
UNIVERSITÉ PIERRE ET MARIE CURIE - PARIS 6
Laboratoire d’informatique de Paris 6

HABILITATION À DIRIGER DES RECHERCHES

spécialité : informatique

présentée et soutenue publiquement le 2 décembre 2013

par Stef GRAILLAT

Contribution à l’amélioration de la précision
et à la validation des algorithmes numériques

(contribution to the increase of accuracy and validation of
numerical algorithms)

après avis des rapporteurs,

Dominique MICHELUCCI Professeur à l’université de Bourgogne
Jean-Michel MULLER Directeur de recherche CNRS, École normale supérieure de Lyon
Lihong ZHI Professeure à l’Académie des sciences de Chine

et devant le jury composé de

Valérie BERTHÉ Directrice de recherche CNRS, université Paris Diderot
Jean-Guillaume DUMAS Professeur à l’université Joseph Fourier
Laura GRIGORI Directrice de recherche Inria, université Pierre et Marie Curie
Dominique MICHELUCCI Professeur à l’université de Bourgogne
Jean-Michel MULLER Directeur de recherche CNRS, École normale supérieure de Lyon
Mohab SAFEY EL DIN Professeur à l’université Pierre et Marie Curie

CONTENTS

Introduction 1

1 Research summary 5
1.1 Accurate polynomial evaluation and applications 6
1.2 Validation and certification of numerical algorithms 8
1.3 Symbolic-numeric algorithms . 9
1.4 The Table Maker’s Dilemma and parallel architectures 10
1.5 Publications . 11

2 Introduction to computer arithmetic and rounding error analysis 15
2.1 Introduction . 15
2.2 Computer arithmetic . 15
2.3 Methods for rounding error analysis . 19

3 Increasing the accuracy of numerical algorithms 29
3.1 Introduction . 29
3.2 Error-free transformations (EFT) . 30
3.3 Multiple precision arithmetic . 32
3.4 A compensated summation and dot product algorithm 35
3.5 A compensated Horner scheme . 38
3.6 A compensated algorithm for accurate evaluation of the derivatives of polyno-

mials . 41
3.7 Accurate Newton’s methods for finding simple roots of polynomials 47
3.8 Accurate and fast evaluation of elementary symmetric functions 50
3.9 K -fold, faithfully rounded and rounded to nearest results 55
3.10 Accurate floating-point product and exponentiation 57
3.11 Conclusion . 58

4 Verifying assumptions of theorems on the computer 61
4.1 Introduction . 61
4.2 Multiple roots of systems of nonlinear equations 62
4.3 Verified solution of nonlinear systems . 63

i

ii Contents

4.4 The univariate case . 64
4.5 The multivariate case . 65
4.6 Numerical results . 69
4.7 Conclusion . 71

5 Validation of numerical codes with multiprecision stochastic arithmetic 73
5.1 Introduction . 73
5.2 The SAM library . 74
5.3 Numerical experiments . 75
5.4 Conclusion . 84

Conclusion and future work 85

Bibliography 91

INTRODUCTION

On February 25, 1991, during the first Gulf War, an american Patriot Missile battery failed to
intercept an Iraqi Scud missile. The Scud killed 28 soldiers. It turns out that the cause was an
inaccurate computation of the time since boot due to computer arithmetic errors.

More precisely, the time in tenths of second measured by the internal clock was multi-
plied by 1/10 in order to compute the time in seconds. The computations were done using
a 24 bit fixed-point register. Because the number 1/10 has an infinite binary expansion, it
was chopped at 24 bits after the radix point. The small rounding error, when multiplied
by the large number giving the time in tenths of a second, lead to a significant error. In-
deed, the Patriot battery had been working around 100 hours, and so the resulting time
error due to the rounding error was about 0.34 seconds. (The binary expansion of 1/10 is
0.0001100110011001100110011001100.... So 1/10 is stored as 0.00011001100110011001100
in the 24 bits register of the Patriot which lead to an error of 1.1001100...×2−24 in binary,
or about 0.000000095 in decimal. Multiplying by the number of tenths of a second in 100
hours gives 0.34). A Scud travels at about 1500 meters per second which is more than a half a
kilometer in this time. This was sufficient for the Patriot to fail intercepting the Scud.

As a consequence, a good knowledge of the floating-point arithmetic is very important for
computer scientists in order to take into account the existence of rounding errors. One com-
mon practice to decrease the rounding errors is to increase the precision of the arithmetic.
While in general more robust, this can affect the performance of the program significantly.
Moreover, as it will be shown in chapter 5 with Rump’s polynomial, increasing the precision
does not necessarily increase the accuracy of the computed result. Consequently, it is impor-
tant to get more information about the accuracy of the computed results.

Our main research topic is then to provide fast and accurate numerical algorithms. Of
course, when one makes an algorithm more accurate, the cost generally increases. Our aim
is to limit this increase. To get a very accurate result, one choice could be to use computer
algebra systems. But for some applications where performance is crucial, they may be too
slow. So we prefer to use the floating-point capability of modern processors despite the
rounding errors that can occur. We mean by “fast” that our algorithms are more efficient than
the standard ones performed with multiprecision libraries like MPFR or QD (quad-double).
These libraries are easy to use and need very few transformations of the algorithm to be used.

1

2 Introduction

Our method (use of error-free transformations and compensated algorithms) needs more
work but provides faster algorithms.

Sometimes it is difficult to rewrite a program to increase the accuracy or even to know
the accuracy of the computed result (this is the case for huge codes with millions of lines).
Computing a a priori general error bound can only be done with small programs.

Indeed in large numerical simulations, the final rounding error is the result of billions of
elementary rounding errors. In the general case, it is impossible to carefully describe each
elementary error and, then, to compute the right value of the final rounding error. Our aim is,
nevertheless, to try to give an insight of the error to the user. This is what is called validation
of numerical codes. As a deterministic approach is difficult, it is usual to apply a probabilistic
model. Of course, one looses the exact description of the phenomena but one may hope to
get some global information like order of magnitude. This is the aim of our SAM library.

Another challenge for us is to provide results as accurate as those returned using computer
algebra but using numerical algorithms. Testing the nonsingularity of a matrix can be done
in computer algebra by exactly computing the determinant. In floating-point arithmetic,
it is more difficult due to rounding errors. But using interval arithmetic, it is possible, in
some cases, to rigorously prove that a matrix is nonsingular. Moreover, combining interval
arithmetic and some fixed-point theorems, it is possible to ensure the existence of the some
objects (a multiple root for example) within a certain tolerance.

The document is organized as follows:

• Chapter 1 contains a brief summary of our research since our PhD thesis in 2005.
We give a summary of all our publications since 2005. We also provide a list of our
publications in international journals and in international refereed conferences.

• Chapter 2 is a short introduction to computer arithmetic (especially floating-point
arithmetic) and also presents some methods to perform rounding error analysis. We
mainly focus on forward/backward error analysis, interval analysis and stochastic anal-
ysis. These are, indeed, the methods we will use to prove the accuracy of our algorithms
and to validate or certify some properties of those algorithms.

• In chapter 3, we present the core of our research. Our aim is to increase the accuracy
of some algorithms which correspond more or less to polynomial evaluation. For that,
we use the so-called error-free transformations (algorithms that make it possible to
compute the elementary rounding errors). Besides increasing the accuracy, we also
provide certified error bounds that can be compute in floating-point arithmetic. We
also show that our algorithms are faster than the classic ones using multiprecision
libraries sharing the same accuracy.

• In chapter 4, we study some methods to verify mathematical assumptions on computers.
We deal with the problem of multiple zeros of nonlinear equations. As it is an ill-posed
problem, we change a little bit the problem. We do not show that the equation has
a multiple zero but we show that a simple perturbation of the equation has a true
multiple zero. For that we use the so-called self-validating methods which are base on

Introduction 3

fixed-point theory and the use of interval arithmetic.
• In chapter 5, we present a tool called SAM which is a multiprecision implementation

of the DSA (Discrete Stochastic Arithmetic). This library makes it possible to perform
a validation of huge numerical code. This gives only a confidence interval but it is
generally sufficient for all but critical applications.

CHAPTER

ONE

RESEARCH SUMMARY

In this chapter, we present the work we have done since the defense of our PhD thesis in 2005.
Our main objective is to compute accurately and as fast as possible some quantities that are
useful in practice. For that, we use the fine properties of the floating-point arithmetic as well
as the power of the recent computer architectures (like parallel architectures and superscalar
architectures). In order to take avantage of the new architectures (GPU for example), we
try to redesign the algorithms in order to get the best performances in term of computing time.

Our work can be divided into four main topics:

• The first one deals with the accurate evaluation of polynomials as well as some related
topics like the computation of roots of polynomials or the evaluation of elementary
symmetric functions. Our aim is to use the properties of floating-point arithmetic to
derive some new algorithms that are accurate and faster than the other state-of-the-art
algorithms sharing the same accuracy. This work is described in Section 1.1.

• The second one corresponds to the validation and certification of numerical algorithms.
The idea is either to prove in floating-point arithmetic that a result is mathematically
true (like the fact that a matrix with floating-point coefficients is nonsingular) or to give
any guarantee (like an confidence interval) that the result is sufficiently accurate. For
the first argument, we use interval arithmetic and existence results like Brouwer’s fixed
point theorem. For the second argument, we use statistic and probability theory. This
work is described in Section 1.2.

• The third one concerns symbolic-numeric algorithms. The symbolic algorithms give an
exact representation of the result but can sometimes be slow. The numerical algorithms
(performed in finite precision) are in general faster but give an approximate result.
Taking advantage of the power of the floating-point units is a challenge in the computer
algebra community motivated by the increase of the complexity of the problems to
tackle. One of the main difficulty is to find which part of a symbolic algorithm can be
performed in finite precision without leading to a imprecise result due to rounding
errors. This work is described in Section 1.3.

• The fourth is concerned with the use of new parallel architectures (for example GPU

5

6 Chapter 1. Research summary

and Xeon Phi) to accelerate the resolution of problems necessitating huge power of com-
putation. For instance, the IEEE 754-2008 standard recommends the correct rounding
of some elementary functions. This requires to solve the Table Maker’s Dilemma which
implies a huge amount of CPU computation time. We have considered accelerating
such computations on Graphics Processing Units (GPUs) which are massively parallel
architectures with a partial SIMD execution (Single Instruction Multiple Data). We have
deployed the existing algorithm on GPU but we also redesigned this algorithm to better
take into account the architecture of the GPU. This work is described in Section 1.4.

The references in this chapter correspond to our publications and are listed in Section 1.5.
The work done after the PhD thesis corresponds to publications [1−10] and [17−24]. They
are shortly described below.

1.1 Accurate polynomial evaluation and applications

In [6], we introduced a compensated Horner scheme, that is an accurate and fast algorithm
to evaluate univariate polynomials in floating-point arithmetic. The accuracy of the com-
puted result is similar to the one given by the Horner scheme computed in twice the working
precision. This compensated Horner scheme runs at least as fast as existing implementations
producing the same output accuracy. We also proposed to compute in pure floating-point
arithmetic a valid error estimate that bounds the actual error of the compensated evalua-
tion. Numerical experiments involving ill-conditioned polynomials confirmed these results.
All algorithms are performed at a given working precision and are portable assuming the
floating-point arithmetic satisfies the requirements of the IEEE-754 standard.
The main tool for achieving such accuracy is the error-free transformations (EFT). These are
algorithms that make it possible to compute (in pure floating-point arithmetic) the rounding
error for the elementary operations (addition, subtraction and multiplication). Indeed, it
is possible to show that these elementary rounding errors can be represented exactly as
floating-point numbers.

The EFT were first designed only for real floating-point operations. Nevertheless, it is
common to deal with complex numbers in numerous applications. In order to be able to use
those accurate algorithms with complex numbers, we generalized in [23] the EFT to deal with
complex floating-point numbers. Thanks to these new EFT, we were able to generalize all the
compensated algorithms (for summation, dot product and Horner scheme mainly) to deal
with complex numbers [3].

We also used the EFT to provide a method to improve the accuracy of the product of
floating-point numbers [8]. We show that the computed result is as accurate as if computed
in twice the working precision. Such an algorithm can be useful for example to compute
the determinant of a triangular matrix and to evaluate a polynomial when represented by
the root product form. It can also be used to compute an integer power of a floating-point
number. Moreover we showed that the result computed by our new algorithm was a faithful

1.1. Accurate polynomial evaluation and applications 7

rounding of the exact result. Faithful rounding means that the computed result is equal to the
exact result if the latter is a floating-point number and otherwise is one of the two adjacent
floating-point numbers of the exact result.

As mentioned previously, our algorithms could be useful for evaluating a polynomial
when represented by the root product form. If one wants to do that efficiently, it corresponds
to a fast and accurate evaluation of elementary symmetric functions. We proposed in [17]
a new compensated algorithm by applying error-free transformations to improve the accu-
racy of the so-called Summation Algorithm, which is used, for example, in MATLAB’s poly
function. We derived a theoretical forward rounding error bound and a validated running
error bound for our new algorithm. The theoretical rounding error bound implies that the
computed result is as accurate as if computed with twice the working precision and then
rounded to the current working precision. The validated running error analysis provides a
shaper bound along with the result, without increasing significantly the computational cost.
Numerical experiments illustrated that our algorithm runs much faster than the algorithm
using the classic double-double library while sharing similar error estimates. Such an al-
gorithm can be widely applicable for example to compute characteristic polynomials from
eigenvalues. It can also be used into the Rasch model in psychological measurement.

We also investigated the inverse problem: given the floating-point coefficients of a polyno-
mial, compute the zeros of this polynomial in floating-point arithmetic. For that we examined
in [9] the local behavior of Newton’s method in floating-point arithmetic for the computation
of a simple zero of a polynomial assuming that a good initial approximation is available.
We allow an extended precision (twice the working precision) in the computation of the
residual thanks to our compensated Horner scheme described previously. We proved that,
for a sufficient number of iterations, the computed zero is as accurate as if computed in twice
the working precision. We provided numerical experiments confirming this. But in double
precision, this result is limited to a condition number of 1016 for the zeros. If we want to deal
with higher condition numbers, it is necessary to accurately evaluate the derivative of the
polynomial as well.

For that, we have introduced a compensated algorithm for the evaluation of the k-th
derivative of a polynomial in power basis in [2]. The proposed algorithm makes it possible
the direct evaluation without obtaining the k-th derivative expression of the polynomial
itself, with a very accurate result to all but the most ill-conditioned evaluation. Forward
error analysis and running error analysis are performed by an approach based on the data
dependency graph. Numerical experiments illustrated the accuracy and efficiency of the
algorithm. We have used this algorithm to improve the accuracy of Newton’s method for
simple roots that are highly ill-conditioned. Our previous result on Newton’s method is now
valid until a condition number of 1032 in double precision.

In order to increase the performances of some algorithms, it is important to take into
account the architecture of the processor. In 2009, one of the most promising processors was
the Cell. This processor was very fast but was not IEEE-754 compliant. In single precision,

8 Chapter 1. Research summary

the only rounding mode available was rounding toward zero (truncation). The classic EFT are
valid in rounding to the nearest but not with rounding toward zero. Some algorithms were
developed to perform error-free transformations in this rounding mode but they were not
efficient on the Cell processor. In [22, 7], we then have redesigned these EFT to better fit the
architecture of the Cell. This step was a first step toward the implementation of a quadruple
precision arithmetic on this processor. We have also studied different implementations of
interval arithmetic with only the rounding toward zero available.

Some of the results summarized here are described in detail in Chapter 3.

1.2 Validation and certification of numerical algorithms

In [20, 4], we developed a library called SAM. It is a multi-precision extension of the classic
CADNA library. The CADNA library implements a stochastic arithmetic that makes it possible
to estimate the propagation of rounding error in scientific codes. Concretely, each variable is
replaced by three floating-point numbers and the rounding mode is chosen randomly. The
figures that differ in these three numbers are due to rounding errors. The actual version of
CADNA only deals with single and double precision numbers defining stochastic numbers
in single and double precision. We worked on extending the library so that we can use mul-
tiprecision numbers. In CADNA the arithmetic and relational operators are overloaded in
order to be able to deal with stochastic numbers. As a consequence, the use of CADNA in a
scientific code only needs few modifications. The MPFR Library defines types of multipreci-
sion numbers as well as arithmetic functions acting on multiprecision variables. What is
important is that MPFR provides correctly rounded functions and operators in multiprecision.
So we used MPFR in CADNA. This new library called SAM makes it possible to dynamically
control the numerical methods used and more particularly to determine the optimal number
of iterations in an iterative process. This also makes it possible to tackle some problems in the
numerical validation of chaotic systems as well as in the dynamic control of approximation
methods computing integrals.

This work is presented in Chapter 5.

It is well known that it is an ill-posed problem to decide whether a function has a multiple
root. Even for a univariate polynomial an arbitrarily small perturbation of a polynomial
coefficient may change the answer from yes to no. In [5], we have proposed an algorithm
for computing verified and narrow error bounds with the property that a slightly perturbed
system is proved to have a double root within the computed bounds. For a univariate
nonlinear function we have given a similar method also for a multiple root. A narrow error
bound for the perturbation is computed as well. Computational results for systems with up to
1000 unknowns have demonstrated the performance of the methods. This result is based on
the use of interval arithmetic which makes it possible to have validated error bounds together
with Brouwer’s theorem that can ensure the existence of a value.

This work is presented in Chapter 4.

1.3. Symbolic-numeric algorithms 9

1.3 Symbolic-numeric algorithms

Polynomials appear in almost all areas in scientific computing and engineering. Most appli-
cations need to solve equations involving polynomials and systems of polynomials, often
in many variables. A list of the major fields where polynomial systems appear includes for
example: Computer Aided Design and Modeling, Mechanical Systems Design, Signal Pro-
cessing and Filter Design, Civil Engineering, Robotics, Simulation. The wide range of use of
polynomial systems needs to have fast and reliable methods to solve them. Roughly speaking,
there are two general approaches: symbolic and numeric. The symbolic approach is based
either on the theory of Gröbner basis or on the theory of resultants. For the numeric approach,
we use iterative methods like Newton’s method or homotopy continuation methods. Recently,
“hybrid methods”, combining both symbolic and numeric methods, began to appear.

In [21], we have provided a new method for computing numerical approximations of the
roots of a zero-dimensional system. It works on general systems, even those with multiple
roots, and avoids any arbitrary choice of linear combination of the multiplication opera-
tors. It works by computing eigenvectors (or a basis of the full invariant subspaces). The
sparsity/structure of the multiplication operators by one variable can also be taken into
account. The main contribution is to use finite precision computations when possible but
still certifying the results through interval computations.

Finite fields are widely used in numerous areas like cryptography, error-correcting codes
or computer algebra. Dot products are ubiquitous in all computations especially when
dealing with linear algebra. Developing fast libraries for computing dot products in finite
fields is a key tool to tackle various problems in scientific computing.

In [19], we have proposed several possibilities for using fast floating-point units for com-
puting dot products in finite fields. The main concern is then to properly manage rounding
errors that may appear during the computations. To solve this problem, we used error-free
transformations (EFT). Using these EFT on recent processors (with an FMA), we have shown
that it is possible to deal with large finite fields. We implemented those algorithms on GPU so
that we can exploit the computational capabilities of GPU to their full extent to get the result
efficiently. It was possible to reach speedups between 10 or 40 with the parallel versions, with
an algorithm using nearly no modular reduction.

The pseudozero set of a polynomial p is the set of complex numbers that are roots of
polynomials which are near p. This is a powerful tool to analyze the sensitivity of roots with
respect to perturbations of the coefficients. Some applications in algebraic computation and
robust control theory have been proposed recently. In [10], we established some topological
and geometric properties of the pseudozero set such as boundedness, compactness and
convexity.

10 Chapter 1. Research summary

1.4 The Table Maker’s Dilemma and parallel architectures

In floating-point arithmetic, having fully-specified operations is a key-requirement, if one
wants portable and predictable numerical software. Since 1985 and the IEEE-754 standard
(revised in 2008), the four arithmetic operations (+,−,×,/) are specified (they must be cor-
rectly rounded: the system must return the floating-point number nearest the exact result).
This is not fully the case for the basic mathematical functions. The same function may return
significantly different results depending on the environment. Hence, numerical programs
using these functions suffer from various problems:

• it is almost impossible to estimate their accuracy;
• their portability is difficult to guarantee.

This lack of specification is due to a problem called the Table Maker’s Dilemma. To compute
f (x) in a given format, where x is a floating-point number, we first compute an approximation
to f (x) and then we round it to the nearest floating-point number. The problem is: what
must the accuracy of the approximation be to ensure that the obtained result is always equal
to f (x) rounded to the nearest floating-point number?

To solve that problem, we must locate, for each considered floating-point format and
function, what is the hardest to round (HR) point, i.e., the floating-point number x such that
f (x) is closest (without being equal) to the exact middle of two consecutive floating-point
numbers. Current algorithms (Lefèvre algorithm and SLZ algorithm) to compute such HR
points present an exponential complexity with the number of bits of the format.

In order to obtain results in quadruple precision, which is currently a real challenge,
these implementations should be able to efficiently operate on current and forthcoming
petaflops systems. In the long term, this work should enable to require the correct rounding
of some functions in the next versions of the IEEE-754 standard, which will make it possible
to completely specify all the components of numerical softwares.

Finding the HR point can be done by exhaustive search. Lefèvre et al. proposed in 1998 an
algorithm which improves the exhaustive search by computing a lower bound on the distance
between a line segment and a grid. In [18], we presented an analysis of this algorithm in order
to deploy it efficiently on GPU (Graphics Processing Units). We managed to obtain a speedup
of 15.4 on a NVIDIA Fermi GPU over one single high-end CPU core.

We have also proposed an analysis of the Lefèvre HR argument search using the concept of
continued fractions. We then proposed a new parallel search algorithm much more efficient
on GPU thanks to its more regular control flow. We also presented an efficient hybrid CPU-
GPU deployment of the generation of the polynomial approximations required in Lefèvre’s
algorithm. In the end, we managed to obtain overall speedups up to 53.4x on one GPU over a
sequential CPU execution, and up to 7.1x over a multi-core CPU, which enable a much faster
solving of the Table Maker’s Dilemma for the double precision format.

1.5. Publications 11

1.5 Publications

This section only contains our publications in journals and international refereed conferences.
All our publications including articles in unrefereed conference proceedings, abstracts and
extended abstracts in international conferences and posters are available at the following
webpage : http://www-pequan.lip6.fr/~graillat/.

Book chapters, chapters for encyclopedia

[1] Jean-Marie Chesneaux, Stef Graillat, and Fabienne Jézéquel. Encyclopedia of Computer
Science and Engineering, volume 4, chapter Rounding Errors, pages 2480–2494. Wiley,
2009.

Articles in journals

[2] Hao Jiang, Stef Graillat, Canbin Hu, Shengguo Lia, Xiangke Liao, Lizhi Cheng, and Fang
Su. Accurate evaluation of the k-th derivative of a polynomial. J. Comput. Appl. Math.,
191:28–47, 2013.

[3] Stef Graillat and Valérie Ménissier-Morain. Accurate summation, dot product and poly-
nomial evaluation in complex floating point arithmetic. Information and Computation,
(216):57–71, 2012.

[4] Stef Graillat, Fabienne Jézéquel, Shiyue Wang, and Yuxiang Zhu. Stochastic arithmetic
in multiprecision. Math.comput.sci., 5(4):359–375, 2011.

[5] Siegfried R. Rump and Stef Graillat. Verified error bounds for multiple roots of systems
of nonlinear equations. Numer. Algorithms, 54(3):359–377, 2010.

[6] Stef Graillat, Philippe Langlois, and Nicolas Louvet. Algorithms for accurate, validated
and fast polynomial evaluation. Japan J. Indust. Appl. Math., 2-3(26):191–214, 2009.

[7] Diep Nguyen Hong, Stef Graillat, and Jean-Luc Lamotte. Extended precision with a
rounding mode toward zero environment. application on the cell processor. Int. J.
Reliability and Safety, 3(1/2/3):153–173, 2009.

[8] Stef Graillat. Accurate floating point product and exponentiation. IEEE Transactions
on Computers, 58(7):994–1000, 2009.

[9] Stef Graillat. Accurate simple zeros of polynomials in floating point arithmetic. Comput.
Math. Appl., 56(4):1114–1120, 2008.

[10] Stef Graillat. Some topological and geometric properties of pseudozero set. Appl. Math.
E-Notes, 8:98–108, 2008.

[11] Stef Graillat. Pseudozero set of real multivariate polynomials. Math.comput.sci.,
1(2):337–352, 2007.

[12] Stef Graillat and Philippe Langlois. Real and complex pseudozero sets for polynomials
with applications. Theor. Inform. Appl., 41(1):45–56, 2007.

[13] Françoise Tisseur and Stef Graillat. Structured condition numbers and backward errors
in scalar product spaces. Electron. J. Linear Algebra, 15:159–177 (electronic), 2006.

http://www-pequan.lip6.fr/~graillat/

12 Chapter 1. Research summary

[14] Stef Graillat. A note on structured pseudospectra. J. Comput. Appl. Math., 191(1):68–76,
2006.

[15] Stef Graillat. A note on a nearest polynomial with a given root. SIGSAM Bull., 39(2):53–
60, 2005.

[16] Stef Graillat. Computation of pseudozero abscissa. An. Univ. Timişoara Ser. Mat.-
Inform., 42(Special issue):115–128, 2004.

Articles in refereed conference proceedings

[17] Hao Jiang, Stef Graillat, and Roberto Barrio. Accurate and fast evaluation of elemen-
tary symmetric functions. In Proceedings of the 21st IEEE Symposium on Computer
Arithmetic, Austin, TX, USA, April 7-10, pages 183–190, 2013.

[18] Pierre Fortin, Mourad Gouicem, and Stef Graillat. Towards solving the table maker
dilemma on GPU. In Proceedings of the 20th Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing (PDP 2012), Munich, Germany,
February 15-17, pages 407–415, 2012.

[19] Jérémy Jean and Stef Graillat. A parallel algorithm for dot product over word-size
finite field using floating-point arithmetic. In Proceedings of the 12th International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing, Timisoara,
Romania, September 23-26, pages 80–87, 2010.

[20] Stef Graillat, Fabienne Jézéquel, and Yuxiang Zhu. Stochastic arithmetic in multi-
precision. In NSV3, Third International Workshop on Numerical Software Verification,
Edinburgh, UK, July 15th, 7 pages, 2010.

[21] Stef Graillat and Philippe Trébuchet. A new algorithm for computing certified numeri-
cal approximations of the roots of a zero-dimensional system. In Proceedings of the
International Symposium on Symbolic and Algebraic Computation, Seoul, Korea, July
28-31, pages 167–173, 2009.

[22] Stef Graillat and Jean-Luc Lamotte et Diep Nguyen Hong. Error-free transformation in
rounding mode toward zero. In Lecture Notes in Computer Science (LNCS), Numerical
Validation in Current Hardware Architectures, volume 5492/2009, pages 217–229, 2009.

[23] Stef Graillat and Valérie Ménissier-Morain. Compensated horner scheme in complex
floating point arithmetic. In Proceedings of the 8th Conference on Real Numbers and
Computers, Santiago de Compostela, Spain, July 7-9, pages 133–146, 2008.

[24] Stef Graillat and Valérie Ménissier-Morain. Error-free transformations in real and
complex floating point arithmetic. In Proceedings of the International Symposium on
Nonlinear Theory and its Applications, Vancouver, Canada, September 16-19, pages
341–344, 2007.

[25] Stef Graillat and Philippe Langlois. Pseudozero set of interval polynomials. In Proceed-
ings of the 21th ACM Symposium on Applied Computing SAC’2006, Dijon, France, pages
1655–1659, Avril 2006.

1.5. Publications 13

[26] Stef Graillat, Philippe Langlois, and Nicolas Louvet. Improving the compensated
Horner scheme with a Fused Multiply and Add. In Proceedings of the 21th ACM Sympo-
sium on Applied Computing SAC’2006, Dijon, France, pages 1323–1327, Avril 2006.

[27] Stef Graillat. Pseudozero set of multivariate polynomials. In Jan Draisma and Hanspeter
Kraft, editors, Proceedings of 10th Rhine Workshop on Computer Algebra (RWCA), Basel,
Switzerland, pages 131–141, Mars 2006.

[28] Stef Graillat and Philippe Langlois. A comparison of real and complex pseudozero sets
for polynomials with real coefficients. In Christiane Frougny, Vasco Brattka, and Nor-
bert Muller, editors, RNC-6, Real Numbers and Computer Conference, Schloss Dagstuhl,
Germany, pages 103–112, Novembre 2004.

[29] Stef Graillat. Computation of pseudozero abscissa. In Dana Petcu, Viorel Negru,
Daniela Zaharie, and Tudor Jebelean, editors, Proceedings of the 6th International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing, Timişoara,
Romania, pages 176–187, Septembre 2004.

[30] Stef Graillat and Philippe Langlois. Pseudozero set decides on polynomial stability. In
Bart de Moor, Bart Motmans, Jan Willems, Paul Van Dooren, and Vincent Blondel, edi-
tors, Proceedings of the Symposium on Mathematical Theory of Networks and Systems,
Leuven, Belgium, Juillet 2004. (CD-ROM, papers/537.pdf).

[31] Stef Graillat and Philippe Langlois. Testing polynomial primality with pseudozeros. In
Marc Daumas, editor, RNC-5, Real Numbers and Computer Conference, Lyon, France,
pages 121–137, Septembre 2003.

CHAPTER

TWO

INTRODUCTION TO COMPUTER ARITHMETIC
AND ROUNDING ERROR ANALYSIS

In this chapter, we provide a short introduction to computer arithmetic (especially floating-
point arithmetic) and we also present some methods to perform rounding error analysis. We
will particularly focus on forward/backward error analysis, interval analysis and stochastic
analysis. These are, indeed, the methods we will use to prove the accuracy of our algorithms
and to validate or certify some properties of those algorithms. This chapter corresponds
mainly to some parts of our paper [16] written for the Encyclopedia of Computer Science and
Engineering.

2.1 Introduction

In the introduction of this document, we have shown that a good understanding of floating-
point arithmetic is necessary to avoid some catastrophic consequences (example of the
Patriot missile). It is then important to know how the computations in floating-point arith-
metic work. Moreover, it is necessary to have some tools making it possible to get some
informations about the numerical behavior of a scientific code. For that, there exist some
methods that can help to evaluate the impact of rounding errors on the final results.

In Section 2.2, we present some computer arithmetics, mainly the floating-arithmetic
described in the IEEE 754 standard. In Section 2.3, we describe some methods to analyse
rounding errors. We present mainly forward/backward error analysis, interval analysis and
stochastic analysis.

2.2 Computer arithmetic

2.2.1 Representation of numbers

In a position number system, numbers are represented by a sequence of symbols. The
number of distinct symbols which can be used is called the radix (or the base). In the binary

15

16 Chapter 2. Introduction to computer arithmetic and rounding error analysis

system, which is used on most computers, the radix is 2; hence numbers are represented with
sequences of 0s and 1s.

Several formats exist to represent numbers on a computer. The representation of integer
numbers differs from the one of real numbers. Using a radix b, if unsigned integers are
encoded on n digits, they can range from 0 to bn − 1. Hence an unsigned integer X is
represented by a sequence an−1an−2 ... a1a0 with X =∑n−1

i=0 ai bi and ai ∈ {0, ...,b −1}. With a
radix 2 representation, signed integers are usually represented using two’s complement. With
this rule, signed integers range from −bn−1 to bn−1 −1 and the sequence an−1an−2 ... a1a0

with ai ∈ {0, ...,b −1} represents the number X =−an−1bn−1 +∑n−2
i=0 ai bi . The opposite of a

number in two’s complement format can be obtained by inverting each bit and adding 1.
In numerical computations, most real numbers are not exactly represented because only

a finite number of digits can be stored in memory. Two representations exist for real numbers:
• the fixed-point format, available on most embedded systems
• the floating-point format, available on classical computers.
In fixed-point arithmetic, a number is represented with a fixed number of digits before

and after the radix point. Using a radix b, a number X which is encoded on m digits for
its magnitude (e.g. its integer part) and f digits for its fractional part is represented by
am−1 ... a0 . a−1 ... a− f , with X =∑m−1

i=− f ai bi and ai ∈ {0, ...,b −1}.

If b = 2, unsigned values range from 0 to 2m −2− f and signed values, which are usually
represented with the two’s complement format, range from −2m−1 to 2m−1 −2− f .

In a floating-point arithmetic using radix b, a number X is represented by:
• its sign εX which is encoded on one digit that equals 0 if εX = 1 and 1 if εX =−1,
• its exponent EX , a k digit integer,
• its significand MX , encoded on p digits.
Therefore X = εX MX bEX with MX = ∑p−1

i=0 ai b−i and ai ∈ {0, ...,b −1}. The mantissa MX

can be written as MX = a0 . a1 ... ap−1.
Floating-point numbers are usually normalized. In this case, a0 6= 0, MX ∈ [1,b) and

the number zero has a special representation. Normalization presents several advantages,
such as the uniqueness of the representation (there is exactly one way to write a number in
such a form) and the easiness of comparisons (the signs, exponents and mantissas of two
normalized numbers can be tested separately).

2.2.2 The IEEE 754 standard

At the beginning, most computers had different characteristics for their floating-point arith-
metic. As a consequence, simulation programs could provide different results from one
computer to another, because of different floating-point representations. Indeed different
values could be used for the radix, the width of the exponent, the width of the mantissa,
etc. So, in 1985, the IEEE 754 standard [34] was elaborated to define floating-point formats
and rounding modes. It was revised in 2008 into the IEEE 754-2008 standard [1]. It mainly
specifies two basic formats, both using radix 2.

• With the single precision format (binary32), numbers are stored on 32 bits: 1 for the
sign, 8 for the exponent and 23 for the significand.

2.2. Computer arithmetic 17

• With the double precision format (binary64), numbers are stored on 64 bits: 1 for the
sign, 11 for the exponent and 52 for the significand.

Extended floating-point formats also exist; the standard specifies a binary128 format.
Because of the normalization, the first bit in the mantissa must be 1. As this implicit bit is

not stored, the precision of the mantissa is actually 24 bits in single precision and 53 bits in
double precision.

The exponent E is a k digit signed integer. Let us denote its bounds by Emi n and Emax .
The exponent which is actually stored is a biased exponent E∆ such that E∆ = E +∆, ∆ being
the bias. Table 2.1 specifies how the exponent is encoded.

precision length bias non-biased biased
k ∆ Emi n Emax Emi n +∆ Emax +∆

single 8 127 -126 127 1 254
double 11 1023 -1022 1023 1 2046

Table 2.1: Exponent coding in single and double precision

The number zero is encoded by setting to 0 all the bits of the (biased) exponent and all
the bits of the mantissa. Two representations actually exist for zero: +0 if the sign bit is 0 and
−0 if the sign bit is 1. This distinction is consistent with the existence of two infinities. Indeed
1/(+0) =+∞ and 1/(−0) =−∞. These two infinities are encoded by setting to 1 all the bits of
the (biased) exponent and to 0 all the bits from the mantissa. The corresponding non-biased
exponent is therefore Emax +1.

NaN (Not a Number) is a special value which represents the result of an invalid operation
such as 0/0,

p−1 or 0×∞. NaN is encoded by setting all the bits of the (biased) exponent to 1
and the fractional part of the mantissa to any non-zero value.

Denormalized numbers (also called subnormal numbers) represent values close to zero.
Without them, as the integer part of the mantissa is implicitly set to 1, there would be no
representable number between 0 and 2Emi n but 2p−1 representable numbers between 2Emi n

and 2Emi n+1. Denormalized numbers have a biased exponent set to 0. The corresponding
values are: X = εX MX 2Emi n with εX =±1, MX =∑p−1

i=1 ai 2−i and ai ∈ {0,1}. The mantissa MX

can be written as MX = 0.a1...ap−1. Therefore the lowest positive denormalized number is
u = 2Emi n+1−p .

Let us denote by F the set of all floating-point numbers, i.e. the set of all machine
representable numbers. This set, which depends on the chosen precision, is bounded and
discrete. Let us denote its bounds by Xmi n and Xmax . Let x be a real number which is not
machine representable. If x ∈ (Xmi n , Xmax), there exists

{
X −, X +}⊂ F2 such that X − < x < X +

and (X −, X +)∩F = ;. A rounding mode is a rule which, from x, provides X − or X +. This
rounding occurs at each assignment and at each arithmetic operation. The IEEE 754 standard
imposes a correct rounding for all arithmetic operations (+, −, ×, /) and also for the square
root. The result must be the same as the one obtained with infinite precision and then
rounded. The IEEE 754 standard defines four rounding modes:

• rounding towards +∞ (or upward rounding), x is represented by X +,
• rounding towards −∞ (or downward rounding), x is represented by X −,

18 Chapter 2. Introduction to computer arithmetic and rounding error analysis

• rounding towards 0, if x is negative, then it is represented by X +, if x is positive, then it
is represented by X −,

• rounding to the nearest, x is represented by its nearest machine number. If x is at the
same distance of X − and X +, it is represented by the machine number which has a
mantissa ending with a zero. With this rule, rounding is said to be tie to even.

Let us denote by X the number obtained by applying one of these rounding modes
to x. By definition, an overflow occurs if |X | > max{|Y | : Y ∈ F} and an underflow occurs if
0 < |X | < min{|Y | : 0 6= Y ∈ F} and x 6= X (the operation is inexact). Gradual underflow denotes
the situation where a number is not representable as a normalized number, but still as a
denormalized one.

The reference for floating-point arithmetic is [50].

2.2.3 Rounding error formalization

2.2.3.1 Notion of exact significant digits

In order to correctly quantify the accuracy of a computed result, the notion of exact significant
digits must be formalized. Let R be a computed result and r the corresponding exact result.
The number CR,r of exact significant decimal digits of R is defined as the number of significant
digits which are in common with r :

CR,r = log10

∣∣∣∣ R + r

2(R − r)

∣∣∣∣ . (2.1)

This mathematical definition is in accordance with the intuitive idea of decimal significant
digits in common between two numbers. Indeed Equation (5.1) is equivalent to

|R − r | =
∣∣∣∣R + r

2

∣∣∣∣10−CR,r . (2.2)

If CR,r = 3, the relative error between R and r is of the order of 10−3. Then R and r have
therefore three common decimal digits.

2.2.3.2 Rounding error occurring at each operation

A formalization of rounding errors generated by assignments and arithmetic operations is
proposed below. Let X be the representation of a real number x in a floating-point arithmetic
respecting the IEEE 754 standard. This floating-point representation of X may be written as
X = fl(x).

The machine epsilon is the distance ε from 1.0 to the next larger floating-point number.
Clearly, ε= 21−p , p being the length of the mantissa including the implicit bit. The relative
error on X is no larger than the unit round-off u:

X = x(1+δ) with |δ|6u (2.3)

where u = ε/2 with rounding to the nearest and u = ε with the other rounding modes.

2.3. Methods for rounding error analysis 19

To carry out rounding error analysis of an algorithm we need to make some assumptions
about the accuracy of the basic arithmetic operations. For that, we will use the standard
model of arithmetic. For each operation ◦ ∈ {+,−,×,/}, the computed result satisfies

fl(x ◦ y) = (x ◦ y)(1+δ), |δ|6u.

The computed operation are often written with a circle {⊕,ª,⊗,®}. This model ignores the
possibility of underflow. To take it into account, the model can be modified as follows,

fl(x ◦ y) = (x ◦ y)(1+δ)+η, |δ|6u, η6 u/2.

We always haveδη= 0. If there is underflow thenδ= 0 else η= 0. For addition and subtraction,
we always have η= 0. Indeed, if x and y are floating-point numbers and fl(x ± y) underflows
then fl(x ± y) = x ± y .

2.2.3.3 Rounding error propagation

A numerical program is a sequence of arithmetic operations. The result R provided by a
program after n operations or assignments can be modelled to the first order in 2−p as:

R ≈ r +
n∑

i=1
gi (d)2−pαi (2.4)

where r is the exact result, p is the number of bits in the mantissa, αi are independent
uniformly distributed random variables on [−1,1] and gi (d) are coefficients depending
exclusively on the data d and on the code [14].

The number CR,r of exact significant bits of the computed result R is

CR,r = log2

∣∣∣∣ R + r

2(R − r)

∣∣∣∣ . (2.5)

CR,r ≈− log2

∣∣∣∣R − r

r

∣∣∣∣= p − log2

∣∣∣∣∣ n∑
i=1

gi (d)
αi

r

∣∣∣∣∣ . (2.6)

The last term in Equation (2.6) represents the loss of accuracy in the computation of R.
This term is independent of p. Therefore, assuming that the model at the first order estab-
lished in Equation (2.4) is valid, the loss of accuracy in a computation is independent of the
precision used.

2.3 Methods for rounding error analysis

In this section, different methods of analyzing rounding errors are reviewed.

20 Chapter 2. Introduction to computer arithmetic and rounding error analysis

2.3.1 Forward/Backward analysis

This subsection is heavily inspired from [32, 43]. The historical reference is [76]. Other
important references are [13, 61].

Let X be an approximation to a real number x. The two common measures of the accuracy
of X are its absolute error

Ea(X) = |x −X |, (2.7)

and its relative error

Er (X) = |x −X |
|x| (2.8)

(which is undefined if x = 0). When x and X are vectors, the relative error is usually defined
with a norm as ‖x − X ‖/‖x‖. This is a normwise relative error. A more widely used relative
error is the componentwise relative error defined by maxi

|xi−Xi |
|xi | . It makes it possible to put

the individual relative errors on an equal footing.

2.3.1.1 Well-posed problems

Let us consider the following mathematical problem (P)

(P) : given y, find x such that F (x) = y,

where F is a continuous mapping between two linear spaces (in general Rn or Cn). One will
say that the problem (P) is well-posed in the sense of Hadamard if the solution x = F−1(y)
exists, is unique and F−1 is continuous in the neighborhood of y . If it is not the case, one
says that the problem is ill-posed. An example of ill-posed problem is the solution of a linear
system Ax = b where A is singular. It is difficult to deal numerically with ill-posed problems
(this is generally done via regularization techniques, see Chapter 4 for working with ill-posed
problems). That is why we will focus only on well-posed problems in the sequel.

2.3.1.2 Conditioning

Given a well-posed problem (P), one wants now to know how to measure the difficulty of
solving this problem. This will be done via the notion of condition number. Roughly speaking,
the condition number measures the sensitivity of the solution to perturbation in the data.
Since the problem (P) is well-posed, one can write it as x =G(y) with G = F−1.

The input space (data) and the output space (result) are denoted respectively by D and
R; the norms on these spaces will be denoted ‖ ·‖D and ‖ ·‖R . Given ε> 0, let P (ε) ⊂D be a
set of perturbation ∆y of the data y satisfying ‖∆y‖D 6 ε, the perturbed problem associated
with problem (P) is defined by

Find ∆x ∈R such that F (x +∆x) = y +∆y for a given ∆y ∈P (ε).

x and y are assumed to be non-zero. The condition number of the problem (P) in the
data y is defined by

cond(P, y) := lim
ε→0

sup
∆y∈P (ε),∆y 6=0

{‖∆x‖R

‖∆y‖D

}
. (2.9)

2.3. Methods for rounding error analysis 21

Example (summation). Let us consider the problem of computing the sum x = ∑n
i=1 yi

assuming that yi 6= 0 for all i . One will take into account the perturbation of the input data
that are the coefficients yi . Let ∆y = (∆y1, . . . ,∆yn) be the perturbation on y = (y1, . . . , yn). It
follows that ∆x =∑n

i=1∆yi . Let us endow D = Rn with the relative norm

‖∆y‖D = max
i=1,...,n

|∆yi |/|yi |

and R = R with the relative norm ‖∆x‖R = |∆x|/|x|. Since

|∆x| = |
n∑

i=1
∆yi |6 ‖∆y‖D

n∑
i=1

|yi |1

one has
‖∆x‖R

‖∆y‖D
6

∑n
i=1 |yi |

|∑n
i=1 yi |

. (2.10)

This bound is reached for the perturbation ∆y such that ∆yi /yi = sign(yi)‖∆y‖D where sign
is the sign of a real number. As a consequence,

cond

(
n∑

i=1
yi

)
=

∑n
i=1 |yi |

|∑n
i=1 yi |

. (2.11)

Now one has to interpret this condition number. A problem is considered as ill-condi-
tioned if it has a large condition number. Otherwise, it is well-conditioned. It is difficult
to give a precise frontier between well-conditioned and ill-conditioned problems. This
statement will be clarified in 2.3.1.4 thanks to the rule of thumb. The larger the condition
number is, the more a small perturbation on the data can imply a greater error on the result.
Nevertheless, the condition number measures the worst case implied by a small perturbation.
As a consequence, it is possible for an ill-conditioned problem that a small perturbation on
the data also implies a small perturbation on the result. Sometimes, such a behavior is even
typical.

Remark. It is important to note that the condition number is independent of the algorithm
used to solve the problem. It is only a characteristic of the problem.

2.3.1.3 Stability of an algorithm

Problems are generally solved using an algorithm. This is a set of operations and tests similar
to the function G defined above given the solution of our problem. Because of the rounding
errors, the algorithm is not the function G itself but rather a function Ĝ . Therefore, the
algorithm does not compute x =G(y) but x̂ = Ĝ(y).

The forward analysis tries to study the execution of the algorithm Ĝ on the data y . Fol-
lowing the propagation of the rounding errors in each intermediate variables, the forward
analysis tries to estimate or to bound the difference between x and x̂. This difference between
the exact solution x and the computed solution x̂ is called the forward error.

1. the Cauchy-Schwarz inequality |
n∑

i=1
xi yi |6 max

i=1,...,n
|xi |×

n∑
i=1

|yi | is used

22 Chapter 2. Introduction to computer arithmetic and rounding error analysis

It is easy to see that it is pretty difficult to follow the propagation of all the intermediate
rounding errors. The backward analysis makes it possible to avoid this problem by working
with the function G itself. The idea is to seek for a problem that is actually solved and to check
if this problem is “close to” the initial one. Basically, one tries to put the error on the result
as an error on the data. More theoretically, one seeks for ∆y such that x̂ =G(y +∆y). ∆y is
said to be the backward error associated with x̂. A backward error measures the distance
between the problem that is solved and the initial problem. As x̂ and G are known, it is often
possible to obtain a good upper bound for ∆y (generally, it is easier than for the forward
error). Figure 2.1 sums up the principle of the forward and backward analysis.

x̂ = Ĝ(y)

x =G(y)

y +∆y

y

G

G

Ĝ

Input space D Output space R

Backward error
Forward error

Figure 2.1: Forward and backward error for the computation of x =G(y).

Sometimes, it is not possible to have x̂ =G(y +∆y) for some ∆y but it is often possible
to get ∆x and ∆y such that x̂ +∆x = G(y +∆y). Such a relation is called a mixed forward-
backward error.

The stability of an algorithm describes the influence of the computation in finite precision
on the quality of the result. The backward error associated with x̂ = Ĝ(y) is the scalar η(x̂)
defined by, when it exists,

η(x̂) = min
∆y∈D

{‖∆y‖D : x̂ =G(y +∆y)}. (2.12)

If it does not exist, η(x̂) is set to +∞. An algorithm is said to be backward-stable for the
problem (P) if the computed solution x̂ has a “small” backward error η(x̂). In general, in finite
precision, “small” means of the order of the rounding unit u.

Let us study an example for summation. The addition is supposed to satisfy the following
property:

ẑ = z(1+δ) = (a +b)(1+δ), with |δ|6u. (2.13)

It should be noticed that this assumption is satisfied by the IEEE arithmetic. The following
algorithm to compute the sum

∑
yi will be used.

Algorithm 2.1. Computation of the sum of floating-point numbers

function res = Sum(y)
s1 = y1

for i = 2 : n
si = si−1 ⊕ yi

res= sn

2.3. Methods for rounding error analysis 23

Thanks to relation (2.13), one can write

si = (si−1 + yi)(1+δi) with |δi |6u. (2.14)

For convenience, 1+θ j =∏ j
i=1(1+εi) is written, for |εi |6u and j ∈ N. Iterating the previous

equation yields

res= y1(1+θn−1)+ y2(1+θn−1)+ y3(1+θn−2)+·· ·+ yn−1(1+θ2)+ yn(1+θ1). (2.15)

One can interpret the computed sum as the exact sum of the vector z with zi = yi (1+θn+1−i)
for i = 2 : n and z1 = y1(1+θn−1).

As |εi |6 u for all i and assuming nu < 1, it can be proved that |θi |6 i u/(1− i u) for all i .
Consequently, one can conclude that the backward error satisfies

η(x̂) = |θn−1|. nu. (2.16)

Since the backward error is of the order of u, one concludes that the classic summation
algorithm is backward-stable.

2.3.1.4 Accuracy of the solution

How is the accuracy of the computed solution estimated? The accuracy of the computed
solution actually depends on the condition number of the problem and on the stability of the
algorithm used. The condition number measures the effect of the perturbation of the data on
the result. The backward error simulates the errors introduced by the algorithm as errors on
the data. As a consequence, at the first order, one has the following rule of thumb:

forward error . condition number × backward error. (2.17)

If the algorithm is backward-stable (that is to say the backward error is of the order of the
rounding unit u) then the rule of thumb can be written as follows

forward error . condition number × u. (2.18)

In general, the condition number is hard to compute (as hard as the problem itself). As a
consequence, there are some estimators that make it possible to compute an approximation
of the condition number with a reasonable complexity.

The rule of thumb makes it possible to be more precise about what was called ill-condi-
tioned and well-conditioned problems. A problem will be said to be ill-conditioned if the
condition number is greater than 1/u. It means that the relative forward error is greater than
1 just saying that one has no accuracy at all for the computed solution.

In fact, in some cases, the rule of thumb can be proved. For the summation, if one denotes
by ŝ the computed sum of the vector yi , 16 i 6 n and s =∑n

i=1 yi the real sum, then (2.15)
implies

|ŝ − s|
|s| 6 γn−1 cond

(
n∑

i=1
yi

)
(2.19)

with γn defined by

γn := nu

1−nu
for n ∈ N. (2.20)

Since γn−1 ≈ (n −1)u, it is almost the rule of thumb with just a small factor n −1 before u.

24 Chapter 2. Introduction to computer arithmetic and rounding error analysis

2.3.1.5 The LAPACK library

The LAPACK library [4] is a collection of subroutines in Fortran 77 designed to solve major
problems in linear algebra: linear systems, least square systems, eigenvalues and singular
values problems.

One of the most important advantages of LAPACK is that it provides error bounds for all
the computed quantities. These error bounds are not rigorous but are mostly reliable. To do
this, LAPACK uses the principles of backward analysis. In general, LAPACK provides both
componentwise and normwise relative error bounds using the rule of thumb (2.17).

In fact, the major part of the algorithms implemented in LAPACK are backward-stable
meaning that the rule of thumb (2.18) is satisfied. As the condition number is generally very
hard to compute, LAPACK uses estimators. It may happen that the estimator is far from the
right condition number. In fact, the estimation can arbitrarily be far from the true condition
number. The error bounds in LAPACK are only qualitative markers of the accuracy of the
computed results.

Linear algebra problems are central in current scientific computing. Getting some good
error bounds is therefore very important and is still a challenge.

2.3.2 Interval arithmetic

Interval arithmetic [2, 41] is not defined on real numbers, but on closed bounded intervals.
The result of an arithmetic operation between two intervals, X = [x, x] and Y = [y , y], contains
all values that can be obtained by performing this operation on elements from each interval.
The arithmetic operations are defined below.

X +Y = [x + y , x + y]. (2.21)

X −Y = [x − y , x − y]. (2.22)

X ×Y = [min(x × y , x × y , x × y , x × y), max(x × y , x × y , x × y , x × y)]. (2.23)

X 2 = [min(x2, x2), max(x2, x2)] if 0 ∉ [x, x], (2.24)

[0,max(x2, x2)] otherwise.

1/Y = [min(1/y ,1/y), max(1/y ,1/y)] if 0 ∉ [y , y]. (2.25)

X /Y = [x, x]× (1/[y , y]) if 0 ∉ [y , y]. (2.26)

Arithmetic operations can also be applied to interval vectors and interval matrices by
performing scalar interval operations componentwise.

An interval extension of a function f must provide all values that can be obtained by
applying the function to any element of the interval argument X :

∀x ∈ X , f (x) ∈ f (X). (2.27)

For instance, exp[x, x] = [exp x,exp x] and sin[π/6,2π/3] = [1/2,1].
The interval obtained may depend on the formula chosen for mathematically equivalent

expressions. For instance, let f1(x) = x2−x+1. f1([−2,1]) = [−2,7]. Let f2(x) = (x−1/2)2+3/4.
The function f2 is mathematically equivalent to f1, but f2([−2,1]) = [3/4,7] 6= f1([−2,1]). One

2.3. Methods for rounding error analysis 25

can notice that f2([−2,1]) ⊆ f1([−2,1]). Indeed a power set evaluation is always contained in
the intervals resulting from other mathematically equivalent formulas.

Interval arithmetic enables one to control rounding errors automatically. On a computer,
a real value which is not machine representable can be approximated by a floating-point
number. It can also be enclosed by two floating-point numbers. Real numbers can therefore
be replaced by intervals with machine representable bounds. An interval operation can be
performed using directed rounding modes, in such a way that the rounding error is taken into
account and the exact result is necessarily contained in the computed interval. For instance,
the computed results, with guaranteed bounds, of the addition and the subtraction between
two intervals X = [x, x] and Y = [y , y] are

X +Y = [∇(x + y),∆(x + y)] ⊇ {x + y |x ∈ X , y ∈ Y } (2.28)

X −Y = [∇(x − y),∆(x − y)] ⊇ {x − y |x ∈ X , y ∈ Y } (2.29)

where ∇ (respectively ∆) denotes the downward (respectively upward) rounding mode.
Interval arithmetic has been implemented in several libraries or softwares like, for in-

stance, C-XSC 2 [33], a C++ class library, or INTLAB 3 [31, 58], a Matlab toolbox.
The main advantage of interval arithmetic is its reliability. But the intervals obtained

may be too large. The intervals width regularly increases with respect to the intervals that
would have been obtained in exact arithmetic. With interval arithmetic, rounding error
compensation is not taken into account.

The overestimation of the error can also be due to the loss of information on variable
dependency. In interval arithmetic, several occurrences of the same variable are considered
as different variables. For instance, let X = [1,2],

∀x ∈ X , x −x = 0, (2.30)

but

X −X = [−1,1]. (2.31)

Another source of overestimation is the “wrapping effect” due to the enclosure of a non-
interval shape range into an interval. For instance, the image of the square [0,

p
2]× [0,

p
2] by

the function

f (x, y) =
p

2

2
(x + y, y −x) (2.32)

is the rotated square S1 with corners (0,0), (1,−1),(2,0), (1,1). The square S2 provided by
interval arithmetic operations is: f ([0,

p
2], [0,

p
2]) = ([0,2], [−1,1]). The area obtained with

interval arithmetic is twice the one of the rotated square S1.
As the classical numerical algorithms can lead to over-pessimistic results in interval arith-

metic, specific algorithms, suited for interval arithmetic, have been proposed (for example
for an accurate inclusion for the determinant of a matrix in [61, p.214]).

2. http://www.xsc.de
3. http://www.ti3.tu-harburg.de/rump/intlab

http://www.xsc.de
http://www.ti3.tu-harburg.de/rump/intlab

26 Chapter 2. Introduction to computer arithmetic and rounding error analysis

2.3.3 Probabilistic approach

Here, a method for estimating rounding errors is presented. For the mathematical model,
remember the formula at the first order (2.4). Concretely, the rounding mode of the computer
is replaced by a random rounding mode, i.e. at each elementary operation, the result is
rounded towards −∞ or +∞ with probability 0.5. The main interest of this new rounding
mode is to run a same binary code with different rounding error propagations because one
generates for different runs different random draws. If rounding errors affect the result, even
slightly, for N different runs, one obtains N different results on which a statistical test may be
applied. This is the basic idea of the CESTAC method (Contrôle et Estimation STochastique
des Arrondis de Calcul). Briefly, the part of the N mantissas that is common to the N results
is assumed not to be affected by rounding errors, contrary to the part of the N mantissas
which is different from one result to an other.

The implementation of the CESTAC method in a code providing a result R consists in:
• executing N times this code with the random rounding mode, which is obtained by

using randomly the rounding mode towards −∞ or +∞; then, an N -sample (Ri) of R is
obtained,

• choosing as the computed result the mean value R of Ri , i = 1, ..., N ,
• estimating the number of exact decimal significant digits of R with

CR = log10

pN
∣∣∣R∣∣∣

στβ

 , (2.33)

where

R = 1

N

N∑
i=1

Ri and σ2 = 1

N −1

N∑
i=1

(
Ri −R

)2
. (2.34)

τβ is the value of Student’s distribution for N −1 degrees of freedom and a probability
level 1−β.

From equation (2.4), if the first order approximation is valid, one may deduce that:

1. the mean value of the random variable R is the exact result r ,

2. under some assumptions, the distribution of R is a quasi-Gaussian distribution.

It has been shown that N = 3 is an adequate choice. The estimation with N = 3 is more
reliable than with N = 2 and increasing the size of the sample does not improve the quality of
the estimation. The complete theory can be found in [15, 74].

This leads to the synchronous implementation of the method, i.e. to the parallel com-
putation of the N results Ri . In this approach, a classical floating-point number is replaced
by a 3-sample X = (X1, X2, X3) and an elementary operation Ω ∈ {+,−,×,/} is defined by
XΩY = (X1ωY1, X2ωY2, X3ωY3) where ω represents the corresponding floating-point opera-
tion followed by a random rounding.

A new important concept has also been introduced: the computational zero.

Definition 2.1. During the run of a code using the CESTAC method, an intermediate or a
final result R is a computational zero, denoted by @.0, if one of the two following conditions
holds:

2.3. Methods for rounding error analysis 27

• ∀i ,Ri = 0,
• CR 6 0.

Any computed result R is a computational zero if either R = 0, R being significant, or R is
non significant. In other words, a computational zero is a value that cannot be differentiated
from the mathematical zero because of its rounding error. From this new concept of zero,
one can deduce new order relationships that take into account the accuracy of intermediate
results. For instance,

Definition 2.2. X is stochastically strictly greater than Y if and only if:

X > Y and X −Y 6= @.0.

or

Definition 2.3. X is stochastically greater than or equal to Y if and only if:

X > Y or X −Y = @.0.

The joint use of the CESTAC method and these new definitions is called DSA (Discrete
Stochastic Arithmetic) [75]. Elements of the DSA, which are named stochastic numbers, are
N -sets provided by the CESTAC method. DSA enables to estimate the impact of rounding
errors on any result of a scientific code and also to check that no anomaly occurred during the
run, especially in branching statements. The CADNA (Control of Accuracy and Debugging for
Numerical Applications) software 4 [38] is a library which implements DSA in any code written
in C++ or in Fortran and allows to use new numerical types: the stochastic types. The library
contains the definition of all arithmetic operations and order relations for the stochastic
types. The control of the accuracy is only performed on variables of stochastic type. When a
stochastic variable is printed, only its exact significant digits appear. For a computational
zero, the symbol @.0 is printed. The CADNA library allows, during the execution of any code:

• the estimation of the error due to rounding error propagation,
• the detection of numerical instabilities,
• the checking of the sequencing of the program (tests and branchings),
• the estimation of the accuracy of all intermediate computations.

4. http://www-pequan.lip6.fr/cadna/

http://www-pequan.lip6.fr/cadna/

CHAPTER

THREE

INCREASING THE ACCURACY OF NUMERICAL
ALGORITHMS

This chapter corresponds mainly to some parts of our papers [16, 37, 29, 26, 25, 36].

3.1 Introduction

In this chapter, different methods that increase the accuracy of the computed result of an
algorithm are presented. Far from being exhaustive, two classes of methods are presented.
The first class is algorithms using multiprecision arithmetic. The second class is the class of
compensated methods. These methods consist in estimating the rounding error of individual
operations and then adding them later on to the computed result.

Throughout this chapter, one assumes that the floating-point arithmetic adhers to IEEE
754 floating-point standard, in rounding to the nearest. One also assume that no overflow
nor underflow occurs.

In Section 3.2, we present the classic error-free transformations. They are a basis block
for our compensated algorithms. They are also used in some multiprecision libraries we
present in Section 3.3. We will show that the use of algorithms with multiprecision libraries is
less efficient that using compensated algorithms for doubling the precision. Compensated
algorithms for summation and dot product from Ogita, Rump and Oishi [51] are presented in
Section 3.4. In Section 3.5, we present our compensated Horner scheme. In Section 3.6 we
modify this algorithm to also compute accurately the derivatives of a polynomial. We use
this algorithm to increase the accuracy of simple roots by Newton’s iterations in Section 3.7.
Section 3.8 is devoted to the opposite problem. Knowing the roots, we accurately compute
the coefficients of the corresponding polynomial. Sometimes, more accuracy is needed. In
Section 3.9, we present what a faithful rounding is. In Section 3.10, we propose an algorithm
for computing a faithful rounding of the product of floating-point numbers.

29

30 Chapter 3. Increasing the accuracy of numerical algorithms

3.2 Error-free transformations (EFT)

One can notice that a ◦b ∈ R for ◦ ∈ {+,−,×,/} and a}b ∈ F for} ∈ {⊕,ª,⊗,®} but in general
a ◦b ∈ F does not hold. It is known that for the basic operations +,−,× in rounding to nearest
assuming no underflow nor overflow, the approximation error of a floating-point operation is
still a floating-point number:

x = a ⊕b ⇒ a +b = x + y with y ∈ F,
x = a ªb ⇒ a −b = x + y with y ∈ F,
x = a ⊗b ⇒ a ×b = x + y with y ∈ F,
x = a ®b ⇒ a = x ×b + y with y ∈ F,
x = p©(a) ⇒ a = x2 + y with y ∈ F.

(3.1)

These are error-free transformations of the pair (a,b) into the pair (x, y). The floating-point
number x is the result of the floating-point operation whereas y is the rounding term. Fortu-
nately, the quantities x and y in (3.1) can be computed exactly in floating-point arithmetic.
For the algorithms, Matlab-like notations are used. For addition, one can use the following
algorithm by Knuth.

Algorithm 3.1 (Knuth [40]). Error-free transformation of the sum of two floating-point num-
bers

function [x, y] = TwoSum(a,b)
x = a ⊕b
z = x ªa
y = (a ª (x ª z))⊕ (b ª z)

Another algorithm to compute an error-free transformation is the following algorithm
from Dekker. The drawback of this algorithm is that x + y = a +b provided that |a|> |b|.
Generally, on modern computers, a comparison followed by a branching and 3 operations
costs more than 6 operations. As a consequence, TwoSum is generally more efficient than
FastTwoSum plus a branching.

Algorithm 3.2 (Dekker [17]). Error-free transformation of the sum of two floating-point
numbers.

function [x, y] = FastTwoSum(a,b)
x = a ⊕b
y = (a ªx)⊕b

Concerning the error-free transformation of a product, it can be written in a very simple
way if a Fused-Multiply-and-Add (FMA) operator is available on the target architecture. Some
computers have a Fused-Multiply-and-Add (FMA) operation that enables a floating-point mul-
tiplication followed by an addition to be performed as a single floating-point operation. The
Intel IA-64 architecture, implemented in the Intel Itanium processor, has an FMA instruction
as well as the IBM RS/6000 and the PowerPC before it. On the Itanium processor, the FMA
instruction enables a multiplication and an addition to be performed in the same number

3.2. Error-free transformations (EFT) 31

of cycles than one multiplication or one addition. As a result, it seems to be advantageous
for speed as well as for accuracy. The FMA is now available on GPU, Intel Haswell and AMD
Bulldozer processors.

Theoretically, this means that for given a,b,c ∈ F, the result of FMA(a,b,c) is the nearest
floating-point number of a ×b + c ∈ R. The FMA satisfies

FMA(a,b,c) = (a ×b + c)(1+ε1) = (a ×b + c)/(1+ε2) with |εν|6u.

Thanks to the FMA, the TwoProduct algorithm can be written as follows which costs only 2
flops.

Algorithm 3.3. Error-free transformation of the product of two floating-point numbers using
an FMA.

function [x, y] = TwoProduct(a,b)
x = a ⊗b
y = FMA(a,b,−x)

If no FMA is available, one first needs to split the input argument into two parts. Let p be
given by u = 2−p and let us define s = dp/2e. For example, if the working precision is IEEE
754 double precision, then p = 53 and s = 27. The following algorithm due to Dekker splits a
floating-point number a ∈ F into two parts x and y such that

a = x + y with |y |6 |x|. (3.2)

Both parts x and y have at most s −1 non-zero bits.

Algorithm 3.4 (Dekker [17]). Error-free split of a floating-point number into two parts

function [x, y] = Split(a,b)
factor= 2s ⊕1
c = factor⊗a
x = c ª (c ªa)
y = a ªx

The main point of Split is that both parts can be multiplied in the same precision without
error. With this function, an algorithm attributed to Veltkamp by Dekker enables to compute
an error-free transformation for the product of two floating-point numbers. This algorithm
returns two floating-point numbers x and y such that

a ×b = x + y with x = a ⊗b. (3.3)

Algorithm 3.5 (Veltkamp [17]). Error-free transformation of the product of two floating-point
numbers

32 Chapter 3. Increasing the accuracy of numerical algorithms

function [x, y] = TwoProduct(a,b)
x = a ⊗b
[a1, a2] = Split(a)
[b1,b2] = Split(b)
y = a2 ⊗b2 ª (((x ªa1 ⊗b1)ªa2 ⊗b1)ªa1 ⊗b2)

The performance of the algorithms is interpreted in terms of floating-point operations
(flops). The following theorem summarizes the properties of algorithms TwoSum and
TwoProduct.

Theorem 3.1 (Ogita, Rump, Oishi [51]). Let a,b ∈ F and let x, y ∈ F be given such that [x, y] =
TwoSum(a,b) (Algorithm 3.1). Then,

a +b = x + y, x = a ⊕b, |y |6u|x|, |y |6u|a +b|. (3.4)

The algorithm TwoSum requires 6 flops.
Let a,b ∈ F and let x, y ∈ F such that [x, y] = TwoProduct(a,b) (Algorithm 3.5). Then,

a ×b = x + y, x = a ⊗b, |y |6u|x|, |y |6u|a ×b|. (3.5)

The algorithm TwoProduct requires 2 flops with FMA and 17 flops otherwise.

3.3 Multiple precision arithmetic

One possibility to increase the accuracy is to increase the working precision. For this purpose,
some multiprecision libraries have been developed. One can divide the libraries into four
categories.

Arbitrary precision libraries using a multiple-digit format

In these libraries a number is expressed as a sequence of digits coupled with a single exponent.
Examples of this format are Bailey’s ARPREC 1 [6], Brent’s MP 2 [8] or MPFR 3 [22]. ARPREC
and MPFR are briefly described below.

The ARPREC library, which is entirely written in C++, supports high-precision real, integer
and complex datatypes. Both C++ and Fortran-90 translation modules modules are also
provided that allow one to convert an existing C++ or Fortran-90 program to use the library
with only minor changes to the source code. In most cases only the type statements and (in
the case of Fortran-90 programs) read/write statements need be changed.

The ARPREC package also includes "The Experimental Mathematician’s Toolkit", which
is a complete interactive high-precision arithmetic computing environment. One enters

1. http://crd.lbl.gov/~dhbailey/mpdist/
2. http://web.comlab.ox.ac.uk/oucl/work/richard.brent/pub/pub043.html or http:

//wwwmaths.anu.edu.au/~brent/pub/pub043.html
3. http://www.mpfr.org/

http://crd.lbl.gov/~dhbailey/mpdist/
http://web.comlab.ox.ac.uk/oucl/work/richard.brent/pub/pub043.html
http://wwwmaths.anu.edu.au/~brent/pub/pub043.html
http://wwwmaths.anu.edu.au/~brent/pub/pub043.html
http://www.mpfr.org/

3.3. Multiple precision arithmetic 33

expressions in a Mathematica-style syntax, and the operations are performed using the
ARPREC package, with a level of precision that can be set from 100 to 1000 decimal digit
accuracy. This program supports all basic arithmetic operations, common transcendental
and combinatorial functions, high-precision quadrature, summation of series,...

The MPFR library is written in C and is based on the GNU MP library (GMP for short).
The internal representation of a floating-point number x by MPFR is

• a mantissa m;
• a sign s;
• a signed exponent e.

If the precision of x is p, then the mantissa m has p significant bits. The mantissa m is
represented by an array of GMP unsigned machine-integer type and is interpreted as 1/26
m < 1. As a consequence, MPFR does not allow denormalized numbers.

MPFR provides the four IEEE rounding modes as well as some elementary functions
(e.g. exp, log, cos, sin), all correctly rounded. The semantic in MPFR is as follows: for each
instruction a = b + c or a = f (b,c) the variables may have different precisions. In MPFR,
the data b and c are considered with their full precision and a correct rounding to the full
precision of a is computed.

Applications using MPFR inherit the same properties as programs using the IEEE 754
standard (portability, well-defined semantics, possibility to design robust programs and
prove their correctness) with no significant slowdown on average with respect to multiple
precision libraries with ill-defined semantics.

Arbitrary precision libraries using a multiple-component format

In these libraries a number is expressed as unevaluated sums of ordinary floating-point
words. Examples using this format are Priest’s 4 and Shewchuk’s 5 libraries. Such a format is
also introduced in [66]. An expansion x is then a unevaluated sums of several floating point
numbers

x = x1 +x2 +·· ·+xm .

Each xi is called a component of x and is a floating point number. To impose some structure
on expansions, they are required to be nonoverlapping and ordered by magnitude (|x1|6
|x2|6 · · ·6 |xm |). Priest says that x and y nonoverlap (with |x|6 |y |) if the weight of the most
significant bit of x is less than the one of the least signicant of y . This is the main difference
with Shewchuck’s expansions where x and y nonoverlap if the weight of the most significant
nonzero bit of x is less than the one of the least significant nonzero bit of y . Note that the
number m of floating point numbers is not fixed. For exemple if x = x1 + x2 +·· ·+ xm and
y = x1 +x2 +·· ·+xn then the product x y is a expansion that can have up to nm terms.

4. ftp://ftp.icsi.berkeley.edu/pub/theory/priest-thesis.ps.Z
5. http://www.cs.cmu.edu/~quake/robust.html

ftp://ftp.icsi.berkeley.edu/pub/theory/priest-thesis.ps.Z
http://www.cs.cmu.edu/~quake/robust.html

34 Chapter 3. Increasing the accuracy of numerical algorithms

Fixed precision libraries using a multiple-component format

These libraries use the multiple-component format but with a limited number of components.
Examples of this format are Bailey’s double-double1 (double-double numbers are represented
as an unevaluated sum of a leading double and a trailing double) and quad-double1.

The double-double library is presented now. For our purpose, it suffices to know that
a double-double number a is a pair (ah , al) of IEEE-754 double precision floating-point
numbers that satisfies a = ah +al and |al |6u|ah |. In the sequel, algorithms for

• the addition of a double number and a double-double number;
• the product of a double-double number by a double number;
• the addition of a double-double number and a double-double number

will only be presented. Of course, it is also possible to implement the product of a double-
double by a double-double as well as the division of a double-double by a double, etc.

Algorithm 3.6. Addition of the double number b and the double-double number (ah , al)

function [ch ,cl] = add_dd_d(ah , al ,b)
[th , tl] = TwoSum(ah ,b)
[ch ,cl] = FastTwoSum(th , (tl ⊕al))

Algorithm 3.7. Product of the double-double number (ah , al) by the double number b

function [ch ,cl] = prod_dd_d(ah , al ,b)
[sh , sl] = TwoProduct(ah ,b)
[th , tl] = FastTwoSum(sh , (al ⊗b))
[ch ,cl] = FastTwoSum(th , (tl ⊕ sl))

Algorithm 3.8. Addition of the double-double number (ah , al) and the double-double num-
ber (bh ,bl)

function [ch ,cl] = add_dd_dd(ah , al ,bh ,bl)
[sh , sl] = TwoSum(ah ,bh)
[th , tl] = TwoSum(al ,bl)
[th , sl] = FastTwoSum(sh , (sl ⊕ th))
[ch ,cl] = FastTwoSum(th , (tl ⊕ sl))

Algorithms 3.6 to 3.8 use error-free transformations and are very similar to compensated
algorithms we will study in the next section. The difference lies in the step of renormalization.
This step is the last one in each algorithm and makes it possible to ensure that |cl |6 u|ch |.
This is why compensated algorithms are faster than the ones that use double-double library.

There are several implementations for the double-double library. The difference is that
the lower-order terms are treated in a different way. If a,b are double-double numbers and
} ∈ {+,×}, then one can show [44] that

fl(a}b) = (1+δ)(a}b),

with |δ|6 4 ·2−106.

3.4. A compensated summation and dot product algorithm 35

The MPFI library for multiprecision interval arithmetic

MPFI (Multiple Precision Floating-point Interval) 6 [54] is intended to be a portable library
written in C for arbitrary precision interval arithmetic with intervals represented using MPFR
reliable floating-point numbers. It is based on the GNU MP library and on the MPFR library.
The purpose of an arbitrary precision interval arithmetic is on the one hand to get guaranteed
results, thanks to interval computation, and on the other hand to obtain accurate results,
thanks to multiple precision arithmetic. The MPFI library is built upon MPFR in order to
benefit from the correct roundings provided by MPFR. Further advantages of using MPFR are
its portability and compliance with the IEEE 754 standard for floating-point arithmetic.

3.4 A compensated summation and dot product algorithm

Hereafter, a compensated scheme to evaluate the sum of floating-point numbers is presented,
i.e. the error of individual summation is somehow corrected.

Indeed, with Algorithm 3.1 (TwoSum), one can compute the rounding error. This algorithm
can be cascaded and sum up the errors to the ordinary computed summation. For a summary,
see Figure 3.1 and Algorithm 3.9.

TwoSumTwoSum TwoSum TwoSum· · ·

p1 p2 pn−1 pn

q2 q3 qn−1 qn

π2 πn−1 πnπn−2π3p1

+ +·· ·

+

+ +

Figure 3.1: Compensated summation algorithm

Algorithm 3.9 (Ogita, Rump, Oishi [51]). Compensated summation algorithm

function res = CompSum(p)
π1 = p1 ; σ1 = 0;
for i = 2 : n

[πi , qi] = TwoSum(πi−1, pi)
σi =σi−1 ⊕qi

res=πn ⊕σn

The following proposition gives a bound on the accuracy of the result. The notation γn

defined by Equation (2.20) will be used. When using γn , nu6 1 is implicitly assumed.

6. http://perso.ens-lyon.fr/nathalie.revol/mpfi_toc.html

http://perso.ens-lyon.fr/nathalie.revol/mpfi_toc.html

36 Chapter 3. Increasing the accuracy of numerical algorithms

Proposition 3.1 (Ogita, Rump, Oishi [51]). Suppose Algorithm CompSum is applied to floating-
point number pi ∈ F, 16 i 6 n. Let s :=∑

pi , S :=∑ |pi | and nu < 1. Then, one has

|res− s|6u|s|+γ2
n−1S. (3.6)

In fact, the assertions of Proposition 3.1 are also valid in the presence of underflow. One
can interpret Equation (3.6) in terms of the condition number for the summation (2.11).
Since

cond
(∑

pi
)= ∑ |pi |∣∣∑pi

∣∣ = S

|s| , (3.7)

inserting this in Equation (3.6) yields

|res− s|
|s| 6u+γ2

n−1 cond
(∑

pi
)

. (3.8)

Basically, the bound for the relative error of the result is essentially (nu)2 times the condition
number plus the rounding u due to the working precision. The second term on the right
hand side reflects the computation in twice the working precision (u2) thanks to the rule of
thumb. The first term reflects the rounding back in the working precision.

105 1010 1015 1020 1025 1030 1035

10−18

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

Condition number

Re
la

tiv
e

fo
rw

ar
d

er
ro

r

Condition number and relative forward error

γn−1 cond u+γ2n
2 cond

classic summation
compensated summation

Figure 3.2: Compensated summation algorithm

The compensated summation on ill-conditioned sum was tested; the condition number
varying from 104 to 1040.

3.4. A compensated summation and dot product algorithm 37

Figure 3.2 shows the relative accuracy |res− s|/|s| of the computed value by the two
algorithms 2.1 and 3.9. The a priori error estimations (2.19) and (3.11) are also plotted.

As one can see in Figure 3.2, the compensated summation algorithm exhibits the ex-
pected behavior, that is to say, the compensated rule of thumb (3.11). As long as the condition
number is less than u−1, the compensated summation algorithm produces results with full
precision (forward relative error of the order of u). For condition numbers greater than u−1,
the accuracy decreases and there is no accuracy at all for condition numbers greater than u−2.

Thanks to the TwoProduct algorithm, we already have an error-free transformation of a
product of two floating-point numbers into the sum of two floating-point numbers. Combin-
ing TwoProduct with the compensated algorithm CompSum, we can provide a compensated
algorithm for computing the dot product of two floating-point vectors x, y of length n. For
each elementary operation (here addition and substraction), we can compute the rounding
error thanks to error-free transformations. We can then accumulate the errors and add them
to the final result. This is what is done in the following algorithm. We recall that given two
vectors of size n of floating point numbers, the dot product is defined by

xT y =
n∑

i=1
xi yi .

Algorithm 3.10 (Ogita, Rump, Oishi [51]). Dot product in twice the working precision

function res= CompDot2(x, y)
[p, s] = TwoProduct(x1, y1)
for i = 2 : n

[h,r] = TwoProduct(xi , yi)
[p, q] = TwoSum(p,h)
s = s ⊕ (q ⊕ r)

end
res= p ⊕ s

The following theorem gives an a priori error bound on the error.

Proposition 3.2 (Ogita, Rump, Oishi [51]). Let floating point numbers xi , yi ∈ F,16 i 6 n, be
given and denote by res ∈ F the result computed by Algorithm CompDot2. Then occurs,

|res−xT y |6u|xT y |+γ2
n |xT ||y |. (3.9)

One can interpret Equation (3.9) in terms of the condition number for dot product. Since

cond
(
xT y

)= |x|T |y |
|xT y | , (3.10)

inserting this in Equation (3.9) yields

|res−xT y |
|xT y | 6u+γ2

n cond
(
xT y

)
. (3.11)

As a consequence, we conclude that the result is as accurate as if computed in twice
the working precision and then rounded to the current working precision. This is the same
phenomena as for the compensated summation algorithm.

38 Chapter 3. Increasing the accuracy of numerical algorithms

3.5 A compensated Horner scheme

We now want to accurately compute the evaluation of a polynomial at a given point. We
present hereafter a compensated algorithm for Horner scheme. One can find a more detailed
description of the algorithm in [30, 29]. We first recall the classic algorithm for Horner scheme
and give a error bound. We then present the compensated Horner scheme together with an
error bound.

The classical method for evaluating a polynomial

p(x) =
n∑

i=0
ai xi

is the Horner scheme which consists on the following algorithm.

Algorithm 3.11. Polynomial evaluation with Horner’s scheme

function res= Horner(p, x)
sn = an

for i = n −1 : −1 : 0
si = si+1 ⊗x ⊕ai

end
res= s0

A forward error bound for the result of Algorithm 3.11 is (see [32, p.95]):

|p(x)−res|6 γ2n

n∑
i=0

|ai ||x|i = γ2n p̃(|x|)

where p̃(x) =∑n
i=0 |ai |xi . It is very interesting to express and interpret this result in terms of

the condition number of the polynomial evaluation defined by

cond(p, x) =
∑n

i=0 |ai ||x|i
|p(x)| = p̃(|x|)

|p(x)| . (3.12)

Thus we have |p(x)−res|
|p(x)| 6 γ2n cond(p, x).

If an FMA instruction is available, then the statement si = si+1 ⊗x ⊕ai in Algorithm 3.11
can be re-written si = FMA(si+1, x, ai) which slightly improves the error bound. Using an FMA
this way, the computed result now satisfies

|p(x)−res|
|p(x)| 6 γn cond(p, x).

We can modify the Horner scheme to compute the rounding error at each elementary
operation that are a sum and a product. This is done in Algorithm 3.12.

Algorithm 3.12. Polynomial evaluation with a compensated Horner’s scheme

3.5. A compensated Horner scheme 39

function res= CompHorner(p, x)
sn = an

rn = 0
for i = n −1 : −1 : 0

[pi ,πi] = TwoProduct(si+1, x)
[si ,σi] = TwoSum(pi , ai)
ri = ri+1 ⊗x ⊕ (πi ⊕σi)

end
res= s0 ⊕ r0

If we denote by pπ and pσ the two following polynomials

pπ =
n−1∑
i=0

πi xi , pσ =
n−1∑
i=0

σi xi ,

then one can show, thanks to error-free transformations that

p(x) = s0 +pπ(x)+pσ(x).

If one looks at the previous algorithm closely, it is then clear that s0 = Horner(p, x). As a
consequence, we can derive a new error-free transformation for polynomial evaluation

p(x) = Horner(p, x)+pπ(x)+pσ(x).

The compensated Horner scheme first computes pπ(x)+ pσ(x) which correspond to the
rounding errors and then add the obtained value to the result of the classic Horner scheme
Horner(p, x).

We will show that the results computed by Algorithm 3.12 admit significantly better error-
bounds than those computed with the classical Horner scheme. We argue that Algorithm 3.12
provides results as if they were computed using twice the working precision. This is summed
up in the following theorem.

Theorem 3.2. Consider a polynomial p of degree n with floating point coefficients, and a
floating point value x. The forward error in the compensated Horner algorithm is such that

|CompHorner(p, x)−p(x)|6u|p(x)|+γ2
2n p̃(x). (3.13)

It is interesting to interpret the previous theorem in terms of the condition number of
the polynomial evaluation of p at x. Combining the error bound (3.13) with the condition
number (3.12) for polynomial evaluation gives

|CompHorner(p, x)−p(x)|
|p(x)| 6u+γ2

2n cond(p, x). (3.14)

In other words, the bound for the relative error of the computed result is essentially γ2
2n

times the condition number of the polynomial evaluation, plus the unavoidable term u
for rounding the result to the working precision. In particular, if cond(p, x) < γ−1

2n , then the

40 Chapter 3. Increasing the accuracy of numerical algorithms

relative accuracy of the result is bounded by a constant of the order of u. This means that the
compensated Horner algorithm computes an evaluation accurate to the last few bits as long
as the condition number is smaller than γ−1

2n ≈ (2nu)−1. Besides that, (3.14) tells us that the
computed result is as accurate as if computed by the classic Horner algorithm with twice the
working precision, and then rounded to the working precision.

We test the expanded form of the polynomial pn(x) = (x −1)n . The argument x is chosen
near to the unique real root 1 of pn , and with many significant bits so that a lot of rounding
errors occur during the evaluation of pn(x). We increment the degree n from 1 until a
sufficiently large range has been covered by the condition number cond(pn , x). Here we have

cond(pn , x) = p̂n(x)

|pn(x)| =
∣∣∣∣1+x

1−x

∣∣∣∣n

,

and cond(pn , x) grows exponentially with respect to n. In the experiments reported on Fig-
ure 3.3, cond(pn , x) varies from 102 to 1040 (for x = fl(1.333), that corresponds to the degree
range n = 3, . . . ,42). These huge condition numbers have some meaning since here the coeffi-
cients of p and the value x are chosen to be exact floating point numbers.

We experiment both Horner and CompHorner. For each polynomial pn , the exact value
pn(x) is approximate with a high accuracy. Figure 3.3 presents the relative accuracy |y −
pn(x)|/|pn(x)| of the evaluation y computed by the two algorithms.

105 1010 1015 1020 1025 1030 1035

10−18

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

γ2n cond u+γ2n
2 cond

Condition number and relative forward error

Condition number

Re
la

tiv
e

fo
rw

ar
d

er
ro

r

Classic Horner scheme
Compensated Horner scheme

1/u 1/u2

Figure 3.3: Comparison of the classic Horner scheme with the Compensated Horner scheme

We observe that the compensated algorithm exhibits the expected behavior. The full
precision solution is computed as long as the condition number is smaller than u−1 ≈ 1016.
Then, for condition numbers between u−1 and u−2 ≈ 1032, the relative error degrades to

3.6. A compensated algorithm for accurate evaluation of the derivatives of polynomials 41

no accuracy at all. However, when the condition number is beyond u−1, the a priori error
estimate 3.14 is always pessimistic by 2 or 3 orders of magnitude.

We now demonstrate the practical efficiency in terms of running time comparing our
algorithms and up-to-date challengers on several significant computing environments.

Since Bailey’s double-double are usually considered as the most efficient portable library
to double the IEEE-754 double precision, we consider it as a reference in the comparisons
with CompHorner. We denote by DDHorner, our implementation of the Horner algorithm
with the double-double format. We also denote by MPFRHorner the Horner algorithm with
106-bits precision arithmetic provided by the MPFR library.
We implemented the three algorithms CompHorner, DDHorner, and MPFRHorner in a C code
to measure their overhead compared to the Horner algorithm. We programed these tests
straightforwardly with no other optimization than the ones performed by the compiler. All
timings were done with the cache warmed to minimize the memory traffic over-cost.

The measures were performed with polynomials whose degree vary from 5 to 200 by
step of 5. For every algorithm, we measured the ratio of its computing time over the com-
puting time of the classic Horner algorithm. It turned out that our compensated algorithm
CompHorner is about 3 times slower than the classic Horner scheme. The same slowdown
factor is about 8 for algorithm DDHorner. From a practical point of view, we can state that
our algorithm is more than twice faster than the Horner scheme with double-doubles. The
MPFRHorner routine exhibits a slowdown factor of more than 80. That comparison with
the MPFR library is not entirely fair in this context. Indeed It is not surprising since the
MPFR library is specially designed to handle floating point numbers with extremely large
significand.

3.6 A compensated algorithm for accurate evaluation of the
k-th derivative of a polynomial

The Horner Derivative (HD) algorithm is the classic method for the evaluation of the k-th
derivative of a polynomial p(x) =∑n

i=0 ai xi . This algorithm 3.13 makes the direct evaluation
possible without obtaining the k-th derivative of the polynomial itself at any point x (see [32,
p.97]).

Algorithm 3.13. Horner Derivative algorithm

function res=HD(p, x,k)

y j
i = 0, for i = 0 : 1 : k, and j = n +1 : −1 : 0

y j+1
−1 = a j , for j = n : −1 : 0

for j = n : −1 : 0
for i = min(k,n − j) : −1 : max(0,k − j)

y j
i = x × y j+1

i + y j+1
i−1

end

42 Chapter 3. Increasing the accuracy of numerical algorithms

end
res= k !× y0

k

The condition number for the k-th derivative evaluation of a polynomial p(x) =
n∑

i=0
ai xi

at entry x is given by

cond(p, x,k) = k !
∑n

m=k C k
m |x|m−k |am |

|k !
∑n

m=k C k
m xm−k am | = p̃(k)(x)

|p(k)(x)| , C k
m =

(
m
k

)
.

The following theorem gives an error bound analysis for the computed result by Algo-
rithm 3.13.

Theorem 3.3. Let p(x) =∑n
i=0 ai xi be a polynomial of degree n with floating-point coefficients,

and x a floating-point value (with p(k)(x) 6= 0). The relative forward error bound in the HD
algorithm satifsfies:

|HD(p, x,k)−p(k)(x)|
|p(k)(x)| 6 γ2ncond(p, x,k).

This theorem is stated and proved in [32, p.97] for the first derivative only and using linear
algebra. In [37], we introduced a data dependency graph as a convenient technique for error
analysis. We have proved Theorem 3.3 for all k.

In Algorithm 3.14, the rounding errors generated by Algorithm 3.13 in each step are
computed. These errors are accumulated and finally added to the computed result. We then
obtain the compensated Horner Derivative algorithm (CompHD).

Algorithm 3.14. Compensated Horner Derivative algorithm

function res=CompHD(p, x,k)

y j
i = 0, ε̂y j

i = 0, for i = 0 : 1 : k, and j = n +1 : −1 : 0

y j+1
−1 = a j , ε̂y j+1

−1 = 0, for j = n : −1 : 0
for j = n : −1 : 0

for i = min(k,n − j) : −1 : max(0,k − j)

[s,π j
i] = TwoProd(x, ŷ j+1

i)

[ŷ j
i ,σ j

i] = TwoSum(s, ŷ j+1
i−1)

ε̂y j
i = x ⊗ ε̂y j+1

i ⊕ ε̂y j+1
i−1 ⊕ (π j

i ⊕σ
j
i)

end
end
res= (ŷ0

k ⊕ ε̂y0
k)⊗k !

Theorem 3.4 shows that the result of the compensated Horner derivative algorithm is
nearly as accurate as if computed by the original Horner derivative algorithm with twice the
working precision and then roughly rounded to the working precision.

3.6. A compensated algorithm for accurate evaluation of the derivatives of polynomials 43

Theorem 3.4. Let p(x) =∑n
i=0 ai xi be a polynomial of degree n with floating-point coefficients,

and x a floating-point value (with p(k)(x) 6= 0). The relative forward error bound in CHD
algorithm is such that

|CompHD(p, x,k)−p(k)(x)|
|p(k)(x)| 6 2u + (k +1)γ2nγ3n︸ ︷︷ ︸

≈6n2u2

cond(p, x,k). (3.15)

In the first experiment, we evaluate the 3rd derivative of the polynomial p(x) = (x −
0.75)5(x −1)11, given in its expanded form, in the neighborhood of its multiple roots 0.75
and 1. Figure 3.4 presents the evaluation for 400 equally spaced points in the intervals
[0.74995,0.75005] and [0.9935,1.0065]. It is clear that the CompHD algorithm (Algorithm 3.14)
gives much more smooth drawing than the original HD algorithm (Algorithm 3.13). The results
show that the compensated algorithm is an effective method of accurate evaluation to recover
the expected curve.

0.994 0.996 0.998 1 1.002 1.004 1.006
−5

−3

0

3

5
x 10

−10

0.994 0.996 0.998 1 1.002 1.004 1.006
−2

0

2

4
x 10

−18

0.74996 0.74998 0.75 0.75002 0.75004
−1

−0.5

0

0.5

x 10
−10

0.74996 0.74998 0.75 0.75002 0.75004
−4

−3

−2

−1

0
x 10

−14

Figure 3.4: Evaluation the 3rd derivative of the polynomial p(x) = (x −0.75)5(x −1)11 in the
neighborhood of its multiple roots, using HD (left) and CompHD (right)

In the second experiment, we focus on the forward error bound of our compensated
Horner Derivative algorithm. We consider the 3rd derivative evaluation of p(x) = (x −1)n for
n = 5, · · · ,45 in expanded form at the entry x = fl(1.333). The results of the tests performed
with the CompHD and HD algorithm are reported on Figure 3.5. As expected, when the condition
number is smaller than 1/u, the relative error of the result by the CompHD algorithm (Algorithm
3.14) is equal to or smaller than 2u. This relative error increases nearly linearly for the
condition number between 1/u and 1/u2.

It is interesting to compare the compensated Horner derivative algorithm with other
approaches to obtain high-precision. A standard way is by using multiple precision libraries,

44 Chapter 3. Increasing the accuracy of numerical algorithms

10
0

10
5

10
10

10
15

10
20

10
25

10
30

10
35

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Condition number

R
el

at
iv

e
fo

rw
ar

d
er

ro
r

γ2ncond 2u+4γ2nγ3ncond

HD
CompHD
DDHD

1/u 1/u2

Figure 3.5: Accuracy of the evaluation of the 3rd derivative of p(x) = (x −1)n for n = 5, · · · ,45
in expanded form at the entry x = fl(1.333) with respect to the condition number.

but if we just want to double the IEEE-754 double precision, the most efficient way is by
using the double-double arithmetic. Thus we compare CompHD algorithm with the Horner
derivative algorithm written in double-double arithmetic (DDHD algorithm). Here the result of
DDHD should be rounded to the working precision (double precision). As we see in Figure 3.5,
CompHD algorithm has nearly the same accuracy as DDHD algorithm.

In a practical computation, we usually wish to compute a corresponding error bound
along with the result. The a priori error bound (3.15) in Theorem 3.4 is entirely adequate for
theoretical purposes, but lacks sharpness. We have performed a running error analysis of the
compensated Horner Derivative algorithm, which provides a sharper and a posteriori error
bound in Theorem 3.5. Hence, we can obtain a running error bound by Algorithm 3.15.

Algorithm 3.15. Compensated Horner Derivative algorithm with validated running error
bound

function [res,µ]=CompHDWErr(p, x,k)

y j
i = 0, ε̂y j

i = 0, ŵ j
i = 0, for i = 0 : 1 : k, j = n +1 : −1 : 0

y j+1
−1 = a j , ε̂y j+1

−1 = 0, ŵ j+1
−1 = 0, for j = n : −1 : 0

for j = n : −1 : 0
for i = min(k,n − j) : −1 : max(0,k − j)

3.6. A compensated algorithm for accurate evaluation of the derivatives of polynomials 45

[s,π j
i] = TwoProd(x, ŷ j+1

i)

[ŷ j
i ,σ j

i] = TwoSum(s, ŷ j+1
i−1)

ε̂y j
i = x ⊗ ε̂y j+1

i ⊕ ε̂y j+1
i−1 ⊕ (π j

i ⊕σ
j
i)

ŵ j
i = |x|⊗ ŵ j+1

i ⊕ ŵ j+1
i−1 ⊕ (|π j

i |⊕ |σ j
i |)

end
end
[s,c]=FastTwoSum(ŷ0

k , ε̂y0
k)

[res,e]=TwoProd(s,k !)
α̂= (γ̂3n−k−1 ⊗ ŵ 0

k)® (1ª (3n +1)u)
β̂= |c ⊗k !⊕e|
µ= (α̂⊗k !⊕ β̂)® (1ª4u)

Theorem 3.5. A running error bound of CompHD algorithm is given by

|CompHD(p, x,k)−p(k)(x))|6 fl
(α̂⊗k !⊕ β̂

1−4u

)=:µ, (3.16)

where α̂= (γ̂3n−k−1 ⊗ ŵ 0
k)® (1ª (3n +1)u) and β̂ is obtained from the following equality

β̂= |c ⊗k !⊕e|

with [s,c]=TwoSum(ŷ0
k , ε̂y0

k) and [p(k)(x),e]=TwoProd(s,k !).

In the next experiment, we illustrate the advantage of the running error bound (3.16) over
the a priori one (3.15) in the accuracy of the error bound. We evaluate the 3rd derivative of
p(x) = (x −1)8 in expanded form for 400 equally-spaced points in the interval [0.9935,1.0065].
The results are reported on Figure 3.6. The running error bound is more significant than the
a priori one especially near x = 1.

We now present the computational complexity of algorithms HD, CompHD, CompHDwErr
and DDHD, and then show the practical efficiency of our algorithm in terms of running time.
The computational cost of the algorithms in terms of flops is:

• HD: 2(n −k)(k +1)+k −1+4n flops,
• CompHD: 23(n −k)(k +1)+k +4+4n flops,
• CompHDwErr: 29(n −k)(k +1)+k +43+4n flops,
• DDHD: 38(n −k)(k +1)+k +2+4n flops.
We measured the flop count ratios among HD, CompHD, CompHDwErr and DDHD and display

the average ratios for n = 50 : 5 : 1000 and k = 1 : 1 : 8 in Table 3.1. We can observe that CompHD
is as accurate as DDHD but only requires on average only about 39% less flop count. We also
see that the over-cost due to the running error analysis for CompHDwErr is quite reasonable.

We also compared HD, CompHD, CompHDwErr and DDHD in terms of measured comput-
ing time. The experiments are performed on a laptop with a Intel(R) Core(TM) i5-2520M
processor, with two cores each at 2.50Ghz.

The average time ratio are reported in Table 3.2. In contrast with the data in Table 3.1, we
see that the measured computing time ratio CompHD/DDHD is better than the theoretical one.

46 Chapter 3. Increasing the accuracy of numerical algorithms

0.994 0.996 0.998 1 1.002 1.004 1.006
10

−31

10
−30

10
−29

10
−28

10
−27

10
−26

10
−25

10
−24

10
−23

10
−22

argument x

ab
so

lu
te

 fo
rw

ar
d

er
ro

r
Accuracy of the absolute error bounds for CompHD

A priori error bound
Running error bound
Actual forward error

Figure 3.6: Significance of the running error bound

Table 3.1: Average ratios of the floating-point operations

CompHD
HD

CompHDwErr
HD

DDHD
HD

CompHD
CompHDwErr

CompHD
DDHD

8.35 10.46 13.60 79.87% 61.47%

Thanks to the analysis in terms of instruction level parallelism (ILP), one can see that this
phenomenon is surprising, but reasonable. Briefly speaking, avoiding the renormalization
step needed for double-double computations, the CompHD algorithm presents more ILP
than its counterpart DDHD algorithm. Also note that CompHD, CompHDwErr and DDHD have
much more instructions than HD, then they will introduce some more instruction-level
parallelism. This partly explains the phenomenon that the first three ratios of running time
are smaller than those of the theoretical flop count. Considering that CompHDwErr has some
more procedures for computing the running error bound than CompHDwErr, which limits
exploiting the ILP. Then it is reasonable that the measured running time ratio between CompHD

3.7. Accurate Newton’s methods for finding simple roots of polynomials 47

and CompHDwErr is smaller than the theoretical flop count one.

Table 3.2: Measured running time ratios

CompHD
HD

CompHDwErr
HD

DDHD
HD

CompHD
CompHDwErr

CompHD
DDHD

Linux gcc 4.4.5 3.85 6.44 8.14 61.76% 47.42%

3.7 Accurate Newton’s methods for finding simple roots of
polynomials

In this section, we present an application to show the effectiveness of the proposed compen-
sated Horner Derivative algorithm. We consider Newton’s method in floating-point arithmetic
[69] for solving the equation p(x) = 0 where p is an univariate polynomial. We want to find
simple roots. In that case, we improved the accurate Newton’s method we proposed in [25],
by using the CompHD algorithm to accurately compute the derivative. The classic Newton
method and the accurate Newton method are presented as follows:

Algorithm 3.16. The classic Newton method
x0 = ξ
xi+1 = xi − Horner(p,xi)

HD(p,xi ,1)

Algorithm 3.17 ([25]). The accurate Newton method
x0 = ξ
xi+1 = xi − CompHorner(p,xi)

HD(p,xi ,1)

For a polynomial p(x) with a simple zero x, x is not a zero of p ′, however, sometimes the
evaluation of p ′ near x can be still ill-conditioned. In such a case, it is necessary to accurately
evaluate p ′(xi), then we choose the CompHD algorithm to modify Algorithm 3.17 and obtain
the following algorithm.

Algorithm 3.18. The new accurate Newton method
x0 = ξ
xi+1 = xi − CompHorner(p,xi)

CompHD(p,xi ,1)

The condition number for finding a simple root of an univariate polynomial is given as
follows

condroot(p, x) = p̃(|x|)
|x||p ′(x)| . (3.17)

The following error analysis and numerical example proves and illustrates, respectively,
that the convergence of iteration strongly depends on the accuracy of the derivative’s evalua-
tion when the problem of finding simple root is too ill-conditioned, and that the accuracy of
the final iteration result depends on the accuracy with which the residual is computed.

48 Chapter 3. Increasing the accuracy of numerical algorithms

Using a theorem of Tisseur [69], we have shown the following theorem for the accurate
Newton’s method (Algorithm 3.17).

Theorem 3.6. Assume that there is an x such that p(x) = 0 and p ′(x) 6= 0 is not too small.
Assume also that u ·cond(p, x)6 1/8 for all i .
Then, for all x0 such thatβ|p ′(x)−1||x0−x|6 1/8, Newton’s method in floating point arithmetic
with Algorithm 3.17 generates a sequence of {xi } whose relative error decreases until the first i
for which

|xi+1 −x|
|x| ≈ u+γ2

2n condroot(p, x).

We have tested the classic Newton’s iteration (Algorithm3.16) and the accurate Newton’s
iteration (Algorithm 3.17) with pn(x) = (x −1)n −10−8 and x = 1+10−8/n for n = 1 : 40. In that
case, the condition number condroot(pn , x) varies from 104 to 1022. The result are presented
in Figure 3.7.

105 1010 1015 1020

10−15

10−10

10−5

100

condition number

re
la

tiv
e

fo
rw

ar
d

er
ro

r

Condition number and relative forward error

γ2n cond
u+γ2n

2 cond

classic Newton iteration
accurate Newton iteration

Figure 3.7: Accuracy of the classic Newton’s iteration and of the accurate Newton’s iteration

As one can see in Figure 3.7, the root is computed with full accuracy until a condition
number of 1016 = 1/u. For a greater condition number, less accuracy is obtained which
cannot be estimated. This is due in part to the rounding errors in the evaluation of the
derivative. To tackle this problem, we used the CompHD in Algorithm 3.18.

3.7. Accurate Newton’s methods for finding simple roots of polynomials 49

The following theorem summarizes the results on the accuracy of Algorithms 3.16, 3.17
and 3.18.

Theorem 3.7. Assume that the simple root is α such that f (α) = 0, f ′(α) 6= 0 and that f is
continuously differentiable in a neighborhood of the root, and in floating point arithmetic the
computation of the derivative satisfies

Assumption 1 :
∣∣∣ f̂ ′(v)− f ′(v)

f ′(v)

∣∣∣<ω< 1

2
, (3.18)

where ω is a given upper bound when v is closed to α, which shows the relative error bound
of f ′(v). Assume also that for any v, obtained from the iteration from the initial value v0

sufficiently close to the root α, satisfies

Assumption 2 : 0 < f (v)

f ′(v)(v −α)
<µ1. (3.19)

Here, µ1 is an upper bound which partly shows the ratio bound between the secant and the
tangent. In the iterative process, f ′(v) 6= 0 and f̂ ′(v) 6= 0, meanwhile ω and µ1 satisfy

Assumption 3 : µ1 +2ω6 2. (3.20)

Newton’s method (Algorithm 3.16) or its improved versions (Algorithms 3.17 and 3.18) in
floating-point arithmetic generates a sequence {v̂i } converging to v∗. Then assume that, when
the iteration converges, there is

Assumption 4 : 0 <µ2 < f (v∗)

f ′(v∗)(v∗−α)
. (3.21)

µ2 means a lower bound of equation in (3.19) for the final iterated result v∗. The parameters
ω,µ1 and µ2 used in Assumption 1-4 will help to obtain the accuracies guaranteed by the
algorithms as follows.

In case of Algorithm 3.16: ∣∣∣α− v∗
v∗

∣∣∣<Cγ2ncondroot(p, v∗). (3.22)

In case of Algorithm 3.17 and 3.18,:∣∣∣α− v∗
v∗

∣∣∣< K u +Dγ2
2ncondroot(p, v∗). (3.23)

where C , K and D are constants depending on ω and µ2.

Assumption 1 (3.18) is necessary and reasonable. When the relative error is larger than
1/2, the computed result maintains nearly no more than one bit precision, which means
there is nearly no useful information left. Assumption 2 (3.19) and Assumption 3 (3.20) will
guarantee the convergence of the iteration. These assumptions are not strong that even
when the derivative evaluation is too ill-conditioned they can still hold. We deem that the

50 Chapter 3. Increasing the accuracy of numerical algorithms

convergence depends on the accuracy of the function’s derivative but not that of the function
itself. When the evaluation of derivative is too ill-conditioned, such that u ·cond(p, x,1) > 1,
Algorithm 3.18 still converges but Algorithm 3.17 does not.

To illustrate the effectiveness and accuracy of Algorithm 3.18, we compare Algorithms
3.16, 3.17 and 3.18 by computing the simple real zero of the expanded form of the polynomial
pn(x) = (x −1)n −2−31, for n = 2 : 55. The condition number of the real zero varies roughly
from 104 to 1032. The result is presented in Figure 3.8. Note that, if n is even, there are two
real roots: 1±2−31/n ; if n is odd, there is only one real root 1+2−31/n . We set the initial value
v0 = 2, then considering the local convergence property of Newton method, we deem that
the iteration sequence will converge to the real root α= 1+2−31/n .

10
5

10
10

10
15

10
20

10
25

10
30

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Condition number

R
el

at
iv

e
fo

rw
ar

d
er

ro
r

10γ2ncond 4u+6γ2n
2 cond

Classic Newton iteration
accurate Newton iteration
our method

1/u21/u

Figure 3.8: Accuracy of the three algorithms with respect to the condition number.

3.8 Accurate and fast evaluation of elementary symmetric
functions

The kth Elementary Symmetric Function (ESF) associated with a vector X = (x1, . . . , xn) of n
numbers is defined by

S(n)
k (X) = ∑

16π1<...<πk6n
xπ1 xπ2 . . . xπk , 16 k 6 n, (3.24)

which consists of
(

n
k

)
summands. For k = 0, S(n)

0 (X) = 1. Throughout this section, we assume
that the inputs X = (x1, . . . , xn) are floating-point numbers.

3.8. Accurate and fast evaluation of elementary symmetric functions 51

The classic and widely-used method to compute the elementary symmetric functions
(3.24) is the so-called Summation Algorithm, which is essentially the algorithm used by
MATLAB’s poly function. The error analysis of this algorithm has been considered in [53],
and the result implies that the algorithm is stable. However, as mentioned in [53] “due to
cancellation from subtraction”, for some too ill-conditioned problems, the computed result
by the Summation Algorithm in floating-point arithmetic may be still little accurate. Then a
higher accurate algorithm is required.

As an application, the ESFs appear when expanding a linear factorization of a polynomial

n∏
i=1

(x −xi) =
n∑

i=0
ci xi =

n∑
i=0

(−1)n−i S(n)
n−i (X)xi . (3.25)

With the Summation Algorithm, one can evaluate polynomial’s coefficients {ci }n
i=0 from its

zeros {xi }n
i=1, specially compute characteristic polynomials from eigenvalues (see [11], [21]

and [53]). Our algorithm can be used to enhance the accuracy for some ill-conditioned
polynomials’ coefficients evaluation.

The computation of ESFs is also an important part of the conditional maximum likelihood
estimation (CMLE) of item parameters under the Rasch model in psychological measurement
[7]. It is promising that our algorithm, improving the numerical accuracy, can allow much
more items to be calibrated.

It is very instructive to study the condition number of the kth ESF evaluation (3.24). One
defines

cond(S(n)
k (X)) = lim

ε→0
sup

{ |S(n)
k (X +4X)−S(n)

k (X)|
ε|S(n)

k (X)|
: |4X | < ε|X |

}
,

where absolute value and comparison are to be understood componentwise. A direct calcula-
tion yields that

cond(S(n)
k (X)) = kS(n)

k (|X |)
|S(n)

k (X)|
. (3.26)

In particular, cond(S(n)
1 (X)) = cond(

∑n
i=1 xi) =

∑n
i=1 |xi |

|∑n
i=1 xi | , and cond(S(n)

n (X)) = cond(
∏n

i=1 xi) =
n.

The Summation Algorithm, represented by Algorithm 3.19 below, is the same as the one
in [53], except that it only computes the kth ESF rather than computing all of ESFs.

Algorithm 3.19 ([53]). Summation Algorithm

function S(n)
k =SumESF(X ,k)

S(i)
0 = 1, 16 i 6 n −1; S(i)

j = 0, j > i ; S(1)
1 = x1;

for i = 2 : n
for j = max{1, i +k −n} : min{i ,k}

S(i)
j = S(i−1)

j +xi S(i−1)
j−1 ;

end
end

52 Chapter 3. Increasing the accuracy of numerical algorithms

If we substitute j = 1 : i for j = max{1, i + k −n} : min{i ,k}, we can compute all ESFs
simultaneously. For the simplification of the error analysis, we only consider the computation
of the kth ESF. However, in practical calculation such as computing characteristic polynomial
from eigenvalue, this substitution is often required.

The following theorem exhibits the roundoff error bounds of Algorithm 3.19.

Theorem 3.8. If X = (x1, . . . , xn) is a vector of floating-point numbers, the computed k-th
elementary symmetric function Ŝ(n)

k = Ŝ(n)
k (X) by Algorithm 3.19 in floating-point arithmetic

satisfies

| Ŝ
(n)
k −S(n)

k

S(n)
k

|6 1

k
γ2(n−1)cond(S(n)

k), 26 k 6 n −1,

| Ŝ
(n)
1 −S(n)

1

S(n)
1

|6 γn−1cond(S(n)
1) = γn−1

∑n
i=1 |xi |

|∑n
i=1 xi |

, k = 1,

| Ŝ
(n)
n −S(n)

n

S(n)
n

|6 1

n
γn−1cond(S(n)

n) = γn−1, k = n.

(3.27)

We present hereafter a compensated scheme to evaluate the kth elementary symmetric
function.

Algorithm 3.20. Compensated Summation Algorithm

function S
(n)
k =CompSumESF(X ,k)

Ŝ(i)
0 = 1, 16 i 6 n −1; Ŝ(i)

j = 0, j > i ; Ŝ(1)
1 = x1; ε̂S

(i)
j = 0,∀ i , j

for i = 2 : n
for j = max{1, i +k −n} : min{i ,k}

[p,β(i)
j] = TwoProd(xi , Ŝ(i−1)

j−1); % S(i)
j = S(i−1)

j +xi S(i−1)
j−1

[Ŝ(i)
j ,σ(i)

j] = TwoSum(Ŝ(i−1)
j , p);

ε̂S
(i)
j = ε̂S

(i−1)
j ⊕ (β(i)

j ⊕σ(i)
j)⊕xi ⊗ ε̂S

(i−1)
j−1

end
end
S

(n)
k = Ŝ(n)

k ⊕ ε̂S
(n)
k

The following theorem exhibits the accuracy of Algorithm 3.20. As for other compensated
algorithms, we show that the result is as accurate as if computed with twice the working
precision and then rounded to the working precision.

Theorem 3.9. For a vector of n floating-point numbers X = (x1, . . . , xn), the relative forward

3.8. Accurate and fast evaluation of elementary symmetric functions 53

error bound in Algorithm satisfies

∣∣∣S
(n)
k −S(n)

k

S(n)
k

∣∣∣6u+ 1

k
γ2

2(n−1)cond(S(n)
k (X)),

∣∣∣ Ŝ(n)
1 −S(n)

1

S(n)
1

∣∣∣6u+γ2
n−1cond(S(n)

1),

∣∣∣ Ŝ(n)
n −S(n)

n

S(n)
n

∣∣∣6u+ 1

n
γnγ2ncond(S(n)

n),

with 26 k 6 n −1, k = 1, k = n, respectively.

In practical calculations, it is desirable to obtain a corresponding error bound at the same
time as the computed value. The a priori error bound of Theorem 3.9 is entirely adequate
for theoretical purposes, but lakes sharpness. For this requirement, we perform a running
error analysis of the CompSumESF algorithm, which provides a sharper and a posteriori error
bound.

Algorithm 3.21. Compensated Summation Algorithm with running error bound

function [S
(n)
k ,µ]=CompSumESFwErr(X ,k)

Ŝ(i)
0 = 1, 16 i 6 n −1; Ŝ(i)

j = 0, j > i ; Ŝ(1)
1 = x1; ε̂S

(i)
j = 0, ÊS

(i)
j = 0,∀ i , j

for i = 2 : n
for j = max{1, i +k −n} : min{i ,k}

[p,β(i)
j] = TwoProd(xi , Ŝ(i−1)

j−1);

[Ŝ(i)
j ,σ(i)

j] = TwoSum(Ŝ(i−1)
j , p);

ε̂S
(i)
j = ε̂S

(i−1)
j ⊕ (β(i)

j ⊕σ(i)
j)⊕xi ⊗ ε̂S

(i−1)
j−1

ÊS
(i)
j = ÊS

(i−1)
j ⊕|β(i)

j ⊕σ(i)
j |⊕ |xi |⊗ ÊS

(i−1)
j−1

end
end
[S

(n)
k ,c] = FastTwoSum(Ŝ(n)

k , ε̂S
(n)
k)

α̂= (γ̂2(n−1) ⊗ ÊS
(n)
k)® (1−3nu);

µ= (|c|⊕ α̂)® (1−2u)

The following theorem proves that this is a certified error bound computed in floating-
point arithmetic.

Theorem 3.10. A running error bound of Algorithm 3.21 is given by

|S(n)
k −S(n)

k |6 fl(
|c|⊕ α̂
1−2u

) :=µ. (3.28)

As we can see on Figure 3.9, CompSumESF (Algorithm 3.20) exhibits the expected behavior.
When the condition number is smaller than 1/u, the relative error of CompSumESF is equal to

54 Chapter 3. Increasing the accuracy of numerical algorithms

or smaller than u. This relative error degrades to no precision at all for the condition number
between 1/u and 1/u2. Meanwhile, it is shown that CompSumESF and DDSumESF (Summation
Algorithm with double-double numbers) nearly have the same accuracy. We also present the
forward error bound of DDSumESF shown as the dashed line TheoBoundDD. In fact, DDSumESF
may be a little more accurate than CompSumESF, however it is not significant from Figure
3.9. It is also shown that the forward error bound from Theorem 3.9 is valid, but pessimistic
compared with the relative running error bound from Algorithm 3.21, which is exhibited as
RunErrBound. Besides of DDSumESF, we also compare our algorithm with LejaSumESF, which
uses Leja ordering of the zeros in conjunction with the original Summation Algorithm (see
[11]). However, it does not give significantly higher accuracy of the results in our numerical
tests, partly due to the fact that the inputs are ordered randomly in the generation algorithm.

10
5

10
10

10
15

10
20

10
25

10
30

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Condition Number

R
e

la
ti
v
e

 F
o

rw
a

rd
 E

rr
o

r

γ
2(n−1)

cond/k

u+γ
2(n−1)

2
cond/k

SumESF

CompSumESF

DDSumESF

LejaSumESF

RunErrBound

TheoBoundDD

1/u
21/u

Figure 3.9: Accuracy of evaluation with respect to the condition number

When performing the running time tests, we optimize all algorithms in C code by reversing
the computing sequence of j to reduce the required storage location. Similar technique can
be seen in [11] and be used in MATLAB’s poly. We generate the tested random inputs in the
interval [−1,1] with n varying from 10 to 30.

We perform tests in two cases. In Case 1, we perfom timing on the algorithms that only
compute the kth ESF. Then, in Case 2 we perform timing of the modified algorithms that
compute all ESFs simultaneously, which only change the line of code j = max{1, i +k −n} :

3.9. K -fold, faithfully rounded and rounded to nearest results 55

Table 3.3: Time ratios of computing k-th ESF and all ESFs

CompSumESF
SumESF

DDSumESF
SumESF

CompSumESF
DDSumESF

CompSumESF
CompSumESFwErr

Case 1 3.05 5.42 57.42% 69.91%
Case 2 3.91 7.48 52.97% 68.02%

min{i ,k} in each algorithm to j = 1 : i . We exhibit the measured running time ratios in two
cases in Table 3.3. Case 2 corresponds to the application of computing the coefficients of
polynomial from zeros. For simplification, we still denote these algorithms by the same names
as before. In both cases, it seems that CompSumESF is significantly faster than DDSumESF while
the results share the same accuracy, and that the over-cost due to the running error bound
supported by CompSumESFwErr is quite reasonable.

We also consider the flop counts ratios of the algorithms in Case 2 (there are too many
comparison operations in Case 1 to be suitable for flop counting). The theoretical ratio
between CompSumESF and SumESF in the optimized C code is approximatly 11.5, which is
much smaller than the running time ratios 7.48 shown in Table 3.3. Thanks to the analysis in
terms of instruction level parallelism (ILP), this phenomenon is surprising, but reasonable.
Moreover, since the renormalization steps in DDSumESF may break ILP, the measured running
time ratio between CompSumESF and DDSumESF is usually smaller than the theoretical one
(≈ 61%).

As a consequence, it seems that CompSumESF is a fast and accurate algorithm to compute
elementary symmetric functions and can be well used in computing the coefficients of
polynomial from zeros.

3.9 K -fold, faithfully rounded and rounded to nearest results

In the previous sections, we have presented some compensated algorithms that make it
possible to compute a result as accurate as if computed with twice the working precision and
then rounded to the current working precision.

Let us generalize this for a general problem. Let x̂ be the computed solution of a problem
(P) whose exact solution is x. Suppose that the computations have been done with floating-
point arithmetic with unit round-off u . We will say the x̂ is as accurate as if computed with
twice the working precision if

|x̂ −x|
|x| 6u+C u2 cond(P). (3.29)

where C is a moderate constant, | · | is a norm on the space of the solution and cond(P) is the
condition number of the problem (P). In the right-hand side of inequality (3.29), the second
term reflects the computation in twice the working precision and the first one the rounding
into the working precision. Relation (3.29) is what we called the compensated rule of thumb,

56 Chapter 3. Increasing the accuracy of numerical algorithms

the classic rule of thumb being [32, p.9]

|x̂ −x|
|x| 6C ucond(P).

We will say that the computed result x̂ is of the same quality as if computed in K -fold
precision and rounded to working precision if

|x̂ −x|
|x| 6u+ (C u)K cond(P).

One can find some K -fold precision algorithm for summation and dot product in [51].

Sometimes, it is needed to get even more accuracy. The floating-point predecessor and
successor of a real number r satisfying min{ f : f ∈ R} < r < max{ f : f ∈ F} are defined as

pred(r) := max{ f ∈ F : f < r } and succ(r) := min{ f ∈ F : r < f }.

Definition 3.1. A floating-point number f ∈ F is called a faithful rounding of a real number
r ∈ R if

pred(f) < r < succ(f).

We denote this by f ∈�(r). For r ∈ F, this implies that f = r .

Faithful rounding means that the computed result is equal to the exact result if the latter
is a floating-point number and otherwise is one of the two adjacent floating-point numbers
of the exact result (see Figure 3.10).

r

f

Figure 3.10: Faithful rounding

We can be more accurate requiring the rounded to nearest number. A floating-point
number f ∈ F is called a rounded to nearest of a real number r ∈ R if

|r − f | = min{|r − f ′| : f ′ ∈ F}

The tie can be rounded in anyway, for example to even.

Recently, some new algorithms for summation and dot product has been proposed [65,
66]. They make it possible to compute a faithful rounding or a rounding to nearest.

3.10. Accurate floating-point product and exponentiation 57

3.10 Accurate floating-point product and exponentiation

One of the examples frequently used in Sterbenz’s book [68] is the computation of the product
of some floating-point numbers. Such algorithms can be used, for instance, to compute the
determinant of a triangle matrix

T =


t11 t12 · · · t1n

t22 t2n
. . .

...
tnn

 .

Indeed, the determinant of T is

det(T) =
n∏

i=1
ti i .

Another application is for evaluating a polynomial when represented by the root product
form p(x) = an

∏n
i=1(x−xi). It can also apply to compute the integer power of a floating-point

number.

In this section, we present an accurate algorithm to compute the product of floating-point
numbers [26].

The classic method for evaluating a product of n numbers a = (a1, a2, . . . , an)

p =
n∏

i=1
ai

is the following algorithm.

Algorithm 3.22. Product evaluation

function res = Prod(a)
p1 = a1

for i = 2 : n
pi = pi−1 ⊗ai

end
res = pn

This algorithm requires n −1 flops. It is easy to show that a forward error bound is given
by

|a1a2 · · ·an −res| = |a1a2 · · ·an −fl(a1a2 · · ·an)|6 γn−1|a1a2 · · ·an |. (3.30)

We present hereafter a compensated scheme to evaluate the product of floating-point
numbers, i.e. the error of individual multiplication is somehow corrected.

Algorithm 3.23. Product evaluation with a compensated scheme

58 Chapter 3. Increasing the accuracy of numerical algorithms

function res = CompProd(a)
p1 = a1

e1 = 0
for i = 2 : n

[pi ,πi] = TwoProduct(pi−1, ai)
ei = ei−1 ⊗ai ⊕πi

end
res = pn ⊕en

This algorithm requires 19n − 18 flops if we use TwoProduct. It only requires 3n − 2
flops if we use TwoProductFMA instead of TwoProduct (if, of course, an FMA is available) and
ei = FMA(ei−1, ai ,πi) instead of ei = ei−1 ⊗ai ⊕πi .

The acccuracy of the computed result is given by the following theorem.

Theorem 3.11. Suppose Algorithm 3.23 is applied to floating-point number ai ∈ F, 16 i 6 n,
and set p =∏n

i=1 ai . Then,
|res−p|6u|p|+γnγ2n |p|. (3.31)

In fact, if p 6= 0, we can rewrite Equation (3.31) in the following form

|res−p|
|p| 6u+γnγ2n .

Since γnγ2n ≈ 2n2u2, for n not too large, it follows that γnγ2n is negligible compared to u. As
a consequence, the relative error |res−p|/|p| is of the order of u, that is to say, the result has
nearly full accuracy. To precise this, we use the following lemme.

Lemma 3.1 (Rump, Ogita and Oishi [65, lem. 2.4]). Let r,δ ∈ R and r̃ := fl(r). Suppose that
2|δ| < u|r̃ |. Then r̃ ∈�(r +δ), that means r̃ is a faithful rounding of r +δ.

It is then possible to show that under mild assumptions, the computed result is a faithful
rounding of the exact result.

Lemma 3.2. If n <
p

1−up
2
p

2+u+2
p

(1−u)u
u−1/2 then res is a faithful rounding of p.

We have just shown that if n <αu−1/2 where α≈ 1/2 then the result is faithfully rounded.
More precisely, in double precision where u = 2−53, if n < 225 ≈ 5 ·107, we get a faithfully
rounded result.

We can propose a weaker form of Lemma 3.2 but with a nicer constant if we suppose, for
instance, that u6 2−7. This is not a strong assumption since in general u = 2−53 or u = 2−24.
We can easily show that if u6 2−7 and n < (4/9)u−1/2 then res is a faithful rounding of p.

3.11 Conclusion

In this chapter, we have shown that error-free transformations could be use to efficiently
increase the accuracy of numerical algorithms. The computed results obtained with our

3.11. Conclusion 59

compensated algorithms are as accurate as if computed with twice the working precision and
then rounded to that working precision. Our algorithms are at least twice as fast as the classic
algorithms implemented with the double-double library while sharing the same accuracy.
Nevertheless, our algorithms need, for the moment, to be rewrite significantly whereas the
use of the double-double library is easier.

CHAPTER

FOUR

VERIFYING ASSUMPTIONS OF THEOREMS ON
THE COMPUTER

This chapter is mainly based on the paper [64]. A more complete review on self-validating
methods can be found in [61] and [62].

4.1 Introduction

In this chapter, our aim is to present some work on the possibility of verifying assumptions
of mathematical theorems on the computer. Making mathematical proofs with computers
needs to get verified results, that could be:

• an interval enclosure of the true result or
• an approximate result with a rigorous error bound.

If possible, we would also like to have a proof of uniqueness of a solution. This must be
performed quickly and accurately. We would also like to tackle some “ill-posed problems”.
This could be done

• with computer algebra systems: exact results but sometimes not efficient or
• with floating-numbers: fast but often wrong results due to rounding errors.
A possible solution could be to compute with floating-point arithmetic but taking into

account all rounding errors.
Let us take an example. We want to prove that a floating-point matrix A ∈ Fn×n is nonsin-

gular. The following theorem is well-known.

Theorem 4.1. Let A be a matrix and R another matrix such that ‖I −R A‖ < 1. Then A is
nonsingular.

Proof. By contraposition, if A is singular, there exists x 6= 0 such that Ax = 0. Then (I −R A)x =
x and so ‖I −R A‖> 1.

On a computer, one can compute a floating-point approximation R ≈ A−1 of the inverse
of the matrix A. This can be done with a Gaussian elimination procedure. Then using interval

61

62 Chapter 4. Verifying assumptions of theorems on the computer

arithmetic, it is possible to compute a verified (mathematically true) error bound for ‖I −R A‖.
So proving that a matrix is nonsingular with INTLAB can be done via the following algorithm.

Algorithm 4.1. Let A be a matrix of dimension n

R = inv(A)
C = eye(n) - R*intval(A)
nonsingular = (norm(C,1) < 1)

If, at the end of the algorithm, nonsingular= 1, then A is nonsingular. This is a mathemati-
cal result. But if nonsingular= 0, then we can say nothing; A may or may not be nonsingular.

Another approach can be used with some fixed point theorems. Let f : Rn → Rn and
x̂ ∈ Rn unknown such that f (x̂) = 0. Suppose we know x̃ ≈ x̂ such that f (x̃) ≈ 0. Our purpose
is to find a bound for x̃, that is to say, an interval X containing x̃ such that x̂ ∈ X . It is clear
that f (x) = 0 ⇔ g (x) = x with g (x) := x −R f (x) and det(R) 6= 0. We will now use Brouwer’s
fixed point theorem.

Theorem 4.2 (Brouwer, 1912). Every continuous function from a closed ball of a Euclidean
space to itself has a fixed point.

Let X ∈ IRn such that g (X) ⊆ X . By Brouwer’s theorem, there exists x̂ ∈ X , such that
g (x̂) = x̂ and so f (x̂) = 0. As a consequence, if we know an interval X such g (X) ⊆ X and
det(R) 6= 0 then we have a verified error bound for x̂. Checking if R is nonsingular can be
done by the previous algorithm 4.1.

But naive approach fails since in general g (X) ⊆ X −R f (X)* X . To overcome this prob-
lem, it is useful to use the Mean Value Theorem : if f ∈C 1 then f (x) = f (x̃)+M(x − x̃) with

M = (∂ f
∂x (ξi))i .

Let us denote Y := X − x̃. Then we have

x ∈ X ⇒ g (x)− x̃ = x − x̃ −R f (x) =−R f (x̃)+ (I −RM)(x − x̃) ∈−R f (x̃)+ (I −RM)Y .

As a consequence, if −R f (x̃)+ (I −RM)Y ⊆ Y then g (X)− x̃ ⊆ Y and so g (X) ⊆ X . This is the
strategy we will follow in the rest of the chapter.

In Section 4.2 we present the problem of multiple roots of systems of nonlinear equations.
In Section 4.3 we briefly summarize how to compute verified error bounds for a (simple)
solution of a system of nonlinear equations. In Section 4.4 we develop methods to compute
verified error bounds for a double root of a univariate nonlinear function, and in Section 4.5
we treat double roots of systems of nonlinear equations. We close the chapter with numerical
results.

4.2 Multiple roots of systems of nonlinear equations

It is well-known that to decide whether a univariate polynomial has a multiple root is an
ill-posed problem: an arbitrary small perturbation of a polynomial coefficient may change

4.3. Verified solution of nonlinear systems 63

the answer from yes to no. In particular a real double root may change into two simple (real
or complex) roots.

Therefore it is hardly possible to verify that a polynomial or a nonlinear function has a
double root unless the entire computation is performed without any rounding error, i.e. using
methods from Computer Algebra.

A typical so-called verification method is based on a theorem the assumptions of which
are verified on computers. Typically such theorems are in turn based on some kind of fixed
point theorem (see the introduction above). The verification of the assumptions is performed
using floating-point arithmetic with rigorously estimating all intermediate rounding errors.
The computed results have a mathematical certainty. Some of those methods are collected in
INTLAB [58], the Matlab Toolbox for Reliable Computing.

The computing time of such a verification method is often of the order of a comparable
pure approximative (floating-point) algorithm, whereas the latter does not provide the kind
of guaranty of the correctness of the result. A main reason is that verification methods use
floating-point arithmetic as well, combined with suitable error estimations.

In case of an exactly given (real or complex floating-point) matrix, the verification of
nonsingularity is, of course, possible as well. As a drawback however, in contrast to Computer
Algebra methods, the verification of singularity is by principle outside the scope of verification
methods because this is an ill-posed problem: An arbitrarily small perturbation of a singular
matrix may produce a regular matrix changing the answer discontinuously from “yes” to “no”.

In the rest of this chapter we describe a verification method for computing guaranteed
(real or complex) error bounds for double roots of systems of nonlinear equations. To
circumvent the principle problem of ill-posedness we prove that a slightly perturbed system
of nonlinear equations has a double root. For example, for a given univariate function
f : R → R we compute two intervals X ,E ⊆ R with the property that there exists x̂ ∈ X and
ê ∈ E such that x̂ is a double root of f (x) := f (x)− ê. If the function f has a double root,
typically the interval E is a very narrow interval around zero. For complex discs and system
of equations assertions are similar.

4.3 Verified solution of nonlinear systems

In the following we assume that we use IEEE 754 double precision floating-point arithmetic
for which relative rounding error unit u = 2−53 ≈ 1.11 ·10−16. The i -th row or column of a
matrix A ∈ Rn×n are denoted by Ai ,: or A:,i , respectively, similar to Matlab notation.

We recall that IR denotes the set of real intervals, and by IRn and IRn×n the set of real
interval vectors and interval matrices, respectively.

Standard verification methods for systems of nonlinear equations are based on the fol-
lowing theorem [67].

Theorem 4.3. Let f : Rn → Rn with f = (f1, . . . , fn) ∈ C 1, x̃ ∈ Rn , X ∈ IRn with 0 ∈ X and
R ∈ Rn×n be given. Let M ∈ IRn×n be given such that

{∇ fi (ζ) : ζ ∈ x̃ +X } ⊆ Mi ,: . (4.1)

64 Chapter 4. Verifying assumptions of theorems on the computer

Denote by I the n ×n identity matrix and assume

−R f (x̃)+ (I −RM)X ⊆ int(X). (4.2)

Then there is a unique x̂ ∈ x̃ +X with f (x̂) = 0. Moreover, every matrix M̃ ∈ M is nonsingular.

In particular, the Jacobian J f (x̂) = ∂ f
∂x (x̂) is nonsingular.

An implementation of a verification method for nonlinear systems based on Theorem 4.3
is algorithm verifynlss in INTLAB [58].

Part of the assertions of Theorem 4.3 is the nonsingularity of the Jacobian J f (x̂). Naturally
this restricts the application to simple roots because it is proved that the root is simple. Next
we will derive verification methods to prove existence of a truly multiple root of a slightly
perturbed function.

4.4 The univariate case

The typical scenario in the univariate case is a function f : R → R with a double root x̂, i.e.
f (x̂) = f ′(x̂) = 0 and f ′′(x̂) 6= 0. Consider, for example,

f (x) = 18x7 −183x6 +764x5 −1675x4 +2040x3 −1336x2 +416x −48
= (3x −1)2(2x −3)(x −2)4 (4.3)

In [60] verification methods for multiple roots of polynomials are presented. Here, for exam-
ple, a set containing k roots of a polynomial is computed, but no information on the true
multiplicity can be given. A hybrid algorithm based on the methods in [60] is implemented
in algorithm verifypoly in INTLAB.

To compute inclusions of the roots of f we need rough approximations. Computing in-
clusions X1, X2 and X3 of the simple root x1 = 1.5, the double root x2 = 1/3 and the quadruple
root x3 = 2 of f in (4.3) by algorithm verifypoly in INTLAB we obtain the following (the
polynomial is, of course, specified in expanded form, not the factored form). Note that only
rough approximations of the roots are necessary.

>> X1 = verifypoly(f,1.3), X2 = verifypoly(f,.3), ...
X3 = verifypoly(f,2.1)
intval X1 =
[1.49999999999904, 1.50000000000078]
intval X2 =
[0.33333316656015, 0.33333343640539]
intval X3 =
[1.99741678159164, 2.00363593397305]

The accuracy of the inclusion of the double root x2 = 1/3 is much less than that of the
simple root x1 = 1.5, and this is typical. If we perturb f into f̃ (x) := f (x)−ε for some small
real constant ε and look at a perturbed root f̃ (x̂ +h) of f̃ , then

0 = f̃ (x̂ +h) =−ε+ 1

2
f ′′(x̂)h2 +O (h3) (4.4)

4.5. The multivariate case 65

implies

h ∼
√

2ε/ f ′′(x̂). (4.5)

In general floating-point computations are afflicted with a relative error of size ε ≈ 10−16.
This has the same effect as a perturbation of the given function f into f̃ . Therefore we may
compute an inclusion of two roots of a nonlinear function, but by (4.4) and (4.5) we cannot
expect this inclusion to be of better relative accuracy than

p
ε≈ 10−8. This corresponds to the

inclusion X2 above and to the results in [3, 59, 60].
Similarly it is known that the sensitivity of a k-fold root is of the order ε1/k , so that for the

quadruple root x3 = 2 of f we cannot expect a better relative accuracy than 4
p
ε∼ 10−4. This

corresponds to the accuracy of X3.
Instead we consider for a double root the nonlinear system G : R2 → R with

G(x,e) =
(

f (x)−e
f ′(x)

)
= 0 (4.6)

in the two unknowns x and e. The Jacobian of this system is

JG (x,e) =
(

f ′(x) −1
f ′′(x) 0

)
, (4.7)

so that the nonlinear system (4.6) is well-conditioned for the double root x2 = 1/3 of f in
(4.3). Now we can apply a verification algorithm for solving general systems of nonlinear
equations based on Theorem 4.3 such as algorithm verifynlss in INTLAB. Note that the
system of nonlinear functions is provided by a Matlab subroutine for computing the function
values. No more information is necessary; in particular derivatives are computed by means
of automatic differentiation. Indeed, applying algorithm verifynlss to (4.6) we obtain

>> Y2 = verifynlss(G,[.3;0])
intval Y2 =
[3.333333333333328e-001, 3.333333333333337e-001]
[-2.131628207280424e-014, 2.131628207280420e-014]

This proves that there is a constant εwith |ε| ≤ 2.14·10−14 such that the nonlinear equation
f (x)− ε = 0 has a double root x̂ with 0.3333333333333328 ≤ x̂ ≤ 0.3333333333333337. In
contrast to the previous inclusion X2 the new inclusion Y2 is very accurate. The reason is that
only double roots are taken into account, and this removes the high sensitivity of the root. It
is a kind of regularization.

4.5 The multivariate case

Let a suitably smooth function f : Rn → Rn and x̂ ∈ Rn be given such that f (x̂) = 0 and the
Jacobian of f at x̂ is singular. A standard verification method such as verifynlss must fail
because with an inclusion of a root the nonsingularity of the Jacobian at the root is proved as
well. Again it is an ill-posed problem and we need some regularization technique.

66 Chapter 4. Verifying assumptions of theorems on the computer

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Figure 4.1: Contour lines of f1(x) = 0 (solid) and f2(x) = 0 (dashed)

Consider the model problem

f (x, y) =
(

f1(x, y)
f2(x, y)

)
=

(
x2 + (x +1)(y −1)2 −asinh((x +3)3 + y2)cos(x −x y)

(x +1.908718874061618)2 − sin(x)(y +1)2

)
= 0 . (4.8)

In Figure 4.1 the zero contour lines of f are displayed. Near (x, y) = (0.60,2.34) the tangents
of the contour lines are nearly parallel so that the Jacobian of f at the nearby root is nearly
singular. As a regularization we add, similar to the univariate case, a smoothing parameter e
and rewrite (4.8) into

F (x, y,e) =
 f1(x, y)−e

f2(x, y)
detJ f (x, y)

= 0 . (4.9)

The third equation forces the tangents of the zero contour lines to be parallel at the
solution, whereas the first equation introduces a perturbation to f1 so that the root becomes
a double root. Locally the zero contour lines behave linearly, so that the smoothing parameter
expands or shrinks the zero line for f1 as depicted by the double arrow in Figure 4.1. Each
point of the contour line moves locally normal to the contour line itself. Obviously this is
optimal for the regularization.

This approach may work for two or three unknowns, however, an explicit formula for the
determinant of the Jacobian is prohibitive for larger dimensions. Consider the following way
to ensure the Jacobian to be singular.

Let a function f = (f1, . . . , fn) : Rn → Rn be given and let x̂ = (x̂1, . . . , x̂n) be such that
f (x̂) = 0 and the Jacobian J f (x̂) of f at x̂ is singular. Adding a smoothing parameter e we

4.5. The multivariate case 67

arrive with g : Rn+1 → Rn and

g (x,e) =


f1(x)−e

f2(x)
· · ·

fn(x)

= 0 (4.10)

at n equations in n +1 unknowns. We force the Jacobian to be singular by

J f (x)y = 0 (4.11)

for some vector y in the kernel of J f . In order to make y unique we normalize some compo-
nent of y to 1. For the moment we choose the first component so that y = (1, y2, . . . , yn). In
practice we have to choose a suitable component for normalization. Now (4.11) adds another
n equations in n −1 unknowns, so that we arrive at a system of 2n equations (4.10) and (4.11)
in 2n unknowns (x1, . . . , xn ,e, y2, . . . , yn). Note that the new equations (4.11) only ensure the
Jacobian to be singular and have no influence on the described regularization technique.

Theorem 4.4. Let f = (f1, . . . , fn) : Rn → Rn with f ∈ C 2 be given. Define F : R2n → R2n by
(4.10) and

F (x,e, y) =
(

g (x,e)
J f (x)y

)
= 0 , (4.12)

where x = (x1, . . . , xn), e ∈ R and y = (1, y2, . . . , yn). Suppose Theorem 4.3 is applicable to F
and yields inclusions for x̂ ∈ Rn , ê ∈ R and ŷ ∈ Rn−1 such that F (x̂, ê, ŷ) = 0. Then g (x̂, ê) =
f (x̂)− (ê,0, . . . ,0)T = 0, and the rank of the Jacobian J f (x̂) of f at x̂ is n −1.

The Jacobian of F computes to

JF (x,e, y) =
(

J f (x) I:,1 On,n−1

H On,1 J f (x):,2..n

)
, (4.13)

where I denotes the n ×n identity matrix and Ok,l the k × l zero matrix. The i -th row of H
computes to

Hi ,: = (1, y2, . . . , yn) ·Hessian(fi (x)) .

Two problems remain. The first is how to choose a suitable component for normalizing
the vector in the kernel of J f . For a given matrix A ∈ Rn×n , Gaussian elimination with partial
pivoting yields LU-factors and a permutation matrix. Applying this to AT yields PAT = LU .
Total pivoting guarantees that the rank of A is n −1 or less if and only if Unn = 0 (cf. [32]),
and except extraordinary circumstances this is also true for partial pivoting. Then Ax = 0
for LT P x = I:,n . Applying this to the Jacobian J f and taking a component of x with largest
absolute value is a suitable choice for the component to be normalized to 1.

The second problem is that an inclusion cannot be computed if the rank of the Jacobian J f

is less than n−1. More precisely, we proved that if an inclusion of a multiple root is computed,
then the rank of the Jacobian is n −1, and it would be nice to have the converse, namely that

68 Chapter 4. Verifying assumptions of theorems on the computer

for a root f (x̂) = 0 and Jacobian J f (x̂) of rank n−1 an inclusion can be computed by applying
Theorem 4.3 to (4.10) and (4.11). This is not true as by

f (x1, x2) =
(

x1 −x2
2

x2
1 −x2

2

)
= 0 . (4.14)

Obviously the Jacobian has rank 1 at x1 = x2 = 0, but the Jacobian (4.13) of the augmented
system (4.12) computes to

JF (x,e, y) =


1 −2x2 −1 0

2x1 −2x2 0 0
0 −2 0 1

2y −2 0 2x1

 , (4.15)

which is singular for x1 = x2 = 0. This means that it is not possible to compute an inclusion
of the multiple root (0,0). However, in this case the reason is that the wrong equation was
regularized. Exchanging the two equations in (4.14) into

f (x1, x2) =
(

x2
1 −x2

2
x1 −x2

2

)
= 0 (4.16)

yields

JF (x,e, y) =


2x1 −2x2 −1 0

1 −2x2 0 0
0 −2 0 1

2y −2 0 2x1

 , (4.17)

as the Jacobian of the augmented system, which is nonsingular for x1 = x2 = 0. Thus an
inclusion is in principle possible, and indeed

>> f=inline(’[x(1)^2-x(2)^2;x(1)-x(2)^2]’), ...
verifynlss2(f,[0.002;0.001])
f =

Inline function:
f(x) = [x(1)^2-x(2)^2;x(1)-x(2)^2]

intval ans =
1.0e-323 *

[-0.66666666666666, 0.66666666666666]
[-1.00000000000000, 1.00000000000000]
[-1.00000000000000, 1.00000000000000]

However, we mention that in this case the iteration is sensitive to the initial approximation
as by

>> verifynlss2(f,[0.001;0.001])
intval ans =
[0.49999999999999, 0.50000000000001]
[0.70710678118654, 0.70710678118655]
[-0.25000000000001, -0.24999999999999]

4.6. Numerical results 69

which finds the double root (0.5,1/
p

2) of x2 − y2 +0.25 = 0 and x − y2 = 0.
We might hope that there is always a renumbering of the equations such that for Jacobian

J f (x̂) of rank n −1 an inclusion of the root x̂ can be computed. Unfortunately this is not the
case. Consider

f (x1, x2) =
(

x2
1 x2 −x1x2

2
x1 −x2

2

)
= 0 . (4.18)

The Jacobian of the augmented system computes to

JF (x,e, y) =


2x1x2 −x2

2 x2
1 −2x1x2 −1 0

1 −2x2 0 0
2(x2 y +x1 −x2) 2(x1 −x2)y −2x1 0 2x1x2 −x2

2
0 −2 0 1

 , (4.19)

Obviously the third row is entirely zero for x1 = x2 = 0, and this does not change when

interchanging the two equations in (4.18). Note that the Jacobian J f at the root is

(
0 0
1 0

)
and

forces the kernel vector to be

(
y1

1

)
. Summarizing an inclusion for the root (0,0) of (4.18) is

in principle not possible by our method. But this situation is rare.

4.6 Numerical results

We add some numerical examples for the univariate and the multivariate case. We imple-
mented the methods using (4.6) and (4.10), (4.11) in Algorithm verifynlss2 in INTLAB.
Following we display results of this algorithm.

First consider
f (x) = (sin(x)−1)(x −α) forα := π

2
(1+ε) . (4.20)

The function f has a double root x̂ = π/2 with another simple root α of relative distance ε
to π/2. Hence in any case we expect the inclusion E of the offset e for regularization to be a
narrow inclusion of zero. Table 4.1 displays the results for different values of ε.

Table 4.1: Inclusions for the double root x̂ =π/2 and a nearby simple root α for f as in (4.20).

ε X E
10−2 1.5707963267949±1.8 ·10−14 [−3.5,1.8] ·10−18

10−3 1.5707963267948±1.7 ·10−13 [−3.5,1.8] ·10−19

10−4 1.570796326795±1.6 ·10−12 [−3.5,1.8] ·10−20

10−5 1.57079632679±1.2 ·10−10 [−3.5,1.8] ·10−21

10−6 1.5707963268±1.5 ·10−9 [−3.5,1.8] ·10−22

10−7 1.570796327±1.6 ·10−8 [−3.5,1.8] ·10−23

10−8 failed

70 Chapter 4. Verifying assumptions of theorems on the computer

As can be seen for decreasing relative distance of α to the double root x̂ the quality of
the inclusion decreases. An inclusion is possible until about a relative error 10−8 ∼p

ε. This
corresponds to the sensitivity of the double root x̂: If there is another root α of relative
distance

p
ε, then numerically the three roots cannot be distinguished in a floating-point

arithmetic with relative rounding error unit ε. This effect can also be observed when changing
f into

f (x) = (sin(x)−1)(x −α)2 forα := π

2
(1+ε) , (4.21)

so that now there is a double root α near the double root x̂. For a relative distance ε of about
4
p
ε ∼ 10−4 the four roots behave like a quadruple root. This is confirmed by the results in

Table 4.2.

Table 4.2: Inclusions for the double root x̂ =π/2 and a nearby double root α for f as in (4.21).

ε X E
10−2 1.57079632679488±1.2 ·10−14 [−2.8,5.5] ·10−20

10−3 1.5707963267948±2.4 ·10−13 [−2.8,5.5] ·10−22

10−4 1.570796326794±2.8 ·10−12 [−2.8,5.5] ·10−24

10−5 failed

Note that in both cases the inclusions of the offset for the regularization are very accurate
inclusions of zero.

Next we test a system of nonlinear equations. The test function is

f (x1, x2) =
(

ex1x2 − sin(x2
1 −2x1x2)

x1(x1 −cosh(x2))+x1atan(x2)−α
)
= 0 , (4.22)

where we choose the parameter α such that the system has a nearly double root. For α =
0.40031204474074 there is an almost double root near (1.329,−0.0273). The parameter α is
chosen such that we can just separate the nearly double root into two single roots. The results
are displayed in Table 4.3.

Table 4.3: Inclusions X1, X2 for two single roots and X for a nearly double root for f as in
(4.22) and α= 0.4003120447407.

X1 X2 X E
1.32889962186

28 1.3288995157
48 1.328899568390716

5
−0.0272980567

59 −0.0272979298
88 −0.0272979927587941

34 [-5.2,-5.0]·10−14

The inclusions of the two simple roots are separated by about 10−7 which is almost
p
ε,

and the quality of the inclusion is about
p
ε as well. Subtracting a constant ε ∈ E from the

first equation generates a truly double root. Note that |ε| < 6 ·10−14. As expected the quality

4.7. Conclusion 71

of the inclusion of the double root is much better than those of the separated simple roots,
almost of maximum accuracy.

For α = 0.35653033083794 there is another almost double root of f as in (4.22) near
(−0.292,1.195). Again the parameter α is chosen such that we can just separate the nearly
double root into to two single roots. The results are displayed in Table 4.4. The quality of the
results is very similar to the previous example.

Table 4.4: Inclusions X1, X2 for two single roots and X for a nearly double root for f as in
(4.22) and α= 0.35653033083794.

X1 X2 X E
−0.2919733091

44 −0.291973361
57 −0.2919733331276441

29
1.195005123

00 1.195004869
53 1.195004985750992

87 [-1.17,-0.96]·10−14

4.7 Conclusion

In this chapter we showed an efficient algorithms for computing verified and narrow error
bounds with the property that a slightly perturbed system is proved to have a double root
within the computed bounds. We have applied those to univariate polynomials, to multivari-
ate polynomials and also to eigenvalue problems. Numerical experiments have confirmed
the performance of our algorithms.

CHAPTER

FIVE

VALIDATION OF NUMERICAL CODES WITH
MULTIPRECISION STOCHASTIC ARITHMETIC

In this chapter, we present a software designed for the validation of numerical codes with the
use of multiprecision stochastic arithmetic. This chapter is based on the papers [28, 27].

5.1 Introduction

The increasing power of current computers makes it possible to solve more and more complex
problems. Then it is necessary to perform a high number of floating-point operations, each
one leading to a rounding error. Because of rounding error propagation, some problems must
be solved with a longer floating-point format. This is the case, especially, for applications
which carry out very complicated and enormous tasks in scientific fields, for example (see
http://crd.lbl.gov/~dhbailey/dhbpapers/hpmpd.pdf):

• Quantum field theory
• Supernova simulation
• Semiconductor physics
• Planetary orbit calculations
• Experimental and computational mathematics.

Even if other techniques, methods or algorithms are employed to increase the accuracy of
numerical results, some extended precision is still required to avoid severe numerical inaccu-
racies. Therefore some versions of scientific software carry out multiprecision computation.
For instance, XBLAS routines [44] consist of a multiprecision version of basic linear algebra
routines (BLAS). Moreover some libraries implement arbitrary precision arithmetic. MPFR
[22] is an arbitrary precision library in C language. Freely available on various platforms,
MPFR uses very efficient algorithms. Multiprecision libraries were described in Section 3.3 of
Chapter 3.

Nevertheless, even with multiprecision, there are still some rounding errors and so it is
still necessary to get some information about the numerical quality of the results. Validation

73

http://crd.lbl.gov/~dhbailey/dhbpapers/hpmpd.pdf

74 Chapter 5. Validation of numerical codes with multiprecision stochastic arithmetic

of numerical computations has been studied for a long time (see for example [77, 32, 20, 12]).
Several approaches exist to control rounding error propagation: backward analysis [77]
(used in LAPACK), stochastic backward analysis [12] (used in PRECISE), interval arithmetic
[46, 2, 47], stochastic arithmetic [15, 74], and abstract interpretation-based static analysis [24].
These methods were described in Chapter 2. Based on MPFR, the MPFI library [55] provides
arbitrary precision interval arithmetic. The problem is that it is difficult to validate huge
scientific codes with interval arithmetic. If such a code is not rewritten to deal with intervals,
its results would often be so overestimated that they would provide no information at all.

In this chapter, we present the SAM (Stochastic Arithmetic in Multiprecision) library
which is based on MPFR and extends the features of discrete stochastic arithmetic by en-
abling arbitrary precision computation. It can be used to validate real-life scientific codes
with few modifications of the code.

In Section 5.2, we describe the SAM library. Some examples of applications and numerical
experiments are presented in Section 5.3.

5.2 The SAM library

The SAM library implements in arbitrary precision the features of DSA (see Section 2.3.3 of
Chapter 1): the stochastic types, the concept of computational zero and the stochastic opera-
tors. The particularity of SAM (compared to CADNA) is the arbitrary precision of stochastic
variables. The SAM library with 24-bit (resp. 53-bit) mantissa length is similar to CADNA
in single (resp. double) precision, except the range of the exponent is only limited by the
machine memory. In SAM, the number of exact significant digits of any stochastic variable is
estimated with the probability 95 %, whatever its precision. Like in CADNA, the arithmetic
and relational operators in SAM take into account rounding error propagation. All numerical
instabilities which occur at run time are detected. Such instabilities are usually generated by
an operation involving a computational zero.

The SAM library is written in C++ and is based on MPFR. In the SAM library, all operators
are overloaded. Consequently for a program written in C++ to be used with SAM, only a few
modifications are needed: mainly changes in type declarations. Classical variables have to
be replaced by multiprecision stochastic variables (of mp_st type) which consist of three
variables of MPFR type and one integer variable to store the accuracy. In SAM, for each
stochastic operation, three MPFR operations are performed using different rounding modes
and the numerical instability that may be generated is detected. As a remark, in order to
avoid using the same rounding mode for the three operations, the first two operations are
performed using a rounding mode randomly chosen and the third rounding mode is the
opposite of the second one. For instance, if the result of the second operation is rounded up,
then the result of the third operation is rounded down.

The use of the SAM library in a C++ program involves five steps described below.

5.3. Numerical experiments 75

1. The SAM library has to be included in the C++ program using the #include "sam.h"
directive.

2. The sam_init initialization function has to be called once. In the following instruction
sam_init(nb_instabilities, nb_bits);
nb_instabilities is the maximum number of numerical instabilities to be detected
and nb_bits is the mantissa length in bits. If the value of the first argument is −1, all
the instabilities will be detected.

3. In variable declarations, the float or double type has to be replaced by the mp_st
stochastic type.

4. The strp function returns a string which contains the exact significant digits of a
stochastic result, i.e. its significant digits not affected by rounding errors. If the result is
insignificant, the strp function returns “@.0”. Therefore output statements should be
modified to print stochastic results with their accuracy using the strp function.

5. The sam_end function has to be called to print a report on the numerical instabilities
which possibly occurred during the execution.

As an example, a simple program which uses the SAM library is given in 5.3.1.

5.3 Numerical experiments

5.3.1 Computing a rational function of two variables

In the following example proposed by S. M. Rump [57], the rational function

f (x, y) = 333.75y6 +x2(11x2 y2 − y6 −121y4 −2)+5.5y8 + x

2y

is computed with x = 77617, y = 33096. The associated program written using the SAM library
is:

#include "sam.h"
#include <stdio.h>
int main() {

sam_init(-1,122);
mp_st x = 77617, y = 33096, res;
res=333.75*y*y*y*y*y*y+x*x*(11*x*x*y*y-y*y*y*y*y*y

-121*y*y*y*y-2.0)+5.5*y*y*y*y*y*y*y*y+x/(2*y);
printf("res=%s\n",strp(res));
sam_end();

}

Because the first argument in the sam_init function is -1, the SAM library will detect all
the numerical instabilities which will possibly occur at run time. Using SAM with 122 bits,
one obtains:

76 Chapter 5. Validation of numerical codes with multiprecision stochastic arithmetic

--
SAM software --- University P. et M. Curie --- LIP6
Self-validation detection: ON
Mathematical instabilities detection: ON
Branching instabilities detection: ON
Intrinsic instabilities detection: ON
Cancellation instabilities detection: ON
--
res=-0.827396059946821368141165095479816292
--
SAM software --- University P. et M. Curie --- LIP6
No instability detected
--

Using SAM with 53 bits, the result obtained has no exact significant digits. Furthermore
SAM detects a cancellation, which is a severe loss of accuracy due to the subtraction of two
nearly equal numbers. Let us decompose the expression into three terms: f (x, y) = a +b +c
with a = 333.75y6 + x2(11x2 y2 − y6 −121y4 −2), b = 5.5y8 and c = x/(2y). SAM with 53 bits
provides two opposite results for a and b:
a=-0.791711134066896E+037
b= 0.791711134066896E+037.

The computed results a and b have the same 15 exact significant digits. Their sum is insignifi-
cant, because it is only due to rounding errors. The three samples representing this sum are:
-1.1805916207174113E+021, -1.1805916207174113E+021, -0.0000000000000000E+000.
The computed result c has 15 exact significant digits:
c= 0.117260394005317E+001.

The final result a +b + c is insignificant. It is represented by the three samples:
-1.1805916207174113E+021, -1.1805916207174112E+021, +1.1726039400531785E+000.

Table 5.1 shows that if computations carried out with different precisions lead to similar
approximations, it does not mean that the results have a good accuracy.

single precision 1.172603
double precision 1.1726039400531
extended precision 1.172603940053178
Variable precision [−0.827396059946821368141165095479816292005,
interval arithmetic −0.827396059946821368141165095479816291986]
SAM,6121 bits @.0
SAM, 122 bits −0.827396059946821368141165095479816292

Table 5.1: Computation of f (x, y) = 333.75y6 + x2(11x2 y2 − y6 −121y4 −2)+5.5y8 + x/(2y)
with x = 77617 and y = 33096.

Indeed, it is shown that the evaluations of Rump’s polynomial f in single, double and
extended precision share the same first digits. But in fact, the correct evaluation is totally

5.3. Numerical experiments 77

different from that result. This is detected by SAM. Until 121 bits, SAM says that the result has
no exact significant digits. It is only starting with 122-bit mantissa length that SAM says that
we have full accuracy. It is verified by computing the exact result with the Maple computer
algebra system. It is noticeable that the result provided by SAM with 122-bit mantissa length
is included in the interval computed using variable precision interval arithmetic.

5.3.2 Computing a second order recurrent sequence

This sequence was proposed by J.-M. Muller [49]. The first 30 iterations of the following
recurrent sequence are computed:

Un+1 = 111− 1130

Un
+ 3000

UnUn−1

with U0 = 5.5 and U1 = 61

11
. The exact limit is 6.

Using IEEE double precision arithmetic with rounding to the nearest, one obtains:

U(3) = +5.590163934426237e+00
(...)
U(11) = +5.861018785996283e+00
U(12) = +5.882524608269310e+00
U(13) = +5.918655323805488e+00
U(14) = +6.243961815306110e+00
U(15) = +1.120308737284091e+01
U(16) = +5.302171264499677e+01
U(17) = +9.473842279276452e+01
U(18) = +9.966965087355071e+01
U(19) = +9.998025776093678e+01
U(20) = +9.999882245337588e+01
(...)
U(30) = +1.000000000000000e+02

Until the 13th iteration, the sequence seems to converge to 6. Then it seems to converge
to 100, although the exact limit is 6.

Using SAM in double precision (with 53-bit mantissa length), one obtains:

--
SAM software --- University P. et M. Curie --- LIP6
Self-validation detection: ON
Mathematical instabilities detection: ON
Branching instabilities detection: ON
Intrinsic instabilities detection: ON
Cancellation instabilities detection: ON
--
U(3) = 0.5590163934426E+1
U(4) = 0.563343108504E+1
U(5) = 0.56746486205E+1

78 Chapter 5. Validation of numerical codes with multiprecision stochastic arithmetic

U(6) = 0.571332905E+1
U(7) = 0.57491209E+1
U(8) = 0.5781811E+1
U(9) = 0.581131E+1
U(10) = 0.58376E+1
U(11) = 0.586E+1
U(12) = 0.59E+1
U(13) = 0.6E+1
U(14) = @.0
U(15) = @.0
U(16) = @.0
U(17) = @.0
U(18) = 0.9E+2
U(19) = 0.99E+2
U(20) = 0.999E+2
(...)
U(30) = 0.100000000000000E+3
--
SAM software --- University P. et M. Curie --- LIP6
CRITICAL WARNING: the self-validation detects major problem(s).
The results are NOT guaranteed.
There are 12 numerical instabilities
9 UNSTABLE DIVISION(S)
3 UNSTABLE MULTIPLICATION(S)
--

First the sequence seems to converge to 6, losing regularly exact significant digits to
such an extent that iterates 14 to 17 are insignificant. Then the sequence converges to 100,
improving regularly its numerical quality. The accuracy of the 30th iterate (15 exact significant
digits) is optimal for a computation carried out in double precision. Unfortunately results
from the 18th iteration are incorrect. The instabilities reported at the end of the execution
are unstable divisions and unstable multiplications which may invalidate the first order
approximation in the CESTAC method. A warning informs the user that the results may not
be reliable.

Using SAM with 100 bits, one obtains:

--
SAM software --- University P. et M. Curie --- LIP6
Self-validation detection: ON
Mathematical instabilities detection: ON
Branching instabilities detection: ON
Intrinsic instabilities detection: ON
Cancellation instabilities detection: ON
--
U(3) = 0.559016393442622950819672131E+1
(...)
U(22) = 0.5979E+1

5.3. Numerical experiments 79

U(23) = 0.598E+1
U(24) = 0.59E+1
U(25) = @.0
U(26) = @.0
U(27) = @.0
U(28) = @.0
U(29) = 0.9E+2
U(30) = 0.99E+2
U(31) = 0.999E+2
(...)
U(52) = 0.100000000000000000000000000000E+3
--
SAM software --- University P. et M. Curie --- LIP6
CRITICAL WARNING: the self-validation detects major problem(s).
The results are NOT guaranteed.
There are 12 numerical instabilities
9 UNSTABLE DIVISION(S)
3 UNSTABLE MULTIPLICATION(S)
--

The sequence obtained using SAM with 100 bits has the same behavior as the previous
one (computed with 53 bits). The sequence seems to converge to 6, then four iterates have no
exact significant digits. These insignificant results appear later, at iterations 25 to 28. From
the 29th iteration, the sequence converges to 100, improving regularly its accuracy. Like in
the previous execution, a self-validation of SAM has been performed during the run. Because
unstable divisions and unstable multiplications occurred, the results are not reliable.

5.3.3 Computation of a chaotic dynamical system

It is always difficult to simulate chaotic dynamical systems [19, 5] with a computer because
rounding errors can change dramatically their behavior. Nevertheless, some results can be
proved on chaotic systems using rigorous numerical computations and in particular interval
computations (see for example [71, 23, 72]). In this subsection, we study the computation of
the logistic map using stochastic arithmetic with SAM and we compare with MPFI the results
obtained.

Let us consider the logistic iteration [19] defined by xn+1 = axn(1− xn) with a > 0 and
0 < x0 < 1.

• When a < 3 this sequence converges to a unique fixed point, whatever the initial
condition x0 is.

• When 36 a6 3.57 this sequence is periodic, whatever the initial condition x0 is, the
periodicity depending only on a. Furthermore the periodicity is multiplied by 2 for
some values of a called “bifurcations”.

• When 3.57 < a < 4 this sequence is usually chaotic, but there are certain isolated values
of a that appear to show periodic behavior.

• Beyond a = 4, the values eventually leave the interval [0,1] and diverge for almost all
initial values.

80 Chapter 5. Validation of numerical codes with multiprecision stochastic arithmetic

The logistic map has been computed with x0 = 0.6 using SAM and MPFI. In stochastic
arithmetic, iterations have been performed until the current iterate is a computational zero,
i.e. all its digits are affected by rounding errors. In interval arithmetic, iterations have
been performed until the two bounds of the interval have no common significant digits. In
Tables 5.2 and 5.3, we report the number N of iterations performed for two ways of computing
the logistic map. We also report the execution times. With SAM two types of executions have
been performed:

• without the detection of numerical instabilities
• with the detection of all numerical instabilities which may occur at run time.
In Table 5.2, we have computed the logistic map using the formula

xn+1 = axn(1−xn) with x0 = 0.6. (5.1)

During the computation performed using SAM with a = 3.57, no computational zero has
been detected. The program has been stopped after one million iterations. The run time
reported in Table 5.2 has been measured for one million iterations. Whereas using MPFI with
the same value for a, at a certain iteration the stopping criterion is satisfied: the bounds of
the last interval have no common digits. Using 500 000 bits, fewer than 300 000 iterations are
performed in about 6 hours. Since the number N of iterations performed increases linearly
as the precision increases, about 2 millions bits would be required to perform one million
iterations. If a = 3.575, a = 3.6 or a = 3.7, more iterations are performed with SAM than with
MPFI for the stopping criterion to be satisfied. However it must be pointed out that SAM is
based on an estimation of rounding errors. Results obtained with MPFI are more pessimistic,
but are guaranteed. If a = 10, the sequence diverges. Similar results are obtained with SAM
and MPFI. The run times measured with SAM are longer than those measured with MPFI. The
main reason is the number of iterations, higher with SAM than with MPFI. In the numerical
experiment presented in 5.3.4, the same computation is carried out using SAM and MPFI
in order to compare their performance. The execution time is higher with SAM when the
detection of instabilities is enabled. However, in this application, the cost of this detection
remains reasonable.

In Table 5.3, we have computed the logistic map using the formula

xn+1 =−a

(
xn − 1

2

)2

+ a

4
with x0 = 0.6. (5.2)

Concerning SAM, the results are very similar to those in Table 5.2 (similar N). Nevertheless,
the results are better with MPFI compared to Table 5.2. This can be explained by the so-called
dependency problem which is a major drawback of interval arithmetic. Indeed, if an interval
occurs several times in an expression, each occurrence is taken independently and then can
lead to an unwanted over-estimation of the resulting interval. This is the case in equation (5.1)
where the variable xn appears twice whereas xn appears only once in equation (5.2). As a
remark, if a = 3.57, no computational zero has been detected using SAM. The run time
reported in Table 5.3 has been measured for one million iterations. Using MPFI with a = 3.57,
more than 15 000 bits are required to perform one million iterations.

5.3. Numerical experiments 81

a # bits N Execution time (in s)
3.57 SAM without detection with all detections

24 > 106 6.668 12.093
53 > 106 7.192 13.565

100 > 106 9.045 17.485
200 > 106 11.565 23.277

2000 > 106 160.39 360.65
MPFI 24 11 < 10−3

53 27 < 10−3

100 53 < 10−3

200 108 0.004
2000 1088 0.040
5 000 2 722 0.316

50 000 27 232 97.270
500 000 272 341 20901.6

3.575 SAM without detection with all detections
24 110 0.008 0.008
53 324 0.012 0.012

100 722 0.016 0.020
200 1526 0.020 0.044

2000 15896 2.585 5.804
MPFI 24 12 < 10−3

53 27 < 10−3

100 53 < 10−3

200 108 0.004
2000 1087 0.032

3.6 SAM without detection with all detections
24 52 < 10−3 0.008
53 150 0.008 0.008

100 338 0.011 0.016
200 718 0.012 0.028

MPFI 24 12 < 10−3

53 27 < 10−3

100 53 < 10−3

200 107 0.004

3.7 SAM without detection with all detections
24 37 < 10−3 0.008
53 97 0.004 0.008

100 193 0.008 0.012
200 387 0.012 0.020

MPFI 24 11 < 10−3

53 27 < 10−3

100 52 < 10−3

200 105 0.004

10 SAM without detection with all detections
24 21 < 10−3 0.004
53 29 0.008 0.008

100 29 0.008 0.008
200 29 0.008 0.008

MPFI 24 29 < 10−3

53 29 < 10−3

100 29 < 10−3

200 29 < 10−3

Table 5.2: Logistic map: number N of iterations performed with SAM and MPFI, xn+1 =
axn(1−xn) with x0 = 0.6.

82 Chapter 5. Validation of numerical codes with multiprecision stochastic arithmetic

a # bits N Execution time (in s)
3.57 SAM without detection with all detections

24 > 106 10.017 20.357
53 > 106 10.565 22.669

100 > 106 12.665 28.706
200 > 106 15.389 37.154

2000 > 106 164.85 541.14
MPFI 24 394 < 10−3

53 1990 0.004
100 5044 0.016
200 11310 0.036

2000 123220 5.376
5 000 311 828 55.691

15 000 935 556 913.40
16 500 > 106 1064.9
50 000 > 106 5818.7

3.575 SAM without detection with all detections
24 110 0.008 0.012
53 354 0.012 0.016

100 722 0.016 0.032
200 1548 0.032 0.068

2000 15890 2.636 8.673
MPFI 24 108 < 10−3

53 324 < 10−3

100 722 < 10−3

200 1534 0.008
2000 15882 0.696

3.6 SAM without detection with all detections
24 56 < 10−3 0.008
53 152 0.008 0.012

100 342 0.008 0.020
200 722 0.020 0.036

MPFI 24 56 < 10−3

53 152 < 10−3

100 338 < 10−3

200 722 0.004

3.7 SAM without detection with all detections
24 39 0.004 0.008
53 106 0.008 0.008

100 198 0.012 0.012
200 396 0.016 0.024

MPFI 24 39 < 10−3

53 103 < 10−3

100 197 < 10−3

200 389 0.004

10 SAM without detection with all detections
24 21 < 10−3 0.008
53 29 0.008 0.008

100 29 0.012 0.012
200 29 0.012 0.020

MPFI 24 29 < 10−3

53 29 < 10−3

100 29 < 10−3

200 29 < 10−3

Table 5.3: Logistic map: number N of iterations performed with SAM and MPFI, xn+1 =
−a(xn − 1

2)2 + a
4 with x0 = 0.6.

5.3. Numerical experiments 83

Even if SAM has been designed for arbitrary precision, it can be compared with CADNA if
the chosen precision is 24 bits or 53 bits. The results are, in general, similar with CADNA in
double precision (53 bits) and SAM with 53 bits. It is normal since the operations are correctly
rounded with the same precision in both cases. When there is a difference, it is due to the fact
that the exponent of the floating-point numbers is not limited in SAM, whereas it is limited
to 1023 in double precision. The same explanation applies for single precision and SAM with
24 bits (here the exponent in single precision is limited to 127).

5.3.4 Performance test

The performance of SAM has been compared with that of MPFI. The matrix multiplication
M ·M , where Mi , j = i + j −1 (16 i 6N , 16 j 6N) has been computed using SAM and MPFI
with different precisions and different values of N . Three types of executions have been
performed using SAM:

• without the detection of numerical instabilities
• with the detection of instabilities that may occur in multiplications, divisions or calls to

the power function and may invalidate the CESTAC method, as mentioned in Section 3;
this detection enables a self-validation of the SAM library

• with the detection of all instabilities.

The run times reported in Table 5.4 have been measured for N = 100 on an Intel Q9550
2.83GHz processor using the g++ 4.4 compiler.

bits 24 53 100 500 1000 5000

MPFI 0.292 0.320 0.432 0.504 0.648 2.216
SAM without detection 0.892 0.936 1.076 1.120 1.372 2.616

SAM with self-validation 0.896 0.940 1.092 1.160 1.380 2.624
SAM with all detections 7.168 8.357 10.461 27.254 69.588 903.528

SAM with self-validation/MPFI 3.07 2.94 2.53 2.30 2.13 1.18

Table 5.4: Run time (in seconds) for a matrix multiplication of size 100

From Table 5.4, it can be noticed that MPFI performs better than SAM. When self-vali-
dation is activated, the time ratio varies from 1.2 to 3.1, depending on the working precision.
The cost of self-validation in SAM (like in CADNA) is negligible. The detection of all numerical
instabilities is an interesting feature of SAM, unfortunately it may be very costly, depending
on the application. This cost is mainly due to the detection of cancellations which may occur
in additions or subtractions. From tests carried out for various values of N (from 50 to 1000)
it is noticeable that the time ratio between SAM and MPFI is independent of N . Anyway
our main objective was to show that the resources required by SAM with self-validation are
of the same order of magnitude as MPFI. This makes SAM useful for the validation of huge
numerical codes.

84 Chapter 5. Validation of numerical codes with multiprecision stochastic arithmetic

5.4 Conclusion

We have demonstrated that SAM can be very useful to study the behavior of chaotic dynamical
system. We have only studied the behavior of the logistic map. We plan to do a similar work
with other systems like the Hénon map [52] or the Lorenz attractor [78].

We have also compared in terms of efficiency and computing times the SAM library with
MPFI. As mentioned previously, SAM and MPFI do not give the same answer since MPFI leads
to a certified answer whereas SAM gives an answer true within a given probability. Anyway, it
is sometimes sufficient to know the answer only with high probability. The main advantage
of SAM is that it can be used to validate huge numerical scientific codes.

CONCLUSION AND FUTURE WORK

Conclusion

In this HDR thesis, we have presented some of our recent results concerning the increase of
accuracy and the validation of numerical algorithms.

We first proposed an introduction to computer arithmetic (more precisely floating-point
arithmetic) and to some methods for rounding error analysis (this includes forward and
backward error analysis, interval arithmetic and stochastic arithmetic). These are the tools
we frequently use in our researches.

We then described our main research topic that is increasing the accuracy of numerical
algorithms. For that, we use the so-called error-free transformations. We compute the ele-
mentary rounding errors and we correct the result with an approximation of all the rounding
errors that have occurred during the computation. Such algorithms are called compensated
algorithms. If the first one dates back to Kahan, such method was extensively studied by
Rump, Ogita and Oishi for summation and dot product. We have applied this method to
nonlinear problems like polynomial evaluation, derivative evaluation mainly. We have then
used those algorithms for some applications like Newton’s method to accurately compute
simple roots of polynomials. Our algorithms run faster than the classic ones used with multi-
precision arithmetic libraries.

We have also presented some results on the verification of mathematical assumptions on
computers. We first described the classic one concerning the verification of the nonsingu-
larity of a matrix in finite precision. Then we tackled an ill-posed problem concerning the
multiplicity of roots of nonlinear equations. Indeed, it is well known that deciding whether a
univariate polynomial has a multiple root is an ill-posed problem: an arbitrary small pertur-
bation of a polynomial coefficient may change the answer from yes to no. We described a
verification method for computing guaranteed error bounds for double roots of systems of
nonlinear equations. To circumvent the principle problem of ill-posedness we proved that a
slightly perturbed system of nonlinear equations has a double root.

Finally, we presented the SAM (Stochastic Arithmetic in Multiprecision) library which

85

86 Conclusion and future work

is based on MPFR and extends the features of discrete stochastic arithmetic by enabling
arbitrary precision computation. It can be used to validate real-life scientific codes with few
modifications of the code.

Future work

We present now the research axis we would like to develop in the next few years. It mainly
concerns computer arithmetic and the validation of numerical algorithms. An axis concern-
ing parallel algorithms is also considered.

The project research is divided into 4 parts:
• increasing the accuracy;
• validation and certification;
• symbolic-numerical algorithms;
• numerical reproducibility and parallel algorithms.

Increasing the accuracy

The accuracy of a computed result depends mainly on 3 factors: the condition number of the
problem, the stability of the algorithm and the precision of the arithmetic. It is also necessary
to take into account the approximation errors due to the numerical scheme used. The
condition number measures the difficulty to solve a problem independently of the algorithm
used to solve this problem.

The stability of an algorithm describes the influence of the computations in finite preci-
sion on the accuracy of the computed result. Finally, concerning the arithmetic, it is often the
IEEE 754 floating-point arithmetic which makes it possible a maximal precision of about 16
decimal digits in double precision (binary64). This precision is sometimes not sufficient for
solving accurately some ill-conditioned problems.

As we have shown in chapter 3, there are several solutions to increase the precision.
Some are hardware solutions like 80 bits registers in x87. Others are software solutions like
multiprecision libraries with MPFR [22] for example.

Another way to increase the precision of the computations is to estimate the rounding
errors that occurred during the computation and accumulate them in order to correct the
computed result. This is the choice we used in our researches. We have shown in chapter 3
that these methods are faster than using multiprecision libraries.

We plan to continue working on that topic. Indeed for computing accurately roots of
polynomials, it is necessary to accurately evaluate a polynomial. This is particularly true
when the root is a multiple root or is very close to a multiple one. In that case, it will be
useful to be able to compute a faithfully rounded evaluation of a polynomial. We think this is
possible at a mild cost by iterating our compensated Horner scheme [6]. What is difficult is to
find a tight error bound to stop as soon as possible.

Conclusion and future work 87

The computation of the 2-norm (Euclidean norm) of a vector is intensively used in nu-
merical linear algebra codes. Even if this computation is well-conditioned, the size of the
problems (and so the size of the vectors) is growing and implies that the rounding errors
are more and more important (the bound on the error is proportional to the size of the
vector). Our aim is to propose some new algorithms to efficiently and accurately compute
the 2-norm of a vector (useful for example in QR decomposition). By accurate, we mean a
faithful rounding of the exact result and if needed a rounded to nearest result with a limited
cost. Similar results for vectors of length 2 has already been obtained [10].

Our long term goal should be to provide some accurate building blocks with a limited
cost for lots of classic algorithms. They could be used in applications where accurate results
are needed (linear algebra, equation solving, and so on).
Moreover, we would like to automatize the design of compensated algorithms. In our papers,
we describe the use of a graph that could be used to automatically design a compensated
algorithm together with a proof on the accuracy. The use of proof checker like Coq could
be considered as well. The tool would take in input code and would output a compensated
version of this code that could also give a certified error bound computed in floating-point
arithmetic.

Recently, Jeannerod and Rump [35, 63] have shown that for xi ∈ F,∣∣∣∣∣fl(
n∑

i=1
xi)−

n∑
i=1

xi

∣∣∣∣∣6 (n −1)u
n∑

i=1
|xi |

which is better than the previous bound∣∣∣∣∣fl(
n∑

i=1
xi)−

n∑
i=1

xi

∣∣∣∣∣6 γn−1

n∑
i=1

|xi |

with γn = nu/(1−nu) = nu+O (u2). It would be interesting to know if we have a similar
relation for polynomial evaluation, that is to say,∣∣∣∣∣fl(

n∑
i=0

ai xi)−
n∑

i=1
ai xi

∣∣∣∣∣6 2nu
n∑

i=1
|ai xi |

instead of ∣∣∣∣∣fl(
n∑

i=0
ai xi)−

n∑
i=1

ai xi

∣∣∣∣∣6 γ2n

n∑
i=1

|ai xi |.

We did some intensive random tests with no counter-example found in single precision.
So we focused on a more simple relation. Do we have, for positive x ∈ F, |fl(xn)−xn |6

(n −1)uxn? We have no mathematical proof but we rigorously checked for all x ∈ [1;2[in
binary32 (223 numbers to test) until overflow for xn . For x = 1+2u, n ≈ 7.5×108 is needed
to reach overflow. For that we used of interval arithmetic with 100 bits in MPFI.

88 Conclusion and future work

Numerical validation and certification

We have recently proposed in [5] an algorithm that makes it possible to detect some singulari-
ties (for exemple to detect a multiple root) in the neighborhood of a polynomial system. This
method can be used to detect multiple eigenvalues in the neighborhood of a given matrix.
Our result is certified in the sense that we give a rigorous error bound concerning the size
of the perturbation needed to make the system singular. We plan to extend this technique
to detect singular matrices under structured perturbations. This could be used to detect
non-coprimeness of polynomials known with uncertainty (using the singularity of Sylvester
matrix).

Some problems can be reduce to a computation of polynomial roots. The pseudozero
set [48, 70] represents the roots of all the polynomials that are closed to a given one. This
concept naturally arises in applications where polynomials are only known with uncertainty
on their coefficients or when computations are performed in finite precision. In general it is
difficult to test if a number is a pseudozero because of rounding error (it needs to evaluate a
polynomial near a root). Our aim is to propose a certified method in floating-point arithmetic
to test if a number is really a pseudozero.

Moreover, the computation of pseudozero can generally be done in polynomial time.
But the complexity depends on the type of perturbations we consider. For some types of
perturbations, there exists, for the moment, no polynomial time algorithm. We think in that
case that this is a NP-hard problem. Some recent results on complexity theory let us think
that there exist some tools that could lead to a proof of the NP-hardness of such problems.

In [56], the authors presented a tool called PRECIMONIOUS which is a dynamic program
analysis tool that makes it possible to help developers for tuning the precision of floating-
point programs. PRECIMONIOUS makes a search on the types of the floating-point variables to
try to lower their precision without degrading the final accuracy. For that, they use the delta-
debugging analysis. We plan to provide a similar tool but we will replace delta-debugging by
our tool SAM. Indeed, contrary to delta-debugging we can have access with high probability
to the loss of accuracy for each variables. This could lead to choose the initial precision
needed for each variables.

Symbolic-numeric algorithms

The accurate computation of elementary functions needs the use of methods from computer
algebra especially during the phase of approximation. To certify the errors, it is sometimes
possible to use sum of square (SOS). Some symbolic-numeric algorithms exist to compute
SOS (floating-point computation by projection and then lifting to the rationals [39]).

The sequence begins with the function and go to a certified numerical code through the
use of symbolic-numeric tools. Our long term goal is to be able to have the whole sequence
in a single tool.

More generally, we can code functions in different ways. One possible way is to use

Conclusion and future work 89

ODE (ordinary differential equations). This gives a general framework for the evaluation
of functions. Indeed, lots of functions can be defined as a solution of an ODE of the form
x ′(t) = f (x(t), t). As a consequence, their evaluations need to solve precisely these equations
(see the PhD thesis of Marc Mezzarobba [45] on the evaluation of D-finite functions). A
possible method of resolution consists in using an expansion in power series of the solution
x(t) and of the function f . We then obtain a recursive sequence that needs to be evaluated
(see the book of Warwick Tucker [73, chap. 6]).

The use of intervals to bound the remainder in the expansion in power series makes it
possible to obtain a certified error bound on the solution. A research axis could be to look
at what happens if we use other basis for the expansion in power series. We could use for
example the Chebychev polynomials [9] or other orthogonal polynomials. Indeed, some
solutions can be expressed in a basis of eigenvectors which are orthogonal polynomials (see
spectral methods [9]).

It is then natural to look for solutions in such basis. Our researches could then be on the
numerical stability of the computation of the recursive sequence. A change of basis is then
necessary to rewrite the solution in the power basis which is in general ill-conditioned. A
possible solution could be to use symbolic-numeric computation for this part.

Reproducibility and accuracy for Exascale computing

The increasing power of current computers enables one to solve more and more complex
problems. Then it is necessary to perform a high number of floating-point operations, each
one leading to a round-off error. Because of round-off error propagation, some problems
must be solved with a longer floating-point format. This is the case, especially, for applica-
tions which carry out very complicated and enormous tasks in scientific fields, like quantum
field theory, or planetary orbit calculations for instance.

Exascale computing (1018 operations per second) is likely to be reached within a decade.
With such computers, getting accurate results in floating-point arithmetic will be a chal-
lenge. But another challenge will be the reproducibility of the results. Indeed, due to non-
associativity of floating-point operations, it is very difficult to obtain the same result in
different runs of a code on parallel computers (due for example to dynamic scheduling).

By reproducibility, we mean getting a bitwise identical floating-point result from multiple
runs of the same code. This is an important property very useful for debugging or checking
the correctness of codes. Reproducibility is becoming so important that Intel proposed a
"Conditional Numerical Reproducibility" (CNR) in its MKL (Math Kernel Library). But CNR is
slow and does not give any guarantee about the accuracy of the result. A very recent result
was obtain by James Demmel and Hong Diep Ngyuen from UC Berkeley [18]. They propose
a new algorithm for reproducible summation in floating-point arithmetic. Their algorithm
is fast and always returns the same answer. Nevertheless, no information is given on the
accuracy of the result.

Our aim is to provide a reproducible, accurate and fast library for classic operations

90 Conclusion and future work

(summation, dot product) on new parallel architectures that are GPU and Intel MIC (Xeon
Phi). Indeed, we plan to take into account the hardware specificity of those architectures.
For that, we will use a long accumulator proposed by Ulrich Kulisch [42]. This accumulator
makes it possible to accurately (exactly) compute a summation or a dot product. As a
consequence, the results will be exact and so reproducible (no rounding errors). An Exact
Dot Product (EDP) is also a useful basic tool for accurate interval arithmetic. As the use of
long accumulators need memory transfers, it will be necessary to efficiently use the memory
hierarchy and mainly cached memory.

BIBLIOGRAPHY

[1] IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008, pages 1–58, 2008.

[2] G. Alefeld and J. Herzberger. Introduction to interval analysis. Academic Press, 1983.

[3] G. Alefeld and H. Spreuer. Iterative improvement of componentwise error bounds for
invariant subspaces belonging to a double or nearly double eigenvalue. Computing,
36(4):321–334, 1986.

[4] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. J. Dongarra, J. Du Croz,
S. Hammarling, A. Greenbaum, A. McKenney, and D. Sorensen. LAPACK Users’ guide
(third ed.). Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,
1999.

[5] J. Argyris, G. Faust, and M. Haase. An exploration of chaos. Texts on Computational
Mechanics, VII. North-Holland Publishing Co., Amsterdam, 1994.

[6] D. H. Bailey, Y. Hida, X. S. Li, and B. Thompson. ARPREC: An Arbitrary Precision
Computation Package. Technical Report LBNL-53651, Lawrence Berkeley National
Laboratory, September 2002.

[7] F.B. Baker and M.R. Harwell. Computing elementary symmetric functions and their
derivatives: A didactic. Appl. Psychol. Meas., 20(2):169–192, 1996.

[8] R. P. Brent. Algorithm 524: MP, A Fortran Multiple-Precision Arithmetic Package. ACM
Trans. Math. Softw., 4(1):71–81, 1978.

[9] N. Brisebarre and M. Joldeş. Chebyshev interpolation polynomial-based tools for
rigorous computing. In Proceedings of the 2010 International Symposium on Symbolic
and Algebraic Computation, ISSAC ’10, pages 147–154, New York, NY, USA, 2010. ACM.

[10] N. Brisebarre, M. Joldes, P. Kornerup, É. Martin-Dorel, and J.-M. Muller. Augmented
precision square roots and 2-d norms, and discussion on correctly rounding

p
(x2+ y2).

In IEEE Symposium on Computer Arithmetic, pages 23–30, 2011.

[11] Daniela Calvetti and Lothar Reichel. On the evaluation of polynomial coefficients.
Numer. Algorithms, 33(1-4):153–161, 2003.

[12] F. Chaitin-Chatelin and V. Frayssé. Lectures on Finite Precision Computations. Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1996.

[13] F. Chaitin-Chatelin and V. Frayssé. Lectures on finite precision computations. Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996.

91

92 Bibliography

[14] J.-M. Chesneaux. Study of the computing accuracy by using probabilistic approach. In
C. Ullrich, editor, Contribution to Computer Arithmetic and Self-Validating Numerical
Methods, pages 19–30, IMACS, New Brunswick, New Jersey, USA, 1990.

[15] J.-M. Chesneaux. L’arithmétique stochastique et le logiciel CADNA. Habilitation à diriger
des recherches, Université Pierre et Marie Curie, Paris, November 1995.

[16] J.-M. Chesneaux, S. Graillat, and F. Jézéquel. Encyclopedia of Computer Science and
Engineering, volume 4, chapter Rounding Errors, pages 2480–2494. Wiley, 2009.

[17] T. J. Dekker. A floating-point technique for extending the available precision. Numer.
Math., 18:224–242, 1971.

[18] J. Demmel and H. D. Nguyen. Fast reproducible floating-point summation. In Proceed-
ings of the 21st IEEE Symposium on Computer Arithmetic, Austin, TX, USA, April 7-10,
pages 163–172, 2013.

[19] R. L. Devaney. An introduction to chaotic dynamical systems. Addison-Wesley Studies in
Nonlinearity. Addison-Wesley Publishing Company Advanced Book Program, Redwood
City, CA, second edition, 1989.

[20] B. Einarsson and al. Accuracy and Reliability in Scientific Computing. Software-
Environments-Tools. SIAM, Philadelphia, PA, 2005.

[21] A. Eisinberg and G. Fedele. A property of the elementary symmetric functions. Calcolo,
42(1):31–36, 2005.

[22] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann. MPFR: A multiple-
precision binary floating-point library with correct rounding. ACM Trans. Math. Softw.,
33(2):13, 2007. http://www.mpfr.org.

[23] Z. Galias and W. Tucker. Rigorous study of short periodic orbits for the Lorenz system.
In Proc. IEEE Int. Symposium on Circuits and Systems, ISCAS’08, pages 764–767, Seattle,
May 2008.

[24] E. Goubault, S. Putot, P. Baufreton, and J. Gassino. Static analysis of the accuracy in
control systems: Principles and experiments. In Proceedings of Formal Methods in
Industrial Critical Systems, LNCS 4916. Springer-Verlag, 2007.

[25] S. Graillat. Accurate simple zeros of polynomials in floating point arithmetic. Comput.
Math. Appl., 56(4):1114–1120, 2008.

[26] S. Graillat. Accurate floating point product and exponentiation. IEEE Transactions on
Computers, 58(7):994–1000, 2009.

[27] S. Graillat, F. Jézéquel, S. Wang, and Y. Zhu. Stochastic arithmetic in multiprecision.
Math.comput.sci., 5(4):359–375, 2011.

[28] S. Graillat, F. Jézéquel, and Y. Zhu. Stochastic arithmetic in multiprecision. In NSV3,
Third International Workshop on Numerical Software Verification, Edinburgh, UK, July
15th, 7 pages, 2010.

[29] S. Graillat, Ph. Langlois, and N. Louvet. Algorithms for accurate, validated and fast
polynomial evaluation. Japan J. Indust. Appl. Math., 2-3(26):191–214, 2009. Special
issue on State of the Art in Self-Validating Numerical Computations.

http://www.mpfr.org

Bibliography 93

[30] S. Graillat, N. Louvet, and Ph. Langlois. Compensated Horner scheme. Research
Report 04, Équipe de recherche DALI, Laboratoire LP2A, Université de Perpignan Via
Domitia, France, 52 avenue Paul Alduy, 66860 Perpignan cedex, France, July 2005.

[31] G.I. Hargreaves. Interval analysis in MATLAB. Numerical Analysis Report No. 416,
Manchester Centre for Computational Mathematics, University of Manchester, Decem-
ber 2002. Available at http://www.maths.man.ac.uk/~nareports/narep416.pdf.

[32] N. J. Higham. Accuracy and stability of numerical algorithms. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, second edition, 2002.

[33] W. Hofschuster and W. Krämer. C-XSC 2.0: A C++ Library for Extended Scientific
Computing. In Numerical Software with Result Verification, Lecture Notes in Computer
Science, volume 2991/2004, pages 15–35. Springer-Verlag, Heidelberg, 2004.

[34] IEEE Computer Society, New York. IEEE Standard for Binary Floating-Point Arithmetic,
ANSI/IEEE Standard 754-1985, 1985. Reprinted in SIGPLAN Notices, 22(2):9-25, 1987.

[35] C.-P. Jeannerod and S. M. Rump. Improved error bounds for inner products in floating-
point arithmetic. SIAM J. Matrix Anal. Appl., 34(2):338–344, 2013.

[36] H. Jiang, S. Graillat, and R. Barrio. Accurate and fast evaluation of elementary symmetric
functions. In Proceedings of the 21st IEEE Symposium on Computer Arithmetic, Austin,
TX, USA, April 7-10, pages 183–190, 2013.

[37] H. Jiang, S. Graillat, C. Hu, S. Lia, X. Liao, L. Cheng, and F. Su. Accurate evaluation of
the k-th derivative of a polynomial. J. Comput. Appl. Math., 191:28–47, 2013.

[38] F. Jézéquel and J.-M. Chesneaux. CADNA: a library for estimating round-off error
propagation. Computer Physics Communications, 178(12):933–955, 2008.

[39] E. Kaltofen, B. Li, Z. Yang, and L. Zhi. Exact certification of global optimality of approxi-
mate factorizations via rationalizing sums-of-squares with floating point scalars. In
ISSAC, pages 155–164, 2008.

[40] D. E. Knuth. The Art of Computer Programming, Volume 2, Seminumerical Algorithms.
Addison-Wesley, Reading, MA, USA, third edition, 1998.

[41] U. W. Kulisch. Advanced Arithmetic for the Digital Computer. Springer-Verlag, Wien,
2002.

[42] U. W. Kulisch. Computer arithmetic and validity, volume 33 of de Gruyter Studies in
Mathematics. Walter de Gruyter & Co., Berlin, 2008. Theory, implementation, and
applications.

[43] Ph. Langlois. Analyse d’erreur en précision finie. In A. Barraud, editor, Outils d’analyse
numérique pour l’Automatique, Traité IC2, chapter 1, pages 19–52. Hermes Science,
2002.

[44] X. S. Li, J. W. Demmel, D. H. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Kahan, S. Y. Kang,
A. Kapur, M. C. Martin, B. J. Thompson, T. Tung, and D. J. Yoo. Design, implementation
and testing of extended and mixed precision BLAS. ACM Transactions on Mathematical
Software, 28(2):152–205, 2002.

[45] M. Mezzarobba. Autour de l’évaluation numérique des fonctions D-finies. Phd thesis,
École polytechnique, november 2011.

http://www.maths.man.ac.uk/~nareports/narep416.pdf

94 Bibliography

[46] R.E. Moore. Interval analysis. Prentice Hall, 1966.

[47] R.E. Moore, R.B. Kearfott, and M.J. Cloud. Introduction to interval analysis. 2009.

[48] R. G. Mosier. Root neighborhoods of a polynomial. Math. Comp., 47(175):265–273,
1986.

[49] J.-M. Muller. Arithmétique des Ordinateurs. Masson, 1989.

[50] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre, G. Melquiond,
N. Revol, D. Stehlé, and S. Torres. Handbook of floating-point arithmetic. Birkhäuser
Boston Inc., Boston, MA, 2010.

[51] T. Ogita, S. M. Rump, and S. Oishi. Accurate sum and dot product. SIAM J. Sci. Comput.,
26(6):1955–1988, 2005.

[52] M. Pichat and J. Vignes. The numerical study of chaotic systems - future and past.
In 16th IMACS World Congress on Scientific Computation, Applied Mathematics and
Simulation, Lausanne, Switzerland, August 2000.

[53] Rizwana Rehman and Ilse C. F. Ipsen. Computing characteristic polynomials from
eigenvalues. SIAM J. Matrix Anal. Appl., 32(1):90–114, 2011.

[54] N. Revol and F. Rouillier. Motivations for an Arbitrary Precision Interval Arithmetic and
the MPFI Library. Reliable Computing, 11(4):275–290, 2005.

[55] N. Revol and F. Rouillier. MPFI (Multiple Precision Floating-point Interval library), 2009.
Available at http://gforge.inria.fr/projects/mpfi.

[56] Cindy Rubio-Gonzalez, Cuong Nguyen, Hong Diep Nguyen, James Demmel, William
Kahan, Koushik Sen, David H. Bailey, Costin Iancu, and David Hough. Precimonious:
Tuning assistant for floating-point precision. In Proceedings of SC13 - The International
Conference for High Performance Computing, Networking, Storage and Analysis, Denver,
CO, USA, November 17-22, 2013. To appear.

[57] S. M. Rump. Reliability in Computing. The Role of Interval Methods in Scientific Com-
puting. Academic Press, 1988.

[58] S. M. Rump. INTLAB - INTerval LABoratory. In Tibor Csendes, editor, Develop-
ments in Reliable Computing, pages 77–104. Kluwer Academic Publishers, Dordrecht,
1999.

[59] S. M. Rump. Computational error bounds for multiple or nearly multiple eigenvalues.
Linear Algebra Appl., 324(1-3):209–226, 2001. Special issue on linear algebra in self-
validating methods.

[60] S. M. Rump. Ten methods to bound multiple roots of polynomials. J. Comput. Appl.
Math., 156(2):403–432, 2003.

[61] S. M. Rump. Computer-assisted proofs and self-validating methods. In B. Einarsson,
editor, Accuracy and Reliability in Scientific Computing, Software-Environments-Tools,
pages 195–240. SIAM, Philadelphia, PA, 2005.

[62] S. M. Rump. Verification methods: rigorous results using floating-point arithmetic.
Acta Numer., 19:287–449, 2010.

http://gforge.inria.fr/projects/mpfi

Bibliography 95

[63] S. M. Rump. Error estimation of floating-point summation and dot product. BIT,
52(1):201–220, 2012.

[64] S. M. Rump and S. Graillat. Verified error bounds for multiple roots of systems of
nonlinear equations. Numer. Algorithms, 54(3):359–377, 2010.

[65] S. M. Rump, T. Ogita, and S. Oishi. Accurate floating-point summation part I: Faithful
rounding. SIAM J. Sci. Comput., 31(1):189–224, 2008.

[66] S. M. Rump, T. Ogita, and S. Oishi. Accurate floating-point summation part II: Sign,
k-fold faithful and rounding to nearest. SIAM J. Sci. Comput., 31(2):1269–1302, 2008.

[67] S. R. Rump. Solving Algebraic Problems with High Accuracy. In Ulrich W. Kulisch and
Willard L. Miranker, editors, A new approach to scientific computation, volume 7 of
Notes and Reports in Computer Science and Applied Mathematics, pages 51–120, New
York, 1983. Academic Press Inc.

[68] Pat H. Sterbenz. Floating-point computation. Prentice-Hall Inc., Englewood Cliffs, N.J.,
1974. Prentice-Hall Series in Automatic Computation.

[69] F. Tisseur. Newton’s method in floating point arithmetic and iterative refinement
of generalized eigenvalue problems. SIAM J. Matrix Anal. Appl., 22(4):1038–1057
(electronic), 2001.

[70] K.-C. Toh and L. N. Trefethen. Pseudozeros of polynomials and pseudospectra of
companion matrices. Numer. Math., 68(3):403–425, 1994.

[71] W. Tucker. The Lorenz attractor exists. C. R. Acad. Sci. Paris Sér. I Math., 328(12):1197–
1202, 1999.

[72] W. Tucker. Fundamentals of chaos. Kocarev, Ljupco (ed.) et al., Intelligent computing
based on chaos. Berlin: Springer. Studies in Computational Intelligence 184, 1-23
(2009)., 2009.

[73] W. Tucker. Validated numerics. Princeton University Press, Princeton, NJ, 2011. A short
introduction to rigorous computations.

[74] J. Vignes. A stochastic arithmetic for reliable scientific computation. Math. Comput.
Simulation, 35:233–261, 1993.

[75] J. Vignes. Discrete stochastic arithmetic for validating results of numerical software.
Num. Algo., 37(1–4):377–390, dec 2004.

[76] J. H. Wilkinson. Rounding errors in algebraic processes. (32), 1963. Also published by
Prentice-Hall, Englewood Cliffs, New Jersey, USA. Reprinted by Dover, New York, 1994.

[77] J. H. Wilkinson. Rounding errors in algebraic processes. Prentice-Hall Inc., Englewood
Cliffs, N.J., 1963.

[78] L.-S. Yao. Computed chaos or numerical errors. Nonlinear Analysis: Modelling and
Control, 15(1):109–126, 2010.

Résumé :

Dans ce manuscrit, nous présentons les recherches que nous avons effectuées depuis notre
thèse. Nous commençons par faire un bref résumé de nos récentes contributions. Nous
proposons ensuite un rapide état de l’art sur l’arithmétique des ordinateurs et sur les mé-
thodes d’analyse des erreurs d’arrondi (méthode directe et inverse, analyse par intervalle et
méthode stochastique). Nous présentons ensuite le coeur de notre recherche qui concerne
l’amélioration de la précision des algorithmes. Pour cela, nous utilisons principalement les
transformations exactes (algorithmes qui permettent d’estimer les erreurs d’arrondi) pour
corriger ensuite le résultat final. Nous étudions aussi des méthodes permettant de prouver
des résultats mathématiques sur ordinateur en précision finie. Pour cela nous combinons
l’utilisation de résultats mathématiques d’existence (théorème de point fixe) et la fiabilité de
l’arithmétique d’intervalle. Nous décrivons ensuite un outil qui permet la validation numé-
rique de grands codes sans grandement modifier celui-ci. Finalement, nous esquissons un
programme de recherche pour les années à venir.

Mots-clés :

Arithmétique des ordinateurs, arithmétique flottante, analyse d’erreur, arithmétique d’inter-
valle, arithmétique stochastique, méthodes auto-validantes, multiprécision.

Abstract:

This manuscript presents some of our work since the PhD thesis. We first present a brief
description of our research and our recent results. We then provide an overview on computer
arithmetic and on methods used to perform rounding error analysis (forward and backward
error analysis, interval analysis and stochastic analysis). After that, we present the core of
our research that is the increase of the accuracy of numerical algorithms. For that we use the
error-free transformations (which make it possible to estimate the rounding errors) to correct
the computed result. We then show how to prove mathematical results on computers in
finite precision. For that, we combine mathematical theorems (fixed point theorems) and the
reliability of interval computations. We also describe a tool that enable one to validate huge
numerical codes with only few modifications of the program. Finally we sketch a research
program for the next few years.

Keywords:

Computer arithmetic, rounding error analysis, interval arithmetic, floating-point arithmetic,
stochastic arithmetic, self-validating methods, multiprecision.

	Introduction
	1 Research summary
	1.1 Accurate polynomial evaluation and applications
	1.2 Validation and certification of numerical algorithms
	1.3 Symbolic-numeric algorithms
	1.4 The Table Maker's Dilemma and parallel architectures
	1.5 Publications

	2 Introduction to computer arithmetic and rounding error analysis
	2.1 Introduction
	2.2 Computer arithmetic
	2.3 Methods for rounding error analysis

	3 Increasing the accuracy of numerical algorithms
	3.1 Introduction
	3.2 Error-free transformations (EFT)
	3.3 Multiple precision arithmetic
	3.4 A compensated summation and dot product algorithm
	3.5 A compensated Horner scheme
	3.6 A compensated algorithm for accurate evaluation of the derivatives of polynomials
	3.7 Accurate Newton's methods for finding simple roots of polynomials
	3.8 Accurate and fast evaluation of elementary symmetric functions
	3.9 K-fold, faithfully rounded and rounded to nearest results
	3.10 Accurate floating-point product and exponentiation
	3.11 Conclusion

	4 Verifying assumptions of theorems on the computer
	4.1 Introduction
	4.2 Multiple roots of systems of nonlinear equations
	4.3 Verified solution of nonlinear systems
	4.4 The univariate case
	4.5 The multivariate case
	4.6 Numerical results
	4.7 Conclusion

	5 Validation of numerical codes with multiprecision stochastic arithmetic
	5.1 Introduction
	5.2 The SAM library
	5.3 Numerical experiments
	5.4 Conclusion

	Conclusion and future work
	Bibliography

