot products and, thus, parallel reductions such as
𝑀𝑃𝐼_𝐴𝑙𝑙𝑟𝑒𝑑𝑢𝑐𝑒 (). We use the ExBLAS method to provide a repro-
ducible and correctly rounded dot product, and use the ReproBLAS
method to provide a reproducible dot product. In [14], the authors
provided a pseudocode for implementing distributed dot product
with ExBLAS. Listing 1 provides pseudocodes for our implementa-
tion of the distributed dot product using the ReproBLAS.

Sparse matrix-vector product: Each process has a local𝐴𝑖 , and the
complete vector is obtained by using𝑀𝑃𝐼_𝐴𝑙𝑙𝑔𝑎𝑡ℎ𝑒𝑟𝑣 (), then each
process computes a SpMV, since the computations are carried locally
and sequentially, they are deterministic and, thus, reproducible.

1 double_binned *isum = NULL;
2 double_binned *local_isum = binned_dballoc(K

);
3 binnedBLAS_dbddot(K, n, r, 1, r, 1,

local_isum);
4 MPI_Reduce(local_isum , isum , 1,

binnedMPI_DOUBLE_BINNED(K),
5 binnedMPI_DBDBADD(K), 0, MPI_COMM_WORLD);
6 if(myId == 0){
7 tol = binned_ddbconv(K, isum);
8 }
9 MPI_Bcast (&tol , 1, MPI_DOUBLE , 0,

MPI_COMM_WORLD);

Listing 1: Reproducible Allreduce with ReproBLAS.

AXPY(-type) vector updates: For computing the axpy(-type) vector
updates, the local vector is updated independently in each processor,
they are deterministic and, thus, reproducible.

Application of the preconditioner: We use Jacobi preconditioner.
The application of the Jacobi preconditioner is rather simple: first,
the inverse of the diagonals is computed and then the application of
the preconditioner only involves element-wisemultiplication of two
vectors. Thus, this part is both correctly rounded and reproducible.

5 NUMERICAL RESULTS
5.1 Setup
The following experiments are performed on Sugon HPC cluster
with 172 compute nodes, consisting of two 12-core Intel E5-2680
v3 processors each (24 cores per node), 64 GB DDR4 ECC memory
2133MHz. The system uses Intel Omni-Path high-speed computing
network. The OS used by the cluster is Redhat7.2. The compiler
is intel-composer_xe_2017.0.098. The MPI library used for these
experiments is mpich-3.2-gnu.

The matrix used for experiments is a 3D Possion matrix of dimen-
sion 𝑛 = 1593, which is a 27-point stencil(rows corresponding to
interior nodes have 27 nonzeros). The mathematical expression of
the matrix can be found in [27]. We use a scaling factor to scale the
first row and first column of the matrix. We also tested the matrix of
SuiteSparse (http://sparse.tamu.edu/), and the experimental results
are shown in the appendix.

The right-hand side vector 𝑏 in the iterative solvers was always
initialized to the product 𝐴(1, 1, . . . , 1)𝑇 , and the PBiCGSTAB itera-
tion was started with the initial guess 𝑥0 = 0. The stopping criterion
is ∥𝑟 𝑗 ∥2 ≤ 10−8, where 𝑗 is the number of iterations.

To reproduce the numerical experiments of this
study, the code is openly available through GitHub at
https://github.com/programmer-lxj/Reproducible-BiCGSTAB-is-
based-on-ExBLAS-and-ReproBLAS.

5.2 Accuracy and Reproducibility Evaluation
In this section, we report the results of the accuracy and repro-
ducibility evaluation. Additionally, we derive a sequential version
of the code that relies on the GNUMultiple Precision Floating-Point
Reliably (MPFR) library [12] - a C library for multiple (arbitrary)
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precision floating-point computations on CPUs - as a highly accu-
rate reference implementation. This implementation uses 2048 bits
of accuracy for computing dot product (192 bits for internal product
of two floating-point numbers) and performs correct rounding of
the computed result to double precision.

We analyzed the reproducibility of the reproducible parallel
PBiCGSTAB. Hereafter, we will call them ExBLAS and ReproBLAS
for short. In ReproBLAS, there is a parameter 𝐾 controlling ac-
curacy, when there is no special description, we take the default
𝐾 = 3. With double as the working precision, when𝑊 = 40, 𝐾 = 3,
|𝑇 − 𝑇 | ≤ 𝑛240×(−2) max |𝑥 𝑗 | + 7 × 2−53 |∑𝑛−1𝑗=0 𝑥 𝑗 |. When 𝐾 ≥ 3,
|𝑇 −𝑇 | ≈ 7 × 2−53 |∑𝑛−1𝑗=0 𝑥 𝑗 |, therefore choose the smallest 𝐾 that
can achieve the highest summation accuracy. In Table 1, the ma-
trix size is 𝑛 = 4, 019, 679 and the condition number is 1012. Table
1 shows the 2-norm of the intermediate and final residual of the
PBiCGSTAB solver in each iteration, i.e. ∥𝑟 𝑗 ∥2. Table 2 shows the
2-norm of the intermediate and final residual of the ReproBLAS
in each iteration when 𝐾 = 2 and 𝐾 = 3. We used one node on
the Sugon cluster with 24 processes each pinned to one core. We
present only few iterations, however the difference is present on all
iterations. The ExBLAS implementation delivers both accurate and
reproducible results that are identical with the MPFR library. The
ReproBLAS implementation delivers reproducible results. Further-
more, we have also computed the direct error (see Table 3). Table 3
shows the infinity norm of the approximate and exact solutions of
the PBiCGSTAB solver in each iteration, i.e. ∥𝑥 𝑗 − 𝑥∗∥∞. Note that
the result on ExBLAS is identical to MPFR. Table 4 shows the infin-
ity norm of the approximate and exact solutions of the ReproBLAS
in each iteration when 𝐾 = 2 and 𝐾 = 3. Figure 1 represent the
norms of residuals ∥𝑟 𝑗 ∥2 for PBiCGSTAB on 24 MPI processes.

Figure 1: Residual history.

5.3 Performance Evaluation
Firstly, the performance of regular, ExBLAS-based and Reproblas-
based dot product are analyzed. Hereafter, we will call them
ExBLASdot and ReproBLASdot for short. We use the same data

generation method as the ReproBLAS library [14], i.e. 𝑎𝑖 = sin(2.0∗
𝜋 ∗ (𝑖/𝑛− 0.5)), 𝑏𝑖 = sin(2.0 ∗𝜋 ∗ (𝑖/𝑛− 0.5)), 𝑛 = 16200000. Table 5
reports the total execution time of different dot products (averaged
for 5 different executions). Figure 2 reports the total execution time
(averaged for 5 different executions) of the reproducible dot product
for this cluster normalized with respect to the execution time of
the regular MPI version, when we vary the number of cores. From
table 5 and figure 2, we can see that ReproBLASdot is faster than
ExBLASdot product.

Then, we analyzed the performance of the reproducible parallel
PBiCGSTAB. Our experiments evaluate the strong scaling of this
reproducible implementation compared against the regular (non-
reproducible) version of PBiCGSTAB using MPI. We also analyze
the performance of the three implementations in the aforemen-
tioned cluster. Specifically, in order to assess the strong scalability,
we fix the matrix size to 𝑛 = 16, 003, 008(2523) and increase the
number of cores. Table 6 reports the total execution time (averaged
for 5 different executions) of the different MPI PBiCGSTAB solvers
on this platform, varying the number of cores (from 48 to 144 in
Sugon) as we maintain the problem size, the number of iterations
in parentheses. Figure 3 reports the total execution time (averaged
for 5 different executions) of the reproducible MPI PBiCGSTAB
solvers for this cluster normalized with respect to the execution
time of the regular MPI version, when we vary the number of cores.
From table 6 and figure 3, we can see that ReproBLAS is faster than
ExBLAS. We also found that ReproBLAS is faster than regular MPI
version when using 72, 96, and 144 processes, because ReproBLAS
has fewer iterations, so the total time is shorter when the same
accuracy conditions are met. It can be seen from this example that
although the dot product uses a reproducible dot product, each
iteration pays a certain amount of overhead, but it may reduce the
total number of iterations and reduce the total overhead. Table 7
reports the average time of each iteration (averaged for 5 different
executions) of the different MPI PBiCGSTAB solvers on this plat-
form, varying the number of cores (from 48 to 144 in Sugon) as we
maintain the problem size. Figure 4 reports the average time of each
iteration (averaged for 5 different executions) of the reproducible
MPI PBiCGSTAB solvers for this cluster normalized with respect
to the execution time of the regular MPI version, when we vary
the number of cores. We fixed the total number of iterations to 60,
figure 5 reports the total execution time (averaged for 5 different
executions) of the reproducible MPI PBiCGSTAB solvers for this
cluster normalized with respect to the execution time of the regular
MPI version.

From our experiments, we can observe the following facts:

• The dot product based on ReproBLAS is faster than that
based on ExBLAS.

• Reproducible parallel PBiCGSTAB based on ExBLAS library
can get the same results as MPFR. It is reproducible and
accurate.

• Reproducible parallel PBiCGSTAB based on ReproBLAS li-
brary has the same result no matter how many processes are
used, but it cannot get the same result as MPFR.

• When 𝐾 = 2, the reproducible parallel PBiCGSTAB based on
the ReproBLAS library is also reproducible, but the result is
different from 𝐾 greater than or equal to 3.
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Table 1: Accuracy and reproducibility comparison on the intermediate and final residual against MPFR for a matrix with
condition number of 1012. The matrix is generated following the procedure from Section 5.1 with 𝑛 = 4, 019, 679(1593).

Residual
Iteration MPFR Original 1 proc Original 48 proc ExBLAS 48 proc ReproBLAS 48 proc(𝐾 = 3)
0 6.199998000000062e+14 6.199998000000064e+14 6.199998000000064e+14 6.199998000000062e+14 6.199998000000062e+14
2 7.773390285775344e+07 7.773396235537358e+07 7.773396235219534e+07 7.773390285775344e+07 7.773396235223217e+07
18 1.800391538018418e+02 9.920664169207433e+02 7.848983492248201e+02 1.800391538018418e+02 3.647699220519532e+01
19 4.527368042985061e+01 9.920511721210302e+02 1.708520638885489e+02 4.527368042985061e+01 1.377536701580542e+01
· · · · · · · · · · · · · · · · · ·
38 1.572043303241533e-06 3.155149206702169e-03 2.941521670086655e-04 1.572043303241533e-06 2.215388966485101e-07
39 2.453500079721513e-07 1.269826897510669e-03 2.783864941272381e-04 2.453500079721513e-07 3.834134369067694e-08
40 3.854451111920641e-08 1.237807074881981e-03 4.132770031308131e-05 3.854451111920641e-08 6.701333941850470e-09
41 6.068369560766913e-09 4.530740507879870e-05 4.060713358832429e-05 6.068369560766913e-09
49 7.217500962630385e-08 2.373922675763727e-08
50 1.275390456398120e-08 3.914596612172984e-09
51 9.575558932042771e-09

Table 2: Comparison of the reproducibility of the intermediate and final residuals of the matrix with a condition number of
1012. The matrix is generated following the procedure from Section 5.1 with 𝑛 = 4, 019, 679(1593).

Residual
Iteration ReproBLAS 24 proc(𝐾 = 2) ReproBLAS 48 proc(𝐾 = 2) ReproBLAS 24 proc(𝐾 = 3) ReproBLAS 48 proc(𝐾 = 3)
0 6.199998000000062e+14 6.199998000000062e+14 6.199998000000062e+14 6.199998000000062e+14
2 7.773396235223238e+07 7.773396235223238e+07 7.773396235223217e+07 7.773396235223217e+07
18 5.598082147961621e+02 5.598082147961621e+02 3.647699220519532e+01 3.647699220519532e+01
19 1.401936884527657e+02 1.401936884527657e+02 1.377536701580542e+01 1.377536701580542e+01
· · · · · · · · · · · · · · ·
38 6.514290840710756e-05 6.514290840710756e-05 2.215388966485101e-07 2.215388966485101e-07
39 1.434720487921011e-05 1.434720487921011e-05 3.834134369067694e-08 3.834134369067694e-08
40 1.187160733888966e-05 1.187160733888966e-05 6.701333941850470e-09 6.701333941850470e-09
41 2.536931803781759e-06 2.536931803781759e-06
42 2.193618822360498e-06 2.193618822360498e-06
43 2.815475613230721e-07 2.815475613230721e-07
44 3.861719136834829e-08 3.861719136834829e-08
45 7.197952430468738e-09 7.197952430468738e-09

Table 3: Direct error comparison against MPFR for a matrix with condition number of 1012. The matrix is generated following
the procedure from Section 5.1 with 𝑛 = 4, 019, 679(1593).

Direct error
Iteration MPFR Original 1 proc Origina 48 proc ExBLAS 48 proc ReproBLAS 48 proc(𝐾 = 3)
0 1.000000000000000e+00 1.000000000000000e+00 1.000000000000000e+00 1.000000000000000e+00 1.000000000000000e+00
2 9.468739489168004e+04 9.468739489167897e+04 9.468739489167897e+04 9.468739489168004e+04 9.468739489167897e+04
18 3.759048477414416e-01 2.473965872164404e+00 4.032131048428883e-01 3.759048477414416e-01 5.105001804315423e-02
19 5.816123121107641e-02 3.747532604204130e-01 4.049929311272970e-01 5.816123121107641e-02 9.454486314514732e-03
· · · · · · · · · · · · · · · · · ·
38 8.071978641055466e-10 4.484255959891215e-07 1.594126798343254e-07 8.071978641055466e-10 1.228213974968639e-09
39 8.072296164840509e-10 4.481986183302311e-07 3.417345129097527e-08 8.072296164840509e-10 1.228311674594806e-09
40 8.076090907138678e-10 1.625782982683788e-07 3.417765470636880e-08 8.076090907138678e-10 1.228331658609250e-09
41 8.076523894118282e-10 1.630189810919447e-07 3.606841825209983e-09 8.076523894118282e-10
49 7.744984653612619e-10 8.554250641168437e-10
50 7.744849206403615e-10 8.554250641168437e-10
51 7.745686314564182e-10

Table 4: Direct error comparison of matrix with condition number 1012. The matrix is generated following the procedure from
Section 5.1 with 𝑛 = 4, 019, 679(1593).

Direct error
Iteration ReproBLAS 24 proc(𝐾 = 2) ReproBLAS 48 proc(𝐾 = 2) ReproBLAS 24 proc(𝐾 = 3) ReproBLAS 48 proc(𝐾 = 3)
0 1.000000000000000e+00 1.000000000000000e+00 1.000000000000000e+00 1.000000000000000e+00
2 9.468739489167897e+04 9.468739489167897e+04 9.468739489167897e+04 9.468739489167897e+04
18 2.044747069809166e-01 2.044747069809166e-01 5.105001804315423e-02 5.105001804315423e-02
19 2.044624037738916e-01 2.044624037738916e-01 9.454486314514732e-03 9.454486314514732e-03
· · · · · · · · · · · · · · ·
38 3.604734521989172e-08 3.604734521989172e-08 1.228213974968639e-09 1.228213974968639e-09
39 6.525545215296802e-09 6.525545215296802e-09 1.228311674594806e-09 1.228311674594806e-09
40 1.458647203023133e-09 1.458647203023133e-09 1.228331658609250e-09 1.228331658609250e-09
41 1.229433221894283e-09 1.229433221894283e-09
42 1.230030521881531e-09 1.230030521881531e-09
43 1.230010315822483e-09 1.230010315822483e-09
44 1.230061830170825e-09 1.230061830170825e-09
45 1.230070045821208e-09 1.230070045821208e-09

• For ill-conditioned matrices, using a high-precision library
to calculate the dot product may reduce the number of itera-
tions.

• The reproducible parallel PBiCGSTAB based on the ReproB-
LAS library is faster than the reproducible parallel
PBiCGSTAB based on the ExBLAS library.

6 RELATEDWORK
Accuracy and reproducibility issues have different motivations
and natures [21], but they are due to the same reason, which is
caused by rounding errors. Although achieving reproducibility will
not improve accuracy, increasing accuracy will help reduce the
severity of reproducible problems. Here, we briefly introduce the
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Figure 2: Analysis of the reproducible version of the MPI dot
product, when the time is normalized with respect to the
regular non-deterministic MPI version.

Table 5: Different MPI implementations of dot product on
Sugon, where one process is pinned to one core.

Execution time in seconds
Number of cores Regular dot ExBLASdot ReproBLASdot
48 0.1846646 0.4009640 0.1922632
72 0.2446498 0.3884392 0.2494264
96 0.1876278 0.2979166 0.1971776
120 0.1635804 0.2669234 0.1647500
144 0.1847008 0.2548258 0.1952600

Table 6: Strong scalability of different MPI implementations
of the PBiCGSTAB method on Sugon, where one process is
pinned to one core.

Execution time in seconds
Number of cores Regular ExBLAS ReproBLAS
48 1.9791063𝑒 + 02(43) 2.6004507𝑒 + 02(43) 1.9961982𝑒 + 02(43)
72 1.9511409𝑒 + 02(50) 2.1095089𝑒 + 02(43) 1.7181676𝑒 + 02(43)
96 1.6530460𝑒 + 02(47) 1.8669468𝑒 + 02(43) 1.5399638𝑒 + 02(43)
120 1.4927750𝑒 + 02(43) 1.7845440𝑒 + 02(43) 1.5111953𝑒 + 02(43)
144 1.6825363𝑒 + 02(50) 1.7301399𝑒 + 02(43) 1.4589754𝑒 + 02(43)

Table 7: Time for one iteration of different MPI implementa-
tions of the PBiCGSTABmethod on Sugon, where one process
is pinned to one core.

Execution time in seconds
Number of cores Regular ExBLAS ReproBLAS
48 4.6025729 6.0475598 4.6423215
72 3.9022818 4.9058347 3.9957387
96 3.5171191 4.3417369 3.5813112
120 3.4715697 4.1501025 3.5144077
144 3.3624477 4.0235813 3.3929661

reproducible work of hardware manufacturers, several BLAS, and
Krylov subspace methods.

Intel has introduced a version of their Math Kernel Library (MKL)
that supports reproducibility under certain restrictive conditions

Figure 3: Analysis of the strong scalability of the reproducible
version of the MPI PBiCGSTAB, when the time is normalized
with respect to the regular non-deterministic MPI version.

Figure 4: The time for one iteration of the reproducible ver-
sion of the MPI PBiCGSTAB, which is normalized to the
regular non-deterministic MPI version.

[30]. NVIDIA’s cuBLAS routines are, by default, reproducible under
the same conditions [23].

Collange, Defour, Graillat and Iakymchuk proposed ExBLAS [15].
ExBLAS is based on combining long accumulators and floating-
point expansions in conjunction with error-free transformations.
Demmel and Nguyen proposed a series of reproducible summation
algorithms [8, 9]. Ahrens, Nguyen, and Demmel extended their
concept to few other reproducible BLAS routines, distributed as
the ReproBLAS library [1]. Mukunoki and Ogita presented their ap-
proach to implement reproducible BLAS, called OzBLAS [20], with
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Table 8: Accuracy and reproducibility comparison on the intermediate and final residual against MPFR for the orsreg_1 matrix.

Residual
Iteration MPFR Original 1 proc Original 12 proc ExBLAS 12 proc ReproBLAS 12 proc(𝐾 = 3)
0 7.206090395833573e+05 7.206090395833547e+05 7.206090395833575e+05 7.206090395833573e+05 7.206090395833574e+05
2 2.692606300836220e+04 2.692606300836336e+04 2.692606300836246e+04 2.692606300836220e+04 2.692606300836220e+04
10 1.411246260813212e+01 1.411246260496860e+01 1.411246261755428e+01 1.411246260813212e+01 1.411246260785536e+01
11 3.876226316868169e+00 3.876226319233361e+00 3.876226309633867e+00 3.876226316868169e+00 3.876226317074641e+00
· · · · · · · · · · · · · · · · · ·
35 2.314863739651161e-08 4.860845660911387e-08 6.527227051058278e-07 2.314863739651161e-08 6.133768171231175e-07
36 1.953972392467954e-08 2.497853962282123e-08 1.022778424195564e-07 1.953972392467954e-08 3.838906711474632e-07
37 1.936298845265811e-08 1.315490770381772e-08 4.408541846856823e-08 1.936298845265811e-08 6.455780118417509e-08
38 5.248376788902260e-09 5.852804371830325e-09 3.093522687975534e-08 5.248376788902260e-09 2.972253801317432e-08
39 1.054132837636201e-08 2.588257736412002e-08
40 1.989920059665807e-08 1.726414308163342e-08
41 7.518172991635087e-09 1.839832879922502e-08
42 4.637492989045974e-09

Table 9: Comparison of the reproducibility of the intermediate and final residuals for the orsreg_1 matrix.

Residual
Iteration ReproBLAS 1 proc(𝐾 = 2) ReproBLAS 12 proc(𝐾 = 2) ReproBLAS 1 proc(𝐾 = 3) ReproBLAS 12 proc(𝐾 = 3)
0 7.206090395833567e+05 7.206090395833567e+05 7.206090395833574e+05 7.206090395833574e+05
2 2.692606300836070e+04 2.692606300836070e+04 2.692606300836220e+04 2.692606300836220e+04
10 1.411246192435790e+01 1.411246192435790e+01 1.411246260785536e+01 1.411246260785536e+01
11 3.876226844033272e+00 3.876226844033272e+00 3.876226317074641e+00 3.876226317074641e+00
· · · · · · · · · · · · · · ·
35 1.136396751498361e-06 1.136396751498361e-06 6.133768171231175e-07 6.133768171231175e-07
36 3.021784694970428e-07 3.021784694970428e-07 3.838906711474632e-07 3.838906711474632e-07
37 3.063590261531213e-08 3.063590261531213e-08 6.455780118417509e-08 6.455780118417509e-08
38 1.426609689040662e-08 1.426609689040662e-08 2.972253801317432e-08 2.972253801317432e-08
39 1.058915049056299e-08 1.058915049056299e-08 2.588257736412002e-08 2.588257736412002e-08
40 7.559375007802276e-09 7.559375007802276e-09 1.726414308163342e-08 1.726414308163342e-08
41 1.839832879922502e-08 1.839832879922502e-08
42 4.637492989045974e-09 4.637492989045974e-09

Table 10: Direct error comparison against MPFR for the orsreg_1 matrix.

Direct error
Iteration MPFR Original 1 proc Origina 12 proc ExBLAS 12 proc ReproBLAS 12 proc(𝐾 = 3)
0 1.000000000000000e+00 1.000000000000000e+00 1.000000000000000e+00 1.000000000000000e+00 1.000000000000000e+00
2 1.471714605212971e+00 1.471714605213005e+00 1.471714605212973e+00 1.471714605212971e+00 1.471714605212971e+00
10 6.978257384979702e-04 6.978257386137665e-04 6.978257381344832e-04 6.978257384979702e-04 6.978257385079623e-04
11 7.101831311118190e-05 7.101831310007967e-05 7.101831314271223e-05 7.101831311118190e-05 7.101831311029372e-05
· · · · · · · · · · · · · · · · · ·
35 4.555467114641942e-12 3.179123631014136e-12 1.423583473325607e-11 4.555467114641942e-12 7.357559006493375e-12
36 2.924327446862662e-13 3.659295089164516e-13 4.185429780534378e-12 2.924327446862662e-13 5.562661442581884e-12
37 2.622346784164620e-13 1.835198659705384e-13 9.154899061059041e-13 2.622346784164620e-13 4.801270492293952e-12
38 2.333688797762079e-13 1.508793090465588e-13 4.084510507595951e-13 2.333688797762079e-13 3.195221864871201e-13
39 2.862154957483654e-13 2.675637489346627e-13
40 1.083577672034153e-13 2.515765373800605e-13
41 2.562394740834861e-13 2.566835632933362e-13
42 1.917355163527645e-13

Table 11: Direct error comparison for the orsreg_1 matrix.

Direct error
Iteration ReproBLAS 1 proc(𝐾 = 2) ReproBLAS 12 proc(𝐾 = 2) ReproBLAS 1 proc(𝐾 = 3) ReproBLAS 12 proc(𝐾 = 3)
0 1.000000000000000e+00 1.000000000000000e+00 1.000000000000000e+00 1.000000000000000e+00
2 1.471714605212970e+00 1.471714605212970e+00 1.471714605212971e+00 1.471714605212971e+00
10 6.978257649087327e-04 6.978257649087327e-04 6.978257385079623e-04 6.978257385079623e-04
11 7.101831080902343e-05 7.101831080902343e-05 7.101831311029372e-05 7.101831311029372e-05
· · · · · · · · · · · · · · ·
35 4.534927988686377e-12 4.534927988686377e-12 7.357559006493375e-12 7.357559006493375e-12
36 7.233880161550132e-12 7.233880161550132e-12 5.562661442581884e-12 5.562661442581884e-12
37 1.978417429882029e-12 1.978417429882029e-12 4.801270492293952e-12 4.801270492293952e-12
38 3.190780972772700e-13 3.190780972772700e-13 3.195221864871201e-13 3.195221864871201e-13
39 1.894040480010517e-13 1.894040480010517e-13 2.675637489346627e-13 2.675637489346627e-13
40 1.552091788425969e-13 1.552091788425969e-13 2.515765373800605e-13 2.515765373800605e-13
41 2.566835632933362e-13 2.566835632933362e-13
42 1.917355163527645e-13 1.917355163527645e-13

tunable accuracy. Chohra introduced RARE-BLAS (Reproducible,
Accurately Rounded and Efficient BLAS) that benefits from recent
accurate and efficient summation algorithms [3, 4].

Regarding the reproducible Krylov subspace method, Iakymchuk
et al. realized the reproducibility of pure MPI parallel Precondi-
tioned CG on the CPU based on ExBLAS, use Jacobi preconditioner
[14]. Further, they realized the reproducibility of the pure MPI par-
allel Preconditioned BiCGSTAB algorithm on the CPU based on
ExBLAS, use Jacobi preconditioner [16]. Furthermore, they have

also achieved reproducibility in the MPI+OpenMP environment
[17]. Mukunoki et al. realizes the reproducibility of the CG solver
on the CPU and GPU [21].

7 CONCLUSIONS AND FUTUREWORK
We emphasized the reproducibility problem of the parallel Pre-
conditioned BiCGSTAB algorithm. We at first analyzed the MPI
implementation of the PBiCGSTAB method and identified two ma-
jor sources of non-deterministic behavior, namely dot products and
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Figure 5: Total time of the reproducible version of the
MPI PBiCGSTAB, which is normalized to the regular non-
deterministic MPI version.

compiler optimization. The latter may change the order of opera-
tions or replace some of them in favor of the fused multiply-add
(fma) operation. To tackle compiler interference in computations,
we reconstruct computations as well as explicitly invoke fma in-
structions. For reproducible and distributed dot product, we use two
methods, which are based on ExBLAS and based on ReproBLAS.
Both the reproducible parallel preconditioned BiCGSTAB method
realize the reproducibility of the number of iterations, intermediate
and final residuals and the final output vector. The ExBLAS method
is more accurate than the ReproBLAS method, but the ReproBLAS
method is faster. Since the dot product accounts for a relatively
low percentage of computation time in the parallel preconditioned
BiCGSTAB, when we fix the total number of iterations to 60, the av-
erage time cost of reproducible parallel preconditioned BiCGSTAB
method based on ExBLAS is 1.23 times that of the non-reproducible
parallel preconditioned BiCGSTAB, the average time cost of re-
producible parallel preconditioned BiCGSTAB method based on
ReproBLAS is only 1.02 times that of the non-reproducible parallel
preconditioned BiCGSTAB.

In the future, we will add a comparison with OzBLAS and RARE-
BLAS. We also intend to compare reproducible parallel precondi-
tioned BiCGSTAB method based on four BLAS implementations in
a mixed MPI+OpenMP environment.
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8 APPENDICES
We use the same parameter settings as in Section 5. Table 8 shows
the 2-norm of the intermediate and final residual of the PBiCGSTAB
solver in each iteration for the orsreg_1 matrix (http://sparse.tamu.
edu/HB/orsreg_1). Table 9 shows the 2-norm of the intermediate
and final residual of the ReproBLAS in each iteration when 𝐾 = 2
and 𝐾 = 3. Table 10 shows the infinity norm of the approximate
and exact solutions of the PBiCGSTAB solver in each iteration
for the orsreg_1 matrix. Table 11 shows the infinity norm of the
approximate and exact solutions of the ReproBLAS in each iteration
when 𝐾 = 2 and 𝐾 = 3.
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