
R

ROUNDING ERRORS

INTRODUCTION

Human beings are in constant need of making bigger and
faster computations. Over the past four centuries, many
machines were created for this purpose, and 50 years ago,
actual electronic computers were developed specifically
to perform scientific computations. The first mechanical
calculating machines were Schikard’s machine (1623,
Germany), the Pascaline (1642, France), followed by
Leibniz’s machine (1694, Germany). Babbage’s analytical
machine (1833, England) was the first attempt at a
mechanical computer, and the first mainframe computer
was the Z4 computer of K. Zuse (1938, Germany).

Until the beginning of the twentieth century, computa-
tions were only done on integer numbers. To perform
efficient real numbers computations, it was necessary to
wait until the birth of the famous BIT (BInary digiT), which
was introduced by C. Shannon (1937, USA) in his PhD
thesis. Shannon’s work imposed electronics for the building
of computers and, then, the base 2 for coding integer or real
numbers, although other bases have been tried. It has now
been established that the base 2 is the most efficient base on
computers for numerical computations, although the base
10 may still be used on pocket calculators.

For coding real numbers, one also has to determine the
kind of coding they want to use. The decimal fixed-point
notation was introduced at the end of the sixteenth cen-
tury consecutively by S. Stévin (1582, France), J. Bürgi
(1592, Switzerland), and G. Magini (1592, Italy). It
remains the notation used worldwide today. Although it
is the most natural notation for mental calculations, it is
not very efficient for automatic computations. In fact,
on this subject, one can say that nothing has changed
since J. Napier’s logarithm (1614, Scotland) and W. Ough-
tred’s slide rule (1622, England). Logarithms were intro-
duced by J. Napier to make multiplication easier (using
logarithm, multiplication becomes addition). Three cen-
turies later, the same idea was kept for the coding of real
numbers on computers and led to the floating-point repre-
sentation (see the next section).

But whatever the representation is on computer, it is a
finite representation, like for computations by hand. So, at
each operation, because the result needs to be truncated
(but is in general), an error may appear that is called the
rounding error. Scientists have been well aware of this for
four centuries. In the nineteenth century, when numerical
computations were presented in an article, they were
systematically followed by errors computations to justify
the validity of the results. In 1950, in his famous article
on eigenvalue computation with his new algorithm,
C. Lanczos devoted 30% of his paper to error computation.
Unfortunately, this use has completely disappeared since
the beginning of the 1960s because of the improvement of
computers. When eight billion floating-point operations

are performed in one second on a processor, it seems
impossible to quantify the rounding error even though
neglecting rounding errors may lead to catastrophic con-
sequences.

For instance, for real-time applications, the discretiza-
tion step may be h ¼ 10�1 second. One can compute the
absolute time by performing tabs ¼ tabs þ h at each step or
performing icount ¼ icount þ 1; tabs ¼ h � icount, where
icount is correctly initialized at the beginning of the pro-
cess. Because the real-number representation is finite on
computers, only a finite number of them can be exactly
coded. They are called floating-point numbers. The others
are approximated by a floating-point number. Unfortu-
nately, h ¼ 10�1 is not a floating-point number. Therefore,
each operation tabs¼ tabsþ h generates a small but nonzero
error. One hundred hours later, this error has grown to
about 0.34 second. It really happened during the first Gulf
war (1991) in the control programs of Patriot missiles,
which were to intercept Scud missiles (1). At 1600 km/h,
0.34 second corresponds to approximatively 500 meters, the
interception failed and 28 people were killed. With the
second formulation, whatever the absolute time is, if no
overflow occurs for icount, then the relative rounding error
remains below 10�15 using the IEEE double precision
arithmetic. A good knowledge of the floating-point arith-
metic should be required of all computer scientists (2).

The second section is devoted to the description of
the computer arithmetic. The third section presents
approaches to study: to bound or to estimate rounding
errors. The last section describes methods to improve the
accuracy of computed results. A goal of this paper is to
answer the question in numerical computing, ‘‘What is the
computing error due to floating-point arithmetic on the
results produced by a program?’’

COMPUTER ARITHMETIC

Representation of Numbers

In a numeral system, numbers are represented by a
sequence of symbols. The number of distinct symbols that
can be used is called the radix (or the base). For instance, in
the decimal system, where the radix is 10, the 10 symbols
used are the digits 0,1, . . . ,9. In the binary system, which is
used on most computers, the radix is 2; hence, numbers are
represented with sequences of 0s and 1s.

Several formats exist to represent numbers on a com-
puter. The representation of integer numbers differs from
the one of real numbers. Using a radix b, if unsigned
integers are encoded on n digits, they can range from 0
to bn� 1. Hence, an unsigned integer X is represented by a
sequence an�1an�2 . . . a1a0 with

X ¼
Xn�1

i¼0

aib
i and ai 2f0; . . . ; b� 1g:

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.

With a radix 2 representation, signed integers are
usually represented using two’s complement. With this
rule, signed integers range from �bn�1 to bn�1�1 and
the sequence an�1an�2 . . . a1a0 with ai 2f0; . . . ; b� 1g
represents the number

X ¼ �an�1bn�1 þ
Xn�2

i¼0

aib
i:

The opposite of a number in two’s complement format
can be obtained by inverting each bit and adding 1.

In numerical computations, most real numbers are not
exactly represented because only a finite number of digits
can be saved in memory. Two representations exist for real
numbers:

� the fixed-point format, available on most embedded
systems

� the floating-point format, available on classical com-
puters

In fixed-point arithmetic, a number is represented with
a fixed number of digits before and after the radix point.
Using a radix b, a number X that is encoded on m digits for
its magnitude (e.g., its integer part) and f digits for its
fractional part is represented by am�1 . . . a0 � a�1 . . . a� f ,
with

X ¼
Xm�1

i¼� f

aib
i and ai 2f0; . . . ; b� 1g:

If b ¼ 2, then unsigned values range from 0 to 2m � 2�f

and signed values, which are usually represented with the
two’s complement format, range from�2m�1 to 2m�1� 2�f.

In a floating-point arithmetic using the radix b, a num-
ber X is represented by:

� its sign eX which is encoded on one digit that equals 0 if
eX ¼ 1 and 1 if eX ¼ �1,

� its exponent EX, a k digit integer,

� its mantissa MX, encoded on p digits.

Therefore, X ¼ eXMXbEX with

MX ¼
Xp�1

i¼0

aib
�i and ai 2f0; . . . ; b� 1g:

The mantissa MX can be written as MX ¼ a0 : a1 . . . ap�1.
Floating-point numbers are usually normalized. In this
case, a0 6¼ 0, MX 2 [1, b) and the number zero has a special
representation. Normalization presents several advan-
tages, such as the uniqueness of the representation (there
is exactly one way to write a number in such a form) and the

easiness of comparisons (the signs, exponents, and man-
tissas of two normalized numbers can be tested separately).

The IEEE 754 Standard

The poor definition of the floating-point arithmetic on
most computers created the need for a unified standard
in floating-point numbers. Indeed, the bad quality of
arithmetic operators could heavily affect some results.
Furthermore, simulation programs could provide differ-
ent results from one computer to another, because of
different floating-point representations. Different values
could be used for the radix, the length of the exponent,
the length of the mantissa, and so on. So, in 1985, the IEEE
754 standard (3) was elaborated to define floating-point
formats and rounding modes. It specifies two basic for-
mats, both using the radix 2.

� With the single precision format, numbers are stored
on 32 bits: 1 for the sign, 8 for the exponent, and 23 for
the mantissa.

� With the double precision format, numbers are stored
on 64 bits: 1 for the sign, 11 for the exponent, and 52 for
the mantissa.

Extended floating-point formats also exist; the standard
does not specify their exact size but gives a minimum
number of bits for their storage.

Because of the normalization, the first bit in the man-
tissa must be 1. As this implicit bit is not stored, the
precision of the mantissa is actually 24 bits in single pre-
cision and 53 bits in double precision.

The exponent E is a k digit signed integer. Let us denote
its bounds by Emin and Emax. The exponent that is actually
stored is a biased exponent ED such that ED¼EþD,D being
the bias. Table 1 specifies how the exponent is encoded.

The number zero is encoded by setting to 0 all the bits of
the (biased) exponent and all the bits of the mantissa. Two
representations actually exist for zero:þ0 if the sign bit is 0,
and�0 if the sign bit is 1. This distinction is consistent with
the existence of two infinities. Indeed 1/(þ0) ¼ þ1 and
l/(�0)¼�1. These two infinities are encoded by setting to 1
all the bits of the (biased) exponent and to 0 all the bits from
the mantissa. The corresponding nonbiased exponent is
therefore Emax þ 1.

NaN (Not a Number) is a special value that represents
the result of an invalid operation such as 0/0,

ffiffiffiffiffiffiffi
�1
p

, or 0�1.
NaN is encoded by setting all the bits of the (biased)
exponent to 1 and the fractional part of the mantissa to
any nonzero value.

Denormalized numbers (also called subnormal num-
bers) represent values close to zero. Without them, as
the integer part of the mantissa is implicitly set to 1, there
would be no representable number between 0 and 2Emin but

Table 1. Exponent Coding in Single and Double Precision

precision length k bias D

nonbiased biased

Emin Emax EminþD EmaxþD

single 8 127 �126 127 1 254
double 11 1023 �1022 1023 1 2046

2 ROUNDING ERRORS

2 p�1 representable numbers between 2Emin and 2E
minþ1 .

Denormalized numbers have a biased exponent set to 0.
The corresponding values are:

X ¼ eXMX2Emin with eX ¼ �1;

MX ¼
Xp�1

i¼1

ai2
�i

and

ai 2f0; 1g:

The mantissa MX can be written as MX ¼ 0:a1 . . . ap�1.
Therefore, the lowest positive denormalized num-
ber is u ¼ 2Eminþ1�p. Moreover, denormalized numbers
and gradual underflow imply the nice equivalence
a ¼ b,a� b ¼ 0.

Let us denote by F the set of all floating-point numbers,
(i.e., the set of all machine representable numbers). This
set, which depends on the chosen precision, is bounded and
discrete. Let us denote its bounds by Xmin and Xmax. Let x be
a real number that is not machine representable. If
x2 ðXmin;XmaxÞ, then fX�; Xþg� F2 exists such as
X�< x<Xþ and ðX�; XþÞ\ F ¼ ;. A rounding mode is a
rule that, from x, provides X� or Xþ. This rounding occurs at
each assignment and at each arithmetic operation. The
IEEE 754 standard imposes a correct rounding for all
arithmetic operations (þ, �, �, /) and also for the square
root. The result must be the same as the one obtained with
infinite precision and then rounded. The IEEE 754 stan-
dard defines four rounding modes:

� rounding towardþ1 (or upward rounding), x is repre-
sented by Xþ,

� rounding toward �1 (or downward rounding), x is
represented by X�,

� rounding toward 0, if x is negative, then it is repre-
sented by Xþ, if x is positive, then it is represented by
X�,

� rounding to the nearest, x is represented by its nearest
machine number. If x is at the same distance of X� and
Xþ, then it is represented by the machine number that
has a mantissa ending with a zero. With this rule,
rounding is said to be tie to even.

Let us denote by X the number obtained by applying one
of these rounding modes to x. By definition, an overflow
occurs if jXj>maxfjY j : Y 2 Fg and an underflow occurs if
0< jXj<minfjY j : 0 6¼Y 2 Fg. Gradual underflow denotes
the situation in which a number is not representable as
a normalized number, but still as a denormalized one.

Rounding Error Formalization

Notion of Exact Significant Digits. To quantify the accu-
racy of a computed result correctly, the notion of exact
significant digits must be formalized. Let R be a computed

result and r the corresponding exact result. The number
CR,r of exact significant decimal digits of R is defined as the
number of significant digits that are in common with r:

CR;r ¼ log10
Rþ r

2ðR� rÞ

����
���� ð1Þ

This mathematical definition is in accordance with the
intuitive idea of decimal significant digits in common
between two numbers. Indeed Equation (1) is equivalent to

jR� rj ¼ Rþ r

2

����
����10�CR;r ð2Þ

If CR,r ¼ 3, then the relative error between R and r is of
the order of 10�3. R and r have therefore three common
decimal digits.

However, the value of CR,r may seem surprising if one
considers the decimal notations of R and r. For example, if
R ¼ 2.4599976 and r ¼ 2.4600012, then CR,r � 5.8. The
difference caused by the sequences of ‘‘0’’ or ‘‘9’’ is illusive.
The significant decimal digits of R and r are really different
from the sixth position.

Rounding Error that Occurs at Each Operation. A forma-
lization of rounding errors generated by assignments and
arithmetic operations is proposed below. Let X be the
representation of a real number x in a floating-point arith-
metic respecting the IEEE 754 standard. This floating-
point representation of X may be written as X ¼ fl(x).
Adopting the same notations as in Equation (1)

X ¼ eXMX2EX ð3Þ
and

X ¼ x� eX2EX�paX ð4Þ

where aX represents the normalized rounding error.

� with rounding to the nearest, aX 2 ½�0:5; 0:5Þ
� with rounding toward zero, aX 2 ½0; 1Þ
� with rounding toward þ1 or �1, aX 2 ½�1; 1Þ

Equivalent models for X are given below. The machine
epsilon is the distance e from 1.0 to the next larger floating-
point number. Clearly, e21�p, p being the length of the
mantissa that includes the implicit bit. The relative error
on X is no larger than the unit round-off u:

X ¼ xð1þ dÞwith jdj 	 u ð5Þ

where u ¼ e/2 with rounding to the nearest and u ¼ e with
the other rounding modes. The model associated with
Equation (5) ignores the possibility of underflow. To take
underflow into account, one must modify it to

X ¼ xð1þ dÞ þ Zwith jdj 	 u ð6Þ

ROUNDING ERRORS 3

and jZj 	 u=2 with rounding to the nearest and jZj 	 u with
the other rounding modes, u being the lowest positive
denormalized number.

Let X1 (respectively X2) be the floating-point represen-
tation of a real number x1 (respectively x2)

Xi ¼ xi � ei2
Ei�pai for i ¼ 1; 2 ð7Þ

The errors caused by arithmetic operations that have X1

and X2 as operands are given below. For each operation, let
us denote by E3 and e3 the exponent and the sign of the
computed result. a3 represents the rounding error per-
formed on the result. Let us denote by
, �, �, � the
arithmetic operators on a computer.

X1
 X2 ¼ x1 þ x2 � e12E1�pa1 � e22E2�pa2

� e32E3�pa3 ð8Þ

Similarly

X1 � X2 ¼ x1 � x2 � e12E1�pa1 þ e22E2�pa2

� e32E3�pa3 ð9Þ

X1 � X2 ¼ x1x2 � e12E1�pa1x2 � e22E2�pa2x1

þ e1e22E1þE2�2 pa1a2 � e32E3�pa3 ð10Þ

By neglecting the fourth term, which is of the second order
in 2�p, one obtains

X1 � X2 ¼ x1x2 � e12E1�pa1x2 � e22E2�pa2x1

� e32E3�pa3 ð11Þ

By neglecting terms of an order greater than or equal to
2�2p, one obtains

X1 � X2 ¼
x1

x2
� e12E1�p a1

x2
þ e22E2�pa2

x1

x2
2

� e32E3�pa3 ð12Þ

In the case of an addition with operands of the same sign,

E3 ¼ maxðE1;E2Þ þ dwith d ¼ 0 or d ¼ 1

The order of magnitude of the two terms that result from
the rounding errors on X1 and X2 is at most 2E3�p: The
relative error on X1
 X2 remains of the order of 2�p. This
operation is therefore relatively stable: It does not induce
any brutal loss of accuracy.

The same conclusions are valid in the case of a multi-
plication, because

E3 ¼ E1 þ E2 þ d; with d ¼ 0 or d ¼ �1

and in the case of a division, because

E3 ¼ E1 � E2 þ d; with d ¼ 0 or d ¼ 1

In the case of a subtraction with operands of the same
sign, E3¼max (E1, E2)� k. If X1 and X2 are very close, then
k may be large. The order of magnitude of the absolute error
remains 2maxðE1;E2Þ� p, but the order of magnitude of the
relative error is 2maxðE1;E2Þ� p�E3 ¼ 2�pþk. In one operation,
k exact significant bits have been lost: It is the so-called
catastrophic cancellation.

Rounding Error Propagation. A numerical program is a
sequence of arithmetic operations. The result R provided by
a program after n operations or assignments can be mod-
eled to the first order in 2�p as:

R� rþ
Xn

i¼1

giðdÞ2�pai ð13Þ

where r is the exact result, p is the number of bits in the
mantissa, ai are independent uniformly distributed ran-
dom variables on [�1, 1] and gi(d) are coefficients depend-
ing exclusively on the data and on the code. For instance, in

Equation (12), gi(d) are 1
x2

and x1

x2
2

.

The number CR,r of exact significant bits of the computed
result R is

CR;r ¼ log2
Rþ r

2ðR� rÞ

����
���� ð14Þ

CR;r� � log2
R� r

r
¼ p� log2

Xn

i¼1

giðdÞ
ai

x

�����
�����

�����
����� ð15Þ

The last term in Equation (15) represents the loss of
accuracy in the computation of R. This term is independent
of p. Therefore, assuming that the model at the first order
established in Equation (13) is valid, the loss of accuracy in
a computation is independent of the precision used.

Impact of Rounding Errors on Numerical Programs

With floating-point arithmetic, rounding errors occur in
numerical programs and lead to a loss of accuracy, which is
difficult to estimate. Another consequence of floating-point
arithmetic is the loss of algebraic properties. The floating-
point addition and the floating-point multiplication are
commutative, but not associative. Therefore the same for-
mula may generate different results depending on the order
in which arithmetic operations are executed. For instance,
in IEEE single precision arithmetic with rounding to the
nearest,

ð�1020
 1020Þ
 1 ¼ 1 ð16Þ

but

�1020
 ð1020
 1Þ ¼ 0 ð17Þ

Equation (17) causes a so-called absorption. Indeed, an
absorption may occur during the addition of numbers with
very different orders of magnitude: The smallest number
may be lost.

4 ROUNDING ERRORS

Furthermore, with floating-point arithmetic, the multi-
plication is not distributive with respect to the addition. Let
A, B, and C be floating-point numbers, A� (B
 C) may not
be equal to (A � B)
 (A � C). For instance, in IEEE single
precision arithmetic with rounding to the nearest, if A, B
and C are respectively assigned to 3.3333333, 12345679
and 1.2345678, for A � (B
 C) and (A � B)
 (A � C), one
obtains 41152264 and 41152268, respectively.

Impact on Direct Methods. The particularity of a direct
method is to provide the solution to a problem in a finite
number of steps. In infinite precision arithmetic, a direct
method would compute the exact result. In finite precision
arithmetic, rounding error propagation induces a loss of
accuracy and may cause problems in branching statements.
The general form of a branching statement in a program is

IF condition THEN sequence 1 ELSE sequence 2.
If the condition is satisfied, then a sequence of instruc-

tions is executed, otherwise another sequence is performed.
Such a condition can be for instance A
 B. In the case
when A and B are intermediate results already affected by
rounding errors, the difference between A and B may have
no exact significant digit. The choice of the sequence that is
executed may depend on rounding error propagation. The
sequence chosen may be the wrong one: It may be different
from the one that would have been chosen in exact arith-
metic.

For instance, depending on the value of the discrimi-
nant, a second degree polynomial has one (double) real root,
two real roots, or two conjugate complex roots. The dis-
criminant and the roots of the polynomial 0:3x2 � 2:1xþ
3:675 obtained using IEEE single precision arithmetic with
rounding to the nearest are D ¼ �5.185604E-07, x ¼
3.4999998�1.2001855E03 i. Two conjugate complex roots
are computed. But the exact values are D ¼ 0, x ¼ 3.5.
The polynomial actually has one double real root. In
floating-point arithmetic, rounding errors occur because
of both assignments and arithmetic operations. Indeed
the coefficients of the polynomial are not floating-point
numbers. Therefore, the computed discriminant has no
exact significant digit, and the wrong sequence of instruc-
tions is executed.

Impact on Iterative Methods. The result of an iterative
method is defined as the limit L of a first-order recurrent
sequence:

L ¼ Lim
n!1

Un with Unþ1 ¼ FðUnÞ Rm!F Rm ð18Þ

Because of rounding error propagation, the same pro-
blems as in a direct method may occur. But another diffi-
culty is caused by the loss of the notion of limit on a
computer. Computations are performed until a stopping
criterion is satisfied. Such a stopping criterion may involve
the absolute error:

kUn �Un�1k 	 e ð19Þ

or the relative error:

kUn �Un�1k 	 e kUn�1k ð20Þ

It may be difficult to choose a suitable value for e. If e is
too high, then computations stop too early and the result is
very approximative. If e is too low, useless iterations are
performed without improving the accuracy of the result,
because of rounding errors. In this case, the stopping
criterion may never be satisfied because the chosen accu-
racy is illusive. The impact of e on the quality of the result is
shown in the numerical experiment described below.

Newton’s method is used to compute a root of

f ðxÞ ¼ x4 � 1002x3 þ 252001x2 � 501000xþ 250000 ð21Þ

The following sequence is computed:

xnþ1 ¼ xn �
f ðxnÞ
f 0ðxnÞ

with x0 ¼ 1100 ð22Þ

The exact limit is L ¼ 500, which is a double root of f. The
stopping criterion is jxn � xn�1j 	 ejxn�1j, and the maximum
number of iterations is set to 1000. Table 2 shows for several
values of e the last value of n and the error jxn � Lj computed
using IEEE double precision arithmetic with rounding to
the nearest.

It is noticeable that the optimal order of magnitude for e
is 10�11. The stopping criterion can not be satisfied if
e 	 10�12: The maximum number of iterations is reached.
Furthermore, the error is slightly higher than for e¼ 10�11.

Impact on Approximation Methods. These methods pro-
vide an approximation of a limit L ¼ limh!0LðhÞ. This
approximation is affected by a global error Eg(h), which
consists in a truncation error Et(h), inherent to the method,
and a rounding error Er(h). If the step h decreases, then the
truncation error Et(h) also decreases, but the rounding
error Er(h) usually increases, as shown in Fig. 1. It may
therefore seem difficult to choose the optimal step hopt. The
rounding error should be evaluated, because the global
error is minimal if the truncation error and the rounding
error have the same order of magnitude.

The numerical experiment described below (4) shows the
impact of the step h on the quality of the approximation.
The second derivative at x ¼ 1 of the following function

f ðxÞ ¼ 4970x� 4923

4970x2 � 9799xþ 4830
ð23Þ

Table 2. Number of Iterations and Error Obtained Using
Newton’s Method in Double Precision

e n jxn � Lj

10�7 26 3.368976E-05
10�8 29 4.211986E-06
10�9 33 2.525668E-07
10�10 35 1.405326E-07
10�11 127 1.273870E-07
10�12 1000 1.573727E-07
10�13 1000 1.573727E-07

ROUNDING ERRORS 5

is approximated by

LðhÞ ¼ f ðx� hÞ � 2 f ðxÞ þ f ðxþ hÞ
h2

ð24Þ

The exact result is f 0 0(1) = 94. Table 3 shows for several
steps h the result L(h), and the absolute error jLðhÞ � Lj
computed using IEEE double precision arithmetic with
rounding to the nearest.

It is noticeable that the optimal order of magnitude for h
is 10�6. If h is too low, then the rounding error prevails and
invalidates the computed result.

METHODS FOR ROUNDING ERROR ANALYSIS

In this section, different methods of analyzing rounding
errors are reviewed.

Forward/Backward Analysis

This subsection is heavily inspired from Refs. 5 and 6. Other
good references are Refs. 7–9.

Let X be an approximation to a real number x. The two
common measures of the accuracy of X are its absolute error

EaðXÞ ¼ jx� Xj ð25Þ

and its relative error

ErðXÞ ¼
jx� Xj
jxj ð26Þ

(which is undefined if x¼ 0). When x and X are vectors, the
relative error is usually defined with a norm as kx� Xk=kxk.
This is a normwise relative error. A more widely used
relative error is the componentwise relative error defined by

maxi
jxi � Xij
jxij

:

It makes it possible to put the individual relative errors
on an equal footing.

Well-Posed Problems. Let us consider the following
mathematical problem (P)

ðPÞ : given y; find x such that FðxÞ ¼ y

where F is a continuous mapping between two linear
spaces (in general Rn or Cn). One will say that the problem
(P) is well posed in the sense of Hadamard if the solution
x ¼ F�1ðyÞ exists, is unique and F�1 is continuous in the
neighborhood of y. If it is not the case, then one says that
the problem is ill posed. An example of ill-posed problem is
the solution of a linear system Ax¼b, where A is singular. It
is difficult to deal numerically with ill-posed problems (this
is generally done via regularization techniques). That is
why we will focus only on well-posed problems in the sequel.

Conditioning. Given a well-posed problem (P), one wants
now to know how to measure the difficulty of solving this
problem. This measurement will be done via the notion of
condition number. Roughly speaking, the condition num-
ber measures the sensitivity of the solution to perturbation
in the data. Because the problem (P) is well posed, one can
write it as x ¼ G(y) with G ¼ F�l.

The input space (data) and the output space (result) are
denoted byD andR, respectively the norms on these spaces
will be denoted k � kD and k � kR. Given e> 0 and let PðeÞ�D
be a set of perturbation Dy of the data y that satisfies
kDykD 	 e, the perturbed problem associated with problem
(P) is defined by

Find Dx2R such that Fðxþ DxÞ ¼ yþ Dy for a given Dy2PðeÞ

x and y are assumed to be nonzero. The condition number of
the problem (P) in the data y is defined by

condðP; yÞ :¼ lim
e!0

sup
Dy2PðeÞ;Dy 6¼ 0

kDxkR
kDykD

� �
ð27Þ

Example 3.1. (summation). Let us consider the problem
of computing the sum

x ¼
Xn

i¼1

yi

E

E

hh opt0

E r

t

g

(h)

(h)

(h)

Figure 1. Evolution of the rounding error Er(h), the truncation
error Et(h) and the global error Eg(h) with respect to the step h.

Table 3. Second Order Approximation of f 0 0(1) ¼ 94
Computed in Double Precision

h L(h) jLðhÞ � Lj

10�3 �2.250198Eþ03 2.344198Eþ03
10�4 7.078819Eþ01 2.321181Eþ01
10�5 9.376629Eþ01 2.337145E�01
4.10�6 9.397453Eþ01 2.546980E�02
3.10�6 9.397742Eþ01 2.257732E�02
10�6 9.418052Eþ01 1.805210E�01
10�7 7.607526Eþ01 1.792474Eþ01
10�8 1.720360Eþ03 1.626360Eþ03
10�9 �1.700411Eþ05 1.701351Eþ05
10�10 4.111295Eþ05 4.110355Eþ05

6 ROUNDING ERRORS

assuming that yi 6¼0 for all i. One will take into account the
perturbation of the input data that are the coefficients yi. Let
Dy ¼ ðDy1; . . . ;DynÞ be the perturbation on y ¼ ðy1; . . . ; ynÞ.
It follows that Dx ¼

Pn
i¼1 Dyi. Let us endowD ¼ Rn with the

relative norm kDykD ¼ maxi¼1;...;njDyij=jyij and R ¼ R with
the relative norm kDxkR ¼ jDxj=jxj. Because

jDxj ¼ j
Xn

i¼1

Dyij 	 kDykD
Xn

i¼1

jyij;

one has1

kDxkR
kDykD

	
Pn

i¼1 jyij
j
Pn

i¼1 yij
ð28Þ

This bound is reached for the perturbation Dy such that
Dyi=yi ¼ signðyiÞkDykD where sign is the sign of a real
number. As a consequence,

cond
Xn

i¼1

yi

 !
¼
Pn

i¼1 jyij
j
Pn

i¼1 yij
ð29Þ

Now one has to interpret this condition number. A
problem is considered as ill conditioned if it has a large
condition number. Otherwise, it is well conditioned. It is
difficult to give a precise frontier between well conditioned
and ill-conditioned problems. This statement will be clar-
ified in a later section thanks to the rule of thumb. The
larger the condition number is, the more a small perturba-
tion on the data can imply a greater error on the result.
Nevertheless, the condition number measures the worst
case implied by a small perturbation. As a consequence, it is
possible for an ill-conditioned problem that a small pertur-
bation on the data also implies a small perturbation on the
result. Sometimes, such a behavior is even typical.

Remark 1. It is important to note that the condition
number is independent of the algorithm used to solve the
problem. It is only a characteristic of the problem.

Stability of an Algorithm. Problems are generally solved
using an algorithm, which is a set of operations and tests
that one can consider as the function G defined above
given the solution of our problem. Because of the rounding
errors, the algorithm is not the function G but rather
a function Ĝ. Therefore, the algorithm does not compute
x ¼ G(y) but x̂ ¼ ĜðyÞ.

The forward analysis tries to study the execution of the
algorithm Ĝ on the data y. Following the propagation of the
rounding errors in each intermediate variables, the for-
ward analysis tries to estimate or to bound the difference
between x and x̂. This difference between the exact solution
x and the computed solution x̂ is called the forward error.

It is easy to recognize that it is pretty difficult to follow
the propagation of all the intermediate rounding errors.
The backward analysis makes it possible to avoid this
problem by working with the function G itself. The idea
is to seek for a problem that is actually solved and to check if
this problem is ‘‘close to’’ the initial one. Basically, one tries
to put the error on the result as an error on the data. More
theoretically, one seeks forDy such that x̂ ¼ Gðyþ DyÞ.Dy is
said to be the backward error associated with x̂. A backward
error measures the distance between the problem that is
solved and the initial problem. As x̂ and G are known, it is
often possible to obtain a good upper bound for Dy (gen-
erally, it is easier than for the forward error). Figure 2 sums
up the principle of the forward and backward analysis.

Sometimes, it is not possible to have x̂ ¼ Gðyþ DyÞ for
some Dy but it is often possible to get Dx and Dy such that
x̂þ Dx ¼ Gðyþ DyÞ. Such a relation is called a mixed
forward-backward error.

The stability of an algorithm describes the influence of
the computation in finite precision on the quality of the
result. The backward error associated with x̂ ¼ ĜðyÞ is the
scalar Zðx̂Þ defined by, when it exists,

Zðx̂Þ ¼ min
Dy2D

fkDykD : x̂ ¼ Gðyþ DyÞg ð30Þ

If it does not exist, then Zðx̂Þ is set to þ1. An algorithm is
said to be backward-stable for the problem (P) if the com-
puted solution x̂ has a ‘‘small’’ backward error Zðx̂Þ. In
general, in finite precision, ‘‘small’’ means of the order of
the rounding unit u.

Example 3.2. (summation). The addition is supposed to
satisfy the following property:

ẑ ¼ zð1þ dÞ ¼ ðaþ bÞð1þ dÞ with jdj 	 u ð31Þ

It should be noticed that this assumption is satisfied by the
IEEE arithmetic. The following algorithm to compute the
sum

P
yi will be used.

Algorithm 3.1. Computation of the sum of floating-point
numbers

function res ¼ Sum(y)
s1 ¼ y1

for i ¼ 2 : n
si ¼ si�1
 yi

res ¼ sn

Thanks to Equation (31), one can write

si ¼ ðsi�1 þ yiÞð1þ diÞ with jdij 	 u ð32Þ

x̂ = G(y)

x = G(y)

y + ∆y

y

G

G

Ĝ

Input space Output space R

Backward error
Forward error

ˆ

D

Figure 2. Forward and backward error for the computation of
x ¼ G(y).

1The Cauchy-Schwarz inequality j
Xn

i¼1

xiyij 	 max
i¼1;...;n

jxij �
Xn

i¼1

jyij is
used.

ROUNDING ERRORS 7

For convenience, 1þ y j ¼
Q j

i¼1ð1þ eiÞ is written, for jeij 	
u and j2N. Iterating the previous equation yields

res ¼ y1ð1þ yn�1Þ þ y2ð1þ yn�1Þ þ y3ð1þ yn�2Þ

þ � � � þ yn�1ð1þ y2Þ þ ynð1þ y1Þ ð33Þ

One can interpret the computed sum as the exact sum of the
vector z with zi ¼ yið1þ ynþ1�iÞ for i ¼ 2 : n and
z1 ¼ y1ð1þ yn�1Þ.

As jeij 	 u for all i and assuming nu< 1, it can be proved
that jyij 	 iu=ð1� iuÞ for all i. Consequently, one can con-
clude that the backward error satisfies

Zðx̂Þ ¼ jyn�1j9nu ð34Þ

Because the backward error is of the order of u, one con-
cludes that the classic summation algorithm is backward-
stable.

Accuracy of the Solution. How is the accuracy of the
computed solution estimated? The accuracy of the com-
puted solution actually depends on the condition number
of the problem and on the stability of the algorithm used.
The condition number measures the effect of the perturba-
tion of the data on the result. The backward error simulates
the errors introduced by the algorithm as errors on the
data. As a consequence, at the first order, one has the
following rule of thumb:

forward error 9 condition number � backward error ð35Þ

If the algorithm is backward-stable (that is to say the
backward error is of the order of the rounding unit u),
then the rule of thumb can be written as follows

forward error 9 condition number � u ð36Þ

In general, the condition number is hard to compute (as
hard as the problem itself). As a consequence, some esti-
mators make it possible to compute an approximation of the
condition number with a reasonable complexity.

The rule of thumb makes it possible to be more precise
about what were called ill-conditioned and well-conditioned
problems. A problem will be said to be ill conditioned if
the condition number is greater than 1/u. It means that the
relative forward error is greater than 1 just saying that one
has no accuracy at all for the computed solution.

In fact, in some cases, the rule of thumb can be proved.
For the summation, if one denotes by ŝ the computed sum of
the vector yi, 1 	 i 	 n and

s ¼
Xn

i¼1

yi

the real sum, then Equation (33) implies

jŝ� sj
jsj 	 gn�1 cond

Xn

i¼1

yi

 !
ð37Þ

with gn defined by

gn:¼ nu

1� nu
for n2N ð38Þ

Because gn�1�ðn� 1Þu, it is almost the rule of thumb with
just a small factor n�1 before u.

The LAPACK Library. The LAPACK library (10) is a
collection of subroutines in Fortran 77 designed to solve
major problems in linear algebra: linear systems, least
square systems, eigenvalues, and singular values problems.

One of the most important advantages of LAPACK is
that it provides error bounds for all the computed quan-
tities. These error bounds are not rigorous but are mostly
reliable. To do this, LAPACK uses the principles of back-
ward analysis. In general, LAPACK provides both compo-
nentwise and normwise relative error bounds using the
rule of thumb established in Equation (35).

In fact, the major part of the algorithms implemented in
LAPACK are backward stable, which means that the rule of
thumb [Equation (36)] is satisfied. As the condition number
is generally very hard to compute, LAPACK uses estima-
tors. It may happen that the estimator is far from the right
condition number. In fact, the estimation can arbitrarily be
far from the true condition number. The error bounds in
LAPACK are only qualitative markers of the accuracy of
the computed results.

Linear algebra problems are central in current scientific
computing. Getting some good error bounds is therefore
very important and is still a challenge.

Interval Arithmetic

Interval arithmetic (11, 12) is not defined on real numbers
but on closed bounded intervals. The result of an arithmetic
operation between two intervals, X ¼ ½x; x� and Y ¼ ½y; y�,
contains all values that can be obtained by performing this
operation on elements from each interval. The arithmetic
operations are defined below.

X þ Y ¼ ½xþ y; xþ y� ð39Þ

X � Y ¼ ½x� y; x� y� ð40Þ

X � Y ¼ ½minðx� y; x� y; x� y; x� yÞ
maxðx� y; x� y; x� y; x� yÞ� ð41Þ

X2 ¼ ½minðx2; x2Þ;maxðx2; x2Þ� if 0 =2 ½x; x�
½0;maxðx2; x2Þ� otherwise

ð42Þ

1=Y ¼ ½minð1=y; 1=yÞ;maxð1=y; 1=yÞ� if 0 =2 ½y; y�
ð43Þ

X=Y ¼ ½x; x� � ð1=½y; y�Þ if 0 =2 ½y; y� ð44Þ

Arithmetic operations can also be applied to interval
vectors and interval matrices by performing scalar interval
operations componentwise.

8 ROUNDING ERRORS

An interval extension of a function f must provide all
values that can be obtained by applying the function to any
element of the interval argument X:

8 x2X; f ðxÞ 2 f ðXÞ ð45Þ

For instance, exp½x; x� ¼ ½exp x; exp x� and sin½p=6; 2p=3� ¼
½1=2; 1�.

The interval obtained may depend on the formula cho-
sen for mathematically equivalent expressions. For
instance, let f1ðxÞ ¼ x2 � xþ 1. f1ð½�2; 1�Þ ¼ ½�2; 7�. Let
f2ðxÞ ¼ ðx� 1=2Þ2 þ 3=4. The function f2 is mathematically
equivalent to f1, but f2ð½�2; 1�Þ ¼ ½3=4 ; 7� 6¼ f1ð½�2; 1�Þ. One
can notice that f2ð½�2; 1�Þ � f1ð½�2; 1�Þ. Indeed a power set
evaluation is always contained in the intervals that result
from other mathematically equivalent formulas.

Interval arithmetic enables one to control rounding
errors automatically. On a computer, a real value that
is not machine representable can be approximated to a
floating-point number. It can also be enclosed by two
floating-point numbers. Real numbers can therefore
be replaced by intervals with machine-representable
bounds. An interval operation can be performed using
directed rounding modes, in such a way that the rounding
error is taken into account and the exact result is neces-
sarily contained in the computed interval. For instance,
the computed results, with guaranteed bounds, of the
addition and the subtraction between two intervals X ¼
½x; x� and Y ¼ ½y; y� are

X þ Y ¼ ½rðxþ yÞ;Dðxþ yÞ� � fxþ yjx2X; y2Yg
ð46Þ

X � Y ¼ ½rðx� yÞ;Dðx� yÞ� � fx� yjx2X; y2Yg
ð47Þ

where r (respectively D) denotes the downward (respec-
tively upward) rounding mode.

Interval arithmetic has been implemented in several
libraries or softwares. For instance, a Cþþ class library,
C-XSC,2andaMatlabtoolbox,INTLAB,3arefreelyavailable.

The main advantage of interval arithmetic is its relia-
bility. But the intervals obtained may be too large. The
intervals width regularly increases with respect to the
intervals that would have been obtained in exact arith-
metic. With interval arithmetic, rounding error compensa-
tion is not taken into account.

The overestimation of the error can be caused by the loss
of variable dependency. In interval arithmetic, several
occurrences of the same variable are considered as different

variables. For instance, let X ¼ [1,2],

8 x2X; x� x ¼ 0 ð48Þ
but

X � X ¼ ½�1; 1� ð49Þ

Another source of overestimation is the ‘‘wrapping
effect’’ because of the enclosure of a noninterval shape
range into an interval. For instance, the image of the square
½0;

ffiffiffi
2
p
� � ½0;

ffiffiffi
2
p
� by the function

f ðx; yÞ ¼
ffiffiffi
2
p

2
ðxþ y; y� xÞ ð50Þ

is the rotated square S1 with corners (0, 0), (1, �1), (2, 0),
(1, 1). The square S2 provided by interval arithmetic opera-
tions is: f ð½0;

ffiffiffi
2
p
�; ½0;

ffiffiffi
2
p
�Þ ¼ ð½0; 2�; ½�1; 1�Þ. The area

obtained with interval arithmetic is twice the one of the
rotated square S1.

As the classic numerical algorithms can lead to over-
pessimistic results in interval arithmetic, specific algo-
rithms, suited for interval arithmetic, have been proposed.
Table 4 presents the results obtained for the determinant of
Hilbert matrix H of dimension 8 defined by

Hi j ¼
1

iþ j� 1
for i ¼ 1; . . . ; 8 and j ¼ 1; . . . 8 ð51Þ

computed:

� using the Gaussian elimination in IEEE double pre-
cision arithmetic with rounding to the nearest

� using the Gaussian elimination in interval arithmetic

� using a specific interval algorithm for the inclusion
of the determinant of a matrix, which is described in
Ref. 8, p. 214.

Results obtained in interval arithmetic have been com-
puted using the INTLAB toolbox.

The exact value of the determinant is

detðHÞ ¼
Y7

k¼0

ðk!Þ3

ð8þ kÞ! ð52Þ

Its 15 first exact significant digits are:

detðHÞ ¼ 2:73705011379151E� 33 ð53Þ

The number of exact significant decimal digits of each
computed result has been reported in Table 4.

One can verify the main feature of interval arithmetic:
The exact value of the determinant is enclosed in the com-
puted intervals. Table 4 points out the overestimation of the

Table 4. Determinant of the Hilbert Matrix H of Dimension 8

det(H) #exact digits

IEEE double precision 2.73705030017821E-33 7.17
interval Gaussian elimination [2.717163073713011E-33, 2.756937028322111E-33] 1.84
interval specific algorithm [2.737038183754026E-33, 2.737061910503125E-33] 5.06

2http://www.xsc.de.
3http://www.ti3.tu-harburg.de/rump/intlab.

ROUNDING ERRORS 9

error with naive implementations of classic numerical algo-
rithms in interval arithmetic. The algorithm for the inclu-
sion of a determinant that is specific to interval arithmetic
leads to a much thinner interval. Such interval algorithms
exist in most areas of numerical analysis. Interval analysis
can be used not only for reliable numerical simulations but
also for computer assisted proofs (cf., for example, Ref. 8).

Probabilistic Approach

Here, a method for estimating rounding errors is presented
without taking into account the model errors or the dis-
cretization errors.

Let us go back to the question ‘‘What is the computing
error due to floating-point arithmetic on the results pro-
duced by a program?’’ From the physical point of view, in
large numerical simulations, the final rounding error is the
result of billions and billions of elementary rounding errors.
In the general case, it is impossible to describe each ele-
mentary error carefully and, then to compute the right
value of the final rounding error. It is usual, in physics,
when a deterministic approach is not possible, to apply a
probabilistic model. Of course, one loses the exact descrip-
tion of the phenomena, but one may hope to get some global
information like order of magnitude, frequency, and so on.
It is exactly what is hoped for when using a probabilistic
model of rounding errors.

For the mathematical model, remember the formula at
the first order [Equation (13)]. Concretely, the rounding
mode of the computer is replaced by a random rounding
mode (i.e., at each elementary operation, the result is
rounded toward �1 or þ1 with the probability 0.5.) The
main interest of this new rounding mode is to run a same
binary code with different rounding error propagations
because one generates for different runs different random
draws. If rounding errors affect the result, even slightly,
then one obtains for N different runs, N different results on
which a statistical test may be applied. This strategy is the
basic idea of the CESTAC method (Contrôle et Estimation
STochastique des Arrondis de Calcul). Briefly, the part of
the N mantissas that is common to the N results is assumed
to be not affected by rounding errors, contrary to the part of
the N mantissas that is different from one result to another.

The implementation of the CESTAC method in a code
providing a result R consists in:

� executing N times this code with the random rounding
mode, which is obtained by using randomly the round-
ing mode toward�1 orþ1; then, an N-sample (Ri) of
R is obtained,

� choosing as the computed result the mean value R of
Ri, i ¼ 1, . . ., N,

� estimating the number of exact decimal significant
digits of R with

C
R
¼ log10

ffiffiffiffiffi
N
p
jRj

stb

 !
ð54Þ

where

R ¼ 1

N

XN
i¼1

Ri and s2 ¼ 1

N � 1

XN
i¼1

ðRi � RÞ2 ð55Þ

tb is the value of Student’s distribution for N�1 degrees
of freedom and a probability level 1�b.

From Equation (13), if the first order approximation is
valid, one may deduce that:

1. The mean value of the random variable R is the exact
result r,

2. Under some assumptions, the distribution of R is a
quasi-Gaussian distribution.

It has been shown that N ¼ 3 is the optimal value. The
estimation with N¼ 3 is more reliable than with N¼ 2 and
increasing the size of the sample does not improve the
quality of the estimation. The complete theory can
be found in Refs. 13 and 14. The approximation at the
first order in Equation (13) is essential for the validation of
the CESTAC method. It has been shown that this approx-
imation may be wrong only if multiplications or divisions
involve nonsignificant values. A nonsignificant value is a
computed result for which all the significant digits are
affected by rounding errors. Therefore, one needs a dyna-
mical control of multiplication and division during the
execution of the code. This step leads to the synchronous
implementation of the method (i.e., to the parallel
computation of the N results Ri.) In this approach, a
classic floating-point number is replaced by a 3-sample
X¼ (X1, X2, X3), and an elementary operation V2 {þ,�,�, /}
is defined by XVY ¼ ðX1oY1; X2oY2; X3oY3Þ, where o
represents the corresponding floating-point operation fol-
lowed by a random rounding. A new important concept has
also been introduced: the computational zero.

Definition 3.1. During the run of a code using the
CESTAC method, an intermediate or a final result R is
a computational zero, denoted by @.0, if one of the two
following conditions holds:

� 8i, Ri ¼ 0,

� C
R
	 0.

Any computed result R is a computational zero if either
R ¼ 0, R being significant, or R is nonsignificant. In other
words, a computational zero is a value that cannot be
differentiated from the mathematical zero because of its
rounding error. From this new concept of zero, one can
deduce new order relationships that take into account the
accuracy of intermediate results. For instance,

Definition 3.2. X is stochastically strictly greater than Y
if and only if:

X>Y and X � Y 6¼@:0

or

Definition 3.3. X is stochastically greater than or equal
to Y if and only if:

X
Y or X � Y ¼ @:0

10 ROUNDING ERRORS

The joint use of the CESTAC method and these new
definitions is called Discrete Stochastic Arithmetic (DSA).
DSA enables to estimate the impact of rounding errors on
any result of a scientific code and also to check that no
anomaly occurred during the run, especially in branching
statements. DSA is implemented in the Control of Accuracy
and Debugging for Numerical Applications (CADNA)
library.4 The CADNA library allows, during the execution
of any code:

� the estimation of the error caused by rounding error
propagation,

� the detection of numerical instabilities,

� the checking of the sequencing of the program (tests
and branchings),

� the estimation of the accuracy of all intermediate
computations.

METHODS FOR ACCURATE COMPUTATIONS

In this section, different methods to increase the accuracy of
the computed result of an algorithm are presented. Far
from being exhaustive, two classes of methods will be
presented. The first class is the class of compensated meth-
ods. These methods consist in estimating the rounding
error and then adding it to the computed result. The second
class are algorithms that use multiprecision arithmetic.

Compensated Methods

Throughout this subsection, one assumes that the floating-
point arithmetic adhers to IEEE 754 floating-point stan-
dard in rounding to the nearest. One also assume that no
overflow nor underflow occurs. The material presented in
this section heavily relies on Ref. (15).

Error-Free Transformations (EFT). One can notice that a �
b2R and a } b2 F, but in general a � b2 F does not hold. It is
known that for the basic operationsþ,�,�,

ffip
the approx-

imation error of a floating-point operation is still a floating-
point number:

x ¼ a
 b) aþ b ¼ xþ y with y2 F;
x ¼ a � b) a� b ¼ xþ y with y2 F;
x ¼ a � b) a� b ¼ xþ y with y2 F;
x ¼ a � b) a ¼ x� bþ y with y2 F;
x ¼ �@ ðaÞ) a ¼ x2 þ y with y2 F

ð56Þ

These example are error-free transformations of the pair
(a, b) into the pair (x, y). The floating-point number x is
the result of the floating-point operation and y is the
rounding term. Fortunately, the quantities x and y in
Equation (56) can be computed exactly in floating-point
arithmetic. For the algorithms, Matlab-like notations are
used. For addition, one can use the following algorithm
by Knuth.

Algorithm 4.1. (16). Error-free transformation of the
sum of two floating-point numbers

function [x, y] ¼ TwoSum(a, b)
x ¼ a
 b
z ¼ x � a
y ¼ (a � (x � z))
 (b � z)

Another algorithm to compute an error-free transforma-
tion is the following algorithm from Dekker (17). The draw-
back of this algorithm is that x þ y ¼ a þ b provided that
jaj
 jbj. Generally, on modern computers, a comparison
followed by a branching and three operations costs more
than six operations. As a consequence, TwoSum is generally
more efficient than FastTwoSum plus a branching.

Algorithm 4.2. (17). Error-free transformation of the
sum of two floating-point numbers.

function [x, y] ¼ FastTwoSum(a, b)
x ¼ a
 b
y ¼ (a � x)
 b

For the error-free transformation of a product, one first
needs to split the input argument into two parts. Let p be
given by u¼ 2�p, and let us define s¼ dp/2e. For example, if
the working precision is IEEE 754 double precision, then p
¼ 53 and s ¼ 27. The following algorithm by Dekker (17)
splits a floating-point number a2 F into two parts x and y
such that

a ¼ xþ y with jyj 	 jxj ð57Þ

Both parts x and y have at most s � 1 non-zero bits.

Algorithm 4.3. (17) Error-free split of a floating-point
number into two parts

function [x, y] ¼ Split(a)
factor ¼ 2s
 1
c ¼ factor � a
x ¼ c � (c � a)
y ¼ a � x

The main point of Split is that both parts can be
multiplied in the same precision without error. With this
function, an algorithm attributed to Veltkamp by Dekker
enables to compute an error-free transformation for the
product of two floating-point numbers. This algorithm
returns two floating-point numbers x and y such that

a� b ¼ xþ y with x ¼ a� b ð58Þ

Algorithm 4.4. (17). Error-free transformation of the
product of two floating-point numbers

function [x, y] ¼ TwoProduct(a, b)
x ¼ a � b
[a1, a2] ¼ Split(a)
[b1, b2] ¼ Split(b)
y ¼ a2 � b2�(((x � a1 � b1) � a2 � b1) � a1 � b2)

The performance of the algorithms is interpreted in
terms of floating-point operations (flops). The following4http://www.lip6.fr/cadna/.

ROUNDING ERRORS 11

theorem summarizes the properties of algorithms TwoSum
and TwoProduct.

Theorem 4.1. Let a, b2 F and let x, y2 F such that [x, y]¼
TwoSum(a, b) (Algorithm 4.1). Then,

aþ b ¼ xþ y; x ¼ a
 b; jyj 	 ujxj; jyj 	 ujaþ bj:
ð59Þ

The algorithm TwoSum requires 6 flops.
Let a, b 2 F and let x, y 2 F such that [x, y] ¼ TwoPro-

duct(a, b) (Algorithm 4.4). Then,

a� b ¼ xþ y; x ¼ a� b; jyj 	 ujxj; jyj 	 uja� bj :
ð60Þ

The algorithm TwoProduct requires 17 flops.

A Compensated Summation Algorithm. Hereafter, a com-
pensated scheme to evaluate the sum of floating-point
numbers is presented, (i.e., the error of individual summa-
tion is somehow corrected).

Indeed, with Algorithm 4.1 (TwoSum), one can compute
the rounding error. This algorithm can be cascaded and
sum up the errors to the ordinary computed summation.
For a summary, see Fig. 3 and Algorithm 4.5.

Algorithm 4.5. Compensated summation algorithm
function res ¼ CompSum(p)
p1 ¼ p1; s1 = 0;

for i ¼ 2 : n
[pi, qi] ¼ TwoSum(pi�1, pi)
si ¼ si�1
 qi

res ¼ pn
 sn

The following proposition gives a bound on the accuracy
of the result. The notation gn defined by Equation (38) will
be used. When using gn;nu 	 1 is implicitly assumed.

Proposition 4.2. (15). Suppose Algorithm CompSum is
applied to floating-point number pi 2 F; 1 	 i 	 n. Let s:¼P

pi;S:¼
P
jpij and nu < 1. Then, one has

jres� sj 	 ujsj þ g2
n�1S ð61Þ

In fact, the assertions of Proposition 4.2 are also valid in
the presence of underflow.

One can interpret Equation (61) in terms of the condition
number for the summation (29). Because

cond
X

pi

� �
¼
P
jpij

j
P

pij
¼ S

jsj ð62Þ

inserting this in Equation (61) yields

jres� sj
jsj 	 uþ g2

n�1cond
X

pi

� �
ð63Þ

Basically, the bound for the relative error of the result is
essentially (nu)2 times the condition number plus the
rounding u because of the working precision. The second
term on the right-hand side reflects the computation in
twice the working precision (u2) thanks to the rule of thumb.
The first term reflects the rounding back in the working
precision.

The compensated summation on ill-conditioned sum
was tested; the condition number varied from 104 to 1040.

Figure 4 shows the relative accuracy |res � s|/|s| of
the computed value by the two algorithms 3.1 and 4.5. The a
priori error estimations Equations (37) and (63) are also
plotted.

As one can see in Fig. 4, the compensated summation
algorithm exhibits the expected behavior, that is to say, the
compensated rule of thumb Equation (63). As long as the
condition number is less than u�1, the compensated sum-
mation algorithm produces results with full precision (for-
ward relative error of the order of u). For condition numbers
greater than u�1, the accuracy decreases and there is no
accuracy at all for condition numbers greater than u�2.

Figure 3. Compensated summation algo-
rithm.

TwoSumTwoSum TwoSum TwoSum· · ·

p1 p2 pn − 1 pn

q2 q3 qn − 1 qn

2 n − 1 nn − 23p1

+ +· · ·

+

+ +

p p p p p

105 1010 1015 1020 1025 1030 1035

10−10

10−12

10−14

10−16

10−18

10−8

10−6

10−4

10–2

100

Condition number

R
el

at
iv

e
fo

rw
ar

d
er

ro
r

Condition number and relative forward error

γn−1 cond u+γ
2n

2 cond

classic summation
compensated summation

Figure 4. Compensated summation algorithm.

12 ROUNDING ERRORS

Multiple Precision Arithmetic

Compensated methods are a possible way to improve accu-
racy.Anotherpossibility istoincreasetheworkingprecision.
For this purpose, some multiprecision libraries have been
developed. One can divide the libraries into three categories.

� Arbitrary precision libraries using a multiple-digit
format in which a number is expressed as a sequence
of digits coupled with a single exponent. Examples of
this format are Bailey’s MPFUN/ARPREC,5 Brent’s
MP,6 or MPFR.7

� Arbitrary precision libraries using a multiple-compo-
nent format where a number is expressed as uneval-
uated sums of ordinary floating-point words. Examples
using this format are Priest’s8 and Shewchuk’s9

libraries. Such a format is also introduced in Ref. 18.

� Extended fixed-precision libraries using the multiple-
component format but with a limited number of com-
ponents. Examples of this format are Bailey’s double-
double5 (double-double numbers are represented as an
unevaluated sum of a leading double and a trailing
double) and quad-double.5

The double-double library will be now presented. For our
purpose, it suffices to know that a double-double number a
is the pair (ah, al) of IEEE-754 floating-point numbers with
a¼ ahþ al and |al|	 u|ah|. In the sequel, algorithms for

� the addition of a double number to a double-double
number;

� the product of a double-double number by a double
number;

� the addition of a double-double number to a double-
double number

will only be presented. Of course, it is also possible to imple-
ment the product of a double-double by a double-double as
well as the division of a double-double by a double, and so on.

Algorithm 4.6. Addition of the double number b to the
double-double number (ah, al)

function [ch, cl] ¼ add_dd_d(ah, al, b)
[th, tl] ¼ TwoSum(ah, b)
[ch, cl] ¼ FastTwoSum(th, (tl
 al))

Algorithm 4.7. Product of the double-double number
(ah,al) by the double number b

function [ch, cl] ¼ prod_dd_d(ah, al, b)
[sh, sl] ¼ TwoProduct(ah, b)
[th, tl] ¼ FastTwoSum(sh, (al � b))
[ch, cl] ¼ FastTwoSum(th, (tl
 sl))

Algorithm 4.8. Addition of the double-double number
(ah, al) to the double-double number (bh, bl)

function [ch, cl] ¼ add_dd_dd (ah, al, bh, bl)
[sh, sl] ¼ TwoSum(ah, bh)
[th, tl] ¼ TwoSum(al, bl)
[th, sl] ¼ FastTwoSum(sh, (sl
 th))
[ch, cl] ¼ FastTwoSum(th, (tl
 sl))

Algorithms 4.6 to 4.8 use error-free transformations and
are very similar to compensated algorithms. The difference
lies in the step of renormalization. This step is the last one
in each algorithm and makes it possible to ensure that
jclj 	 ujchj.

Several implementations can be used for the double-
double library. The difference is that the lower-order terms
are treated in a different way. If a, b are double-double
numbers and } 2 {þ, �}, then one can show (19) that

flða } bÞ ¼ ð1þ dÞða } bÞ

with jdj 	 4 � 2�106.
One might also note that when keeping ½pn; sn� as a pair

the first summand u disappears in [Equation (63)] (see
Ref. 15), so it is an example for a double-double result.

Let us now briefly describe the MPFR library. This
library is written in C language based on the GNU MP
library (GMP for short). The internal representation of a
floating-point number x by MPFR is

� a mantissa m;

� a sign s;

� a signed exponent e.

If the precision of x is p, then the mantissa m has p
significant bits. The mantissa m is represented by an array
of GMP unsigned machine-integer type and is interpreted
as 1/2 	 m < 1. As a consequence, MPFR does not allow
denormalized numbers.

MPFR provides the four IEEE rounding modes as well as
some elementary functions (e.g., exp, log, cos, sin), all
correctly rounded. The semantic in MPFR is as follows:
For each instruction a¼bþ c or a¼ f(b, c) the variables may
have different precisions. In MPFR, the data b and c are
considered with their full precision and a correct rounding
to the full precision of a is computed.

Unlike compensated methods that need to modify the
algorithms, multiprecision libraries are convenient ways to
increase the precision without too many efforts.

ACKNOWLEDGMENT

The authors sincerely wish to thank the reviewers for their
careful reading and their constructive comments.

BIBLIOGRAPHY

1. report of the General Accounting office, GAO/IMTEC-92-26.

2. D. Goldberg, What every computer scientist should know about
floating-point arithmetic. ACM Comput. Surve., 23(1): 5–48,
1991.

5http://crd.lbl.gov/~dhbailey/mpdist/.
6http://web.comlab.ox.ac.uk/oucl/work/richard.brent/pub/
pub043.html.
7http://www.mpfr.org/.
8ftp://ftp.icsi.berkeley.edu/pub/theory/priest-thesis.ps.Z.
9http://www.cs.cmu.edu/~quake/robust.html.

ROUNDING ERRORS 13

3. IEEE Computer Society, IEEE Standard for Binary Floating-
Point Arithmetic, ANSI/IEEE Standard 754-1985, 1985. Rep-
rinted in SIGPLAN Notices, 22(2): 9–25, 1987.

4. S. M. Rump, How reliable are results of computers? Jahrbuch
Überblicke Mathematik, pp. 163–168, 1983.

5. N. J. Higham, Accuracy and stability of numerical algorithms,
Philadelphia, PA: Society for Industrial and Applied Mathe-
matics (SIAM), 2nd ed. 2002.

6. P. Langlois, Analyse d’erreur en precision finie. In A. Barraud
(ed.), Outils d’Analyse Numérique pour l’Automatique, Traité
IC2, Cachan, France: Hermes Science, 2002, pp. 19–52.

7. F. Chaitin-Chatelin and V. Frayssé, Lectures on Finite Preci-
sion Computations. Philadelphia, PA: Society for Industrial
and Applied Mathematics (SIAM), 1996.

8. S. M. Rump, Computer-assisted proofs and self-validating
methods. In B. Einarsson (ed.), Accuracy and Reliability in
Scientific Computing, Software-Environments-Tools, Phila-
delphia, PA: SIAM, 2005, pp. 195–240.

9. J. H. Wilkinson, Rounding errors in algebraic processes. (32),
1963. Also published by Englewood Cliffs, NJ: Prentice-Hall,
and New York: Dover, 1994.

10. E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. J.
Dongarra, J. Du Croz, S. Hammarling, A. Greenbaum, A.
McKenney, and D. Sorensen, LAPACK Users’ Guide, 3rd ed.
Philadelphia, PA: Society for Industrial and Applied Mathe-
matics, 1999.

11. G. Alefeld and J. Herzberger, Introduction to Interval Analysis.
New York: Academic Press, 1983.

12. U. W. Kulisch, Advanced Arithmetic for the Digital Computer.
Wien: Springer-Verlag, 2002.

13. J.-M. Chesneaux. L’Arithmétique Stochastique et le Logiciel
CADNA. Paris: Habilitation à diriger des recherches, Univer-
sité Pierre et Marie Curie, 1995.

14. J. Vignes, A stochastic arithmetic for reliable scientific compu-
tation. Math. Comput. Simulation, 35: 233–261, 1993.

15. T. Ogita, S. M. Rump, and S. Oishi, Accurate sum and dot
product. SIAM J. Sci. Comput., 26(6): 1955–1988, 2005.

16. D. E. Knuth, The Art of Computer Programming, Vol. 2,
Seminumerical Algorithms, 3rd ed. Reading, MA: Addison-
Wesley, 1998.

17. T. J. Dekker, A floating-point technique for extending the
available precision. Numer. Math., 18: 224–242, 1971.

18. S. M. Rump, T. Ogita, and S. Oishi, Accurate Floating-point
Summation II: Sign, K-fold Faithful and Rounding to Nearest.
Technical Report 07.2, Faculty for Information and Commu-
nicationSciences, Hamburg, Germany: Hamburg University of
Technology, 2007.

19. X. S. Li, J. W. Demmel, D. H. Bailey, G. Henry, Y. Hida,
J. Iskandar, W. Kahan, S. Y. Kang, A. Kapur, M. C. Martin,
B. J. Thompson, T. Tung, and D. J. Yoo, Design, implementa-
tion and testing of extended and mixed precision BLAS. ACM
Trans. Math. Softw., 28(2): 152–205, 2002.

JEAN-MARIE CHESNEAUX

STEF GRAILLAT

FABIENNE JÉZÉQUEL

Laboratoire d’Informatique de
Paris, France

14 ROUNDING ERRORS

