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CONDENSE AND DISTILL: FAST DISTILLATION OF LARGE
FLOATING-POINT SUMS VIA CONDENSATION\ast 

STEF GRAILLAT\dagger AND THEO MARY\dagger 

Abstract. Floating-point summation is a fundamental task at the heart of many scientific
computing applications. When the sum is very ill conditioned, computing it accurately can become
challenging. One can employ distillation methods, which consist in transforming an ill-conditioned
sum into an equivalent but well-conditioned one. However, distillation is a very expensive process. In
this article, we propose Condense \& Distill, a new distillation method that relies on a preprocessing
step that we call condensation, because it transforms the original sum into a far smaller sum, which
can then be distilled inexpensively. This condensation step exploits a new, key observation that
floating-point addition is exact when the addends have both the same exponent and the same least
significant bit. Condense \& Distill thus requires accessing the exponent field of the summands.
Compared with state-of-the-art summation methods with the same requirement such as the Demmel--
Hida method [J. Demmel and Y. Hida, SIAM J. Sci. Comput., 25 (2003), pp. 1214--1248], Condense
\& Distill presents the significant benefit of running entirely in the working precision, with no need
for extra precision. At the same time, it preserves the main advantages of the Demmel--Hida method
compared with other methods, in particular those based on error-free transformations such as AccSum
[S. M. Rump, T. Ogita, and S. Oishi, SIAM J. Sci. Comput., 31 (2008), pp. 189--224]: namely, its
cost is independent of the conditioning, and it exhibits near perfect parallel scaling. We present
numerical experiments that confirm that Condense \& Distill can reliably and efficiently distill large ill-
conditioned sums and performs favorably compared with other state-of-the-art summation methods.
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1. Introduction. The summation of n floating-point numbers,

n\sum 
i=1

xi,

is one of the most fundamental tasks of scientific computing. In several applica-
tions, computing the sum accurately is challenging because it is both large and ill-
conditioned; that is, its condition number

\kappa =

\sum n
i=1 | xi| 

| 
\sum n

i=1 xi| 
(1.1)

is large. For only moderately large values of \kappa , a possible approach is to simply
evaluate the sum in higher precision arithmetic, such as the IEEE quadruple precision
(fp128) arithmetic. However, this approach is no longer viable for really large values
of \kappa , since in this case even quadruple precision is not sufficient to obtain an accurate
result.
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B584 STEF GRAILLAT AND THEO MARY

Floating-point summation has been studied for a long time. In his seminal book
[2], Higham devoted an entire chapter to summation algorithms. Here we cannot
review all the papers that deal with floating-point summations. We will only present
the two main families of algorithms and their principle. A recent paper with an
overview of other summation algorithms can be found in [4]. Several methods have
been proposed to handle extremely ill-conditioned sums, the most popular of which
we can categorize in two broad classes.

\bullet The first class relies on the finite number of exponents in typical (IEEE)
floating-point arithmetic and on the fact that numbers with exponents not too
far apart can be added exactly using extended precision accumulators. This
is, for example, the case of Kulisch's accumulator [3], which sums all numbers
in a very long accumulator, or of the Demmel--Hida algorithm [1], which sums
together numbers of comparable exponent using higher precision arithmetic,
such as quadruple precision. This strategy is also used in HybridSum [11]
and OnlineExactSum [12].

\bullet The second class exploits the fact that the error incurred by floating-point
addition is itself a floating-point number. This error can be computed ex-
actly via error-free transformations such as Fast2Sum. This class includes
in particular the AccSum method [8], which computes a faithful rounding of
the sum irrespective of its conditioning, and the PrecSum method [9], which
computes the sum as if using K-fold precision (for a given K). Those al-
gorithms have been improved respectively as FastAccSum and FastPrecSum
in [7].

The methods from the first class have a double weakness: they require access to
the exponent of the floating-point numbers, which can be expensive, and they require
the use of extended precision accumulators. In contrast, the methods from the second
class only require standard arithmetic operations on the summands. However, they
also require a much larger number of floating-point operations, and their cost strongly
depends on the conditioning. Moreover, they are much less parallel than the methods
from the first class. In any case, both classes of methods can be quite expensive.

Many of the summation methods able to handle ill-conditioned sums rely on the
process of distillation. Distillation consists in iteratively transforming the original,
ill-conditioned sum into an equivalent but well-conditioned sum that can then be
evaluated accurately. This is especially the case of the second class of methods men-
tioned above, although the first class can also be used to design distillation methods;
see, for example, [1, sect. 5] for the Demmel--Hida method.

In this article, we propose a method to transform the original sum into another,
equivalent sum, which is not necessarily better conditioned but which is far smaller.
The smaller sum can then be distilled inexpensively by any of the distillation methods
mentioned above. We call the first transformation of the sum into a smaller equivalent
one the process of condensation. In the natural language, condensation indeed carries
the idea of compacting or contracting a large, complex system into a smaller, simpler
one. Moreover, and quite appropriately, in the original physical meaning of the words,
condensation (the process of transforming gas to liquid) is a crucial component of the
process of distillation (the process of separating substances from a liquid). The entire
process (condensing the original sum into a smaller one and then distilling it) thus
gives rise to a new method to handle large ill-conditioned sums, which we call the
Condense \& Distill method.

The condensation step is based on the key observation that floating-point numbers
with exponents not too far apart can be added exactly, even in the working precision,
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as long as some congruence condition of their least significant digits is satisfied. In
particular, base-two numbers with the same exponent and the same least significant
bit can be added exactly in the working precision. Condense \& Distill thus belongs
to the first class of summation methods mentioned above, since it requires access
to the exponent of the summands. It is most similar to the Demmel--Hida method:
it also adds together numbers of the same exponent but does not require any extra
precision. The entire condensation process can be performed in the working precision;
only the final condensed sum needs to be distilled using extended precision (or, for
that matter, any other distillation method). This is achieved at the cost of accessing
the least significant bit of the summands, which is a negligible overhead compared
with the cost of accessing their exponent. Therefore, Condense \& Distill allows for
significant improvements, not only in terms of performance (because operations in the
working precision are faster) but also in terms of robustness/portability. For example,
our algorithm can easily accommodate quadruple precision as the working precision.
Compared with the second class of summation methods (AccSum, etc.), Condense
\& Distill shares the main strengths of the first class: its performance can be made
completely independent of the conditioning of the sum, and it exhibits nearly perfect
parallel scaling.

The rest of this article is organized as follows. In section 2, we carry out an
analysis to determine conditions for the floating-point addition x+y to be exact. We
leverage this analysis in section 3 to develop the Condense \& Distill method. We
experimentally showcase the use of Condense \& Distill against traditional distillation
algorithms in section 4, where we also analyze the parallel scaling of our algorithm.
Finally, we provide our concluding remarks in section 5.

2. When is \bfitx + \bfity exact?. Consider a floating-point number system \BbbF with
base \beta , exponent range (emin, emax), and significand of length t\geq 2. To denote x \in \BbbF 
we will use the notation

x=\pm (\beta ex + kx\varepsilon ex), \varepsilon ex = \beta ex+1 - t, kx \in \BbbN ,

where ex is the unbiased exponent of x and \varepsilon ex is the space between adjacent floating-
point numbers in the interval [\beta ex , \beta ex+1]. Note that kx < (\beta  - 1)\beta t - 1 since x< \beta ex+1.

Given x, y \in \BbbF of the same sign, conditions for the subtraction x - y to be exact
are known by the Sterbenz lemma (see [10] or [6]). In this section, we determine
conditions for the addition x+ y to be exact. We begin with the very general result
below.

Theorem 2.1. Let x, y \in \BbbF of the same sign \sigma =\pm 1 such that

x= \sigma (\beta ex + kx\varepsilon ex),

y= \sigma (\beta ey + ky\varepsilon ey ).

Assuming (without loss of generality) that | x| \leq | y| , then x + y \in \BbbF , and thus the
addition is exact, iff one of the following conditions is met:

(i) x= 0;
(ii) | x+ y| <\beta ey+1, ey  - ex \leq t - 1, and kx \equiv 0 mod \beta ey - ex ;
(iii) | x+ y| = \beta ey+1, ey + 1\leq emax, ey  - ex \leq t - 1, and kx \equiv 0 mod \beta ey - ex ;
(iv) | x+ y| > \beta ey+1, ey + 1 \leq emax, ey  - ex \leq t - 2, and kx + ky\beta 

ey - ex \equiv 0 mod
\beta ey - ex+1.
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Proof. Case (i) is trivial. For the remaining cases, we consider positive x and y,
the negative case being analogous. We first note that x+ y \in [\beta ey , \beta ey+2), so that if
x+ y is to be exact, its exponent can only be ey or ey + 1.

\bullet Let us first consider case (ii), where x + y < \beta ey+1. Then x + y \in \BbbF iff \varepsilon ey
divides x+ y  - \beta ey = ky\varepsilon ey + x, that is, iff \varepsilon ey divides x = \beta ex + kx\varepsilon ex . We
first prove that it is necessary for \varepsilon ey = \beta ey+1 - t to divide \beta ex , which is only
possible if ey  - ex \leq t - 1. If this condition is not met, then ex \leq ey  - t and
so \beta ex \leq \varepsilon ey/\beta ; moreover, kx\varepsilon ex < (\beta  - 1)\beta ex \leq (\beta  - 1)\beta ey - t = (\beta  - 1)\varepsilon ey/\beta 
and therefore \varepsilon ey > x cannot divide x. We conclude that ey  - ex \leq t  - 1
is a necessary condition for x + y \in \BbbF (when x \not = 0). The condition is not
sufficient, since \varepsilon ey must also divide kx\varepsilon ex , which happens iff kx is congruent
to 0 mod \beta ey - ex . This concludes case (ii).

\bullet Case (iii) is identical to case (ii), except we must guarantee that \beta ey+1 exists
by barring overflow with the condition ey + 1\leq emax.

\bullet In case (iv), \beta ey+1 <x+y < \beta ey+2, we also need ey+1\leq emax to bar overflow.
Then x+ y \in \BbbF iff \varepsilon ey+1 divides x+ y - \beta ey+1 = \beta ey (1 - \beta )+ky\varepsilon ey +x. First,
we note that \varepsilon ey+1 = \beta ey+2 - t divides \beta ey for t \geq 2, so x + y \in \BbbF iff \varepsilon ey+1

divides ky\varepsilon ey + \beta ex + kx\varepsilon ex . Second, we prove that it is necessary for \varepsilon ey+1

to divide \beta ex , which requires ey  - ex \leq t  - 2. Indeed, if this condition is
not met, ex \leq ey + 1  - t, and so x < \beta ex+1 \leq \beta ey+2 - t = \varepsilon ey+1. Thus
x + y < y + \varepsilon ey+1 < \beta ey+1 + \varepsilon ey+1, but we are in the case x + y > \beta ey+1,
so x + y /\in \BbbF . Therefore ey  - ex \leq t  - 2 is necessary and \varepsilon ey+1 divides
\beta ex . Moreover, for the condition to be sufficient, we also need \varepsilon ey+1 to
divide ky\varepsilon ey + kx\varepsilon ex , which happens when kx + ky\beta 

ey - ex is congruent to
0 mod \beta ey - ex+1.

Theorem 2.1 fully characterizes the conditions for the addition of two floating-
point numbers x+ y to be exact. The conditions essentially boil down to two compo-
nents: the exponents of x and y must not be too far apart, and their mantissas must
satisfy some congruence condition. However, making use of this characterization in
practice could be complex. Interestingly, the conditions become much simpler if we
specialize them to numbers sharing the same exponent (ex = ey).

Corollary 2.2. Let x, y \in \BbbF of same sign \sigma = \pm 1 and same exponent e, such
that

x= \sigma (\beta e + kx\varepsilon e),

y= \sigma (\beta e + ky\varepsilon e).

Then x+ y \in \BbbF , and thus the addition is exact, iff either
(i) | x+ y| <\beta e+1 or
(ii) e+ 1\leq emax and kx + ky \equiv 0 mod \beta .

Case (i) of Corollary 2.2 corresponds to cases (i) and (ii) of Theorem 2.1, while case
(ii) of the corollary corresponds to cases (iii) and (iv) of the theorem. Note that case
(i) of the corollary is only possible for \beta > 2, since in binary floating-point arithmetic
the sum of two numbers in the range (2e,2e+1] necessarily yields a number in the
range (2e+1,2e+2]. Moreover, recall that floating-point numbers can be expressed as

x= \beta e - t
t\sum 

i=1

di\beta 
t - i,(2.1)
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where the digits di satisfy 0\leq di \leq \beta  - 1 with d1 \not = 0 for normalized numbers. Since \beta 
divides \beta t - i for i < t, the condition kx+ky \equiv 0 mod \beta further simplifies to a condition
on the least significant digits dxt and dyt of x and y:

dxt + dyt \equiv 0 mod \beta ;(2.2)

that is, dxt + dyt must be either 0 or \beta . For \beta = 2, this further simplifies to dxt = dyt ,
yielding the following result.

Corollary 2.3. If x, y \in \BbbF with \beta = 2 have the same sign, exponent, and least
significant bit, then barring overflow their addition is exact.

Corollary 2.3 provides a necessary condition that is much simpler to check, since
it only requires one to access the sign, exponent, and least significant bit of x and
y. In the next section, we propose an algorithm that exploits this observation to
condense a large sum into an equivalent one with far fewer summands.

3. Fast distillation via condensation. We now describe the Condense \& Dis-
till algorithm, which exploits Corollary 2.3 to compute rapidly and exactly

s=
n\sum 

i=1

xi, xi \in \BbbF .(3.1)

Condense \& Distill consists of two steps. The first step is to condense the sum by
adding pairs of summands sharing the same exponent, sign, and least significant bit
(hereinafter abbreviated as LSB), until no such pairs remain. As we will prove below,
the number of remaining summands is then bounded by a small value. This first
condensation step therefore transforms the original sum into another sum with a much
smaller number of summands. The second step is to then distill this much smaller
sum via any traditional distillation method. The condensation step thus serves as a
preprocessing to accelerate the distillation step.

To prove the algorithm's exactness and cost, we conceptually describe it as build-
ing a forest (a disjoint set of trees). We first place the summands xi as leaf nodes
on a level determined by their exponent. Then we repeatedly sum pairs of siblings
with identical sign and LSB and place the (exact) result on the level above, until all
pairs of siblings have either a different sign or a different LSB. At this point there
thus remains at most four nodes per level, and the number of nonempty levels is itself
bounded by L= \lceil log2 n\rceil + d, where d is a constant independent of n that equals the
number of different exponents among the summands xi. L is certainly bounded by
the total number of possible exponent values of the floating-point system (e.g., 2047
with IEEE binary64) and can be much smaller for typical datasets which do not cover
the entire exponent range. The final result is therefore given as the exact unevaluated
sum of at most 4L floating-point numbers.

We illustrate this algorithm in Figure 3.1, using a simple floating-point system
\BbbF with t = 3. The 11 leaf nodes correspond to the input summands xi, whose exact
sum is s = 5.8125 (we only consider positive summands here for simplicity; negative
numbers would be treated separately and similarly). All nonleaf nodes correspond
to partial results obtained during the computation and, to easily check that they are
indeed floating-point numbers, we provide the list of elements of \BbbF in the interval
(0.25,3):

0.25,0.3125,0.375,0.4375,0.5,0.625,0.75,0.875,1,1.25,1.5,1.75,2,2.5,3.
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0.25 0.3125 0.375 0.375 0.4375 0.4375

0.625 0.75 0.625 0.625 0.75 0.75 0.875

1.25 1.5 1.5

3

Fig. 3.1. Illustration of the proposed summation algorithm for a simple floating-point system
with t= 3. The shaded nodes are the remaining values whose unevaluated sum is equal to the exact
result. Ellipse and rectangle nodes correspond to numbers with an LSB of 0 and 1, respectively.

Ellipse nodes correspond to numbers with an LSB equal to 0 and can thus be summed
exactly with other ellipse nodes on the same level. Rectangle nodes correspond to
numbers with an LSB equal to 1 and can similarly be summed exactly with other
rectangle nodes on the same level. The five shaded nodes are the root nodes and
correspond to the remaining numbers that cannot be summed exactly with another
node on the same level. They form an unevaluated sum whose result is equal to the
exact sum:

s= 0.375 + 0.4375 + 0.75 + 1.25 + 3.

It is interesting to remark that the addition of some of these numbers can be repre-
sented exactly, namely 0.75 + 1.25 = 2 \in \BbbF . This is indeed consistent with Theorem
2.1: defining x = 0.75 and y = 1.25, we have ex =  - 1, ey = 0, kx = 2, ky = 1,
and condition (iv) of the theorem holds: kx + ky\beta 

ey - ex = 4 \equiv 0 mod 22. However,
our algorithm will not exploit this because it only tries to sum numbers of identical
exponent, for which we only need to check the LSB.

It is important to note that the forest structure of the algorithm is purely con-
ceptual and does not actually need to be built. We also do not need access to all
summands previous to the beginning of the computation. Algorithm 3.1 describes an
online implementation (which adds summands as they become available and in any
order) that requires at most 4L accumulators.

We note that the assumption in Corollary 2.3 that x and y have the same sign is
not required: if their signs are different, the subtraction x+ y is exact by Sterbenz's
lemma, since numbers with the same exponent certainly satisfy x/2 \leq y \leq 2x, and
this holds regardless of the LSB of x and y. Therefore the algorithm could also
add pairs of summands with the same exponent and different signs, reducing the
maximum number of accumulators (and terms in the unevaluated result) from 4L to
2L. However, the drawback is that we would need to recompute the exponent of the
result of each addition, since the exponent of a subtraction of two numbers with the
same exponent can have an arbitrarily small exponent depending on how close the
two numbers are. In contrast, by restricting the pairs to have the same sign, we know
that the exponent of x+ y is exactly one more than that of x and y.

4. Numerical experiments. We present a set of numerical experiments to
assess the performance of the Condense \& Distill method and its behavior with respect
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Algorithm 3.1. Condense \& Distill method.

1: Input: n summands xi and a distillation method distill

2: Output: s=
\sum n

i=1 xi

3: Initialize Acc(e, s, b) to 0 for e= emin : emax, s\in \{  - 1,1\} , b\in \{ 0,1\} .
4: for all xi in any order do
5: e= exponent(xi)
6: s= sign(xi)
7: b= LSB(xi)
8: insert(Acc, xi, e, s, b)
9: end for
10: xcondensed = gather(Acc)
11: s= distill(xcondensed)

12: function insert(Acc, x, e, s, b)
13: if Acc(e, s, b) = 0 then
14: Acc(e, s, b) = x
15: else
16: x\prime =Acc(e, s, b) + x
17: Acc(e, s, b) = 0
18: b\prime = LSB(x\prime )
19: insert(Acc, x\prime , e+ 1, s, b\prime )
20: end if
21: end function

22: function xcondensed = gather(Acc)
23: i= 0
24: for all nonzero Acc(e, s, b) do
25: i= i+ 1
26: xcondensed(i) =Acc(e, s, b)
27: end for
28: end function

to various parameters such as the dimension n and the condition number \kappa . We also
present a parallel implementation of the method and study its scalability.

4.1. Experimental protocol. All the experiments were performed on one node
of the Olympe supercomputer, equipped with two 18-core Intel Skylake processors.
All code was compiled with gfortran version 9.3.0 and with the -O3 optimization flag.
We use double precision arithmetic for all experiments, except in Figure 4.4, where
we discuss the use of quadruple precision arithmetic.

We test the methods on ill-conditioned sums randomly generated as follows. As-
suming n = 2k + 1 is odd (if n is even, we simply add one extra zero summand), we
generate k random summands xi in the range [10 - e,10e], where e is a fixed parameter
that determines the width of the dynamic range of the xi values; we have used e= 32
throughout all experiments. We set another k summands to  - xi and set the last
summand to 10e/\kappa . Finally, we randomly shuffle all summands. The exact sum is
equal to 10e/\kappa , and its conditioning is of the order of \kappa .
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Fig. 4.1. Comparison between the Demmel--Hida, AccSum, and Condense \& Distill algorithms
as a function of the condition number \kappa and for two dimensions n= 107 (top) and n= 108 (bottom).
All algorithms are run sequentially (1 thread).

For the implementation of Condense \& Distill, we must choose a distillation
method to distill the condensed sum. We use the Demmel--Hida method in all ex-
periments except in Figure 4.4. However, we have also tested using AccSum and the
performance results are indistinguishable; this is because the condensed sum obtained
by Condense \& Distill is so small that the cost of distilling it is negligible and does
not have a noticeable effect on the overall performance. Figure 4.4 is an exception:
for this experiment, we use AccSum to distill the condensed sum because the work-
ing precision is quadruple precision, and so Demmel--Hida would require an extended
precision beyond quadruple.

Throughout all experiments, all methods correctly compute the exact sum.

4.2. Comparison with Demmel--Hida and AccSum. We begin by compar-
ing the performance of our new Condense \& Distill method with that of the Demmel--
Hida and AccSum methods. Figure 4.1 plots the time cost of each method for varying
\kappa and for two fixed values of n, n= 107 (top plot) or n= 108 (bottom plot). The figure
shows that, as expected, the cost of the Condense \& Distill and Demmel--Hida meth-
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Fig. 4.2. Comparison between the Demmel--Hida, AccSum, and Condense \& Distill algorithms
as a function of the number of summands n and for two condition numbers \kappa = 1030 (top) and
\kappa = 1060 (bottom). All algorithms are run sequentially (1 thread).

ods is independent of \kappa , with Condense \& Distill being roughly 35\% faster because it
avoids using quadruple precision. In contrast, the cost of AccSum strongly depends
on \kappa , growing at a rate of roughly log\kappa . As a result, the time comparison between
AccSum and Condense \& Distill depends on \kappa : for only moderately ill-conditioned
sums, AccSum is faster, but as \kappa increases, Condense \& Distill (and even Demmel--
Hida) eventually outperforms AccSum, potentially by very large factors if the sum is
extremely ill conditioned. The cutoff value of \kappa for which Condense \& Distill out-
performs AccSum also seems to decrease as n increases: it is equal to \kappa \simeq 1035 for
n= 107 and \kappa \simeq 1020 for n= 108.

We confirm this last trend in Figure 4.2, where we compare the performance of the
methods for an increasing n and a fixed value of \kappa . The figure shows that Condense
\& Distill becomes more and more competitive with respect to AccSum as n increases.
While AccSum is faster for small sums, it is eventually outperformed by Condense \&
Distill and even by Demmel--Hida for sufficiently large sums. The cutoff value of n
for which Condense \& Distill outperforms AccSum similarly decreases as \kappa increases:
for example, it is equal to n\simeq 107 for \kappa = 1030 and n\simeq 106 for \kappa = 1060.
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Fig. 4.3. Parallel scaling of Condense \& Distill, using from 1 to 36 threads. Top: strong scaling
(n= 108 is fixed). Bottom: weak scaling (n= 3\times 106 per thread).

4.3. Parallel scaling. In the previous comparison, the methods are executed se-
quentially (using only 1 thread), but, as mentioned, Condense \& Distill, like Demmel--
Hida and similar methods, is very amenable to parallelism. We have implemented a
parallel version of Condense \& Distill, which can exploit p threads by splitting the
summands into p blocks and condensing each block in parallel. This yields a con-
densed sum with at most 4Lp summands, which can be sequentially condensed into
an even smaller sum with at most 4L summands, before being sequentially distilled.
Figure 4.3 analyzes the parallel scaling of this method with a varying number of
threads from 1 to 36. We consider both strong scaling (top plot, with fixed n= 108)
and weak scaling (bottom plot, with n = 3\times 106 per thread). The method exhibits
near perfect scaling, as expected.

As mentioned, similar scaling can also be expected from the Demmel--Hida method.
In contrast, AccSum and similar methods offer much less parallelism. We do not study
the parallel scaling of AccSum here, but refer the reader to [5], which shows that Acc-
SumK can achieve at best a parallel efficiency of only 50\%. Therefore, in a parallel
setting, we can expect the performance comparison between Condense \& Distill and
AccSum to be even more in favor of the former, even for small values of \kappa .
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Fig. 4.4. Comparison between AccSum and Condense \& Distill using quadruple precision as
the working precision (n= 107, both algorithms are executed using 1 thread).

4.4. Quadruple precision as the working precision. We finally illustrate
how condensation can be even more beneficial in the case where the working precision
is quadruple precision, which may be necessary for applications requiring a high level
of accuracy, for example. In this situation, Condense \& Distill is clearly at an advan-
tage compared with both Demmel--Hida and AccSum. Indeed, since Demmel--Hida
requires extended precision, using quadruple precision as the working precision would
require access to an even higher precision, which is unavailable on most architectures.
The only solution would be to rely on an arbitrary precision library, but this would
likely be very expensive, and we do not explore this option further. As for AccSum, it
can easily be executed in quadruple precision since it also runs entirely in the working
precision. However, the cost comparison with Condense \& Distill tips even more in
favor of the latter, because the relative cost of accessing the summands exponent is
smaller with respect to the cost of arithmetic operations (which are much more ex-
pensive in quadruple precision). This is illustrated in Figure 4.4, which shows that
Condense \& Distill achieves even larger speedups with respect to AccSum, even for
small condition numbers.

5. Conclusion. We have proposed a new distillation method, Condense \& Distill
(Algorithm 3.1), which employs a preprocessing condensation step to turn a large ill-
conditioned sum into a still ill-conditioned but far smaller sum which is then distilled
inexpensively via traditional distillation methods. The condensation step relies on
Corollary 2.3, which proves that floating-point numbers with the same exponent and
least significant bit can be added exactly. Compared with other summation methods
that also require accessing the exponent field of the summands, such as the Demmel--
Hida method [1], Condense \& Distill can run entirely in the working precision. As a
result, Condense \& Distill is faster, and is also more portable since it does not require
any extra precision to be available. Compared with distillation methods based on
error-free transformations, such as AccSum [8], Condense \& Distill's cost does not
increase with the conditioning and exhibits much better parallel scaling. Overall,
we have thus shown Condense \& Distill to be an efficient method to distill large
ill-conditioned sums.
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